Your Brain on Design Patterns

Head First
Design Patterns

Learn why everything
Avoid those 1_ your friends know about Factory

embarrassing | " ol Pattern is
'] i Al " b b
coupling mistakes | } 14 & probably wrong

Load the patterns
that matter straight

Discover the sécrets ¥ | into your brain
of the Patterns Guru ' '

oee why Jim's
love life improved

Find out how : ' when he cut down
Starbuzz Coffee doubled ™ his inheritance

their stock price with
the Decorator pattern

" Eric I;'Iieeman & Elisabeth Freeman
O REILLY i 4

with Kathy bierra &' Bert Bates

3 the DecoratorPattern

*
+ Decorating Objects *

T used to think real men
subclassed everything. That was
until T learned the power of
extension at runtime, rather than
at compile time. Now look at me!

Just call this chapter “Design Eye for the Inheritance Guy.”
We’'ll re-examine the typical overuse of inheritance and you'll learn how to decorate
your classes at runtime using a form of object composition. Why? Once you know the
techniques of decorating, you'll be able to give your (or someone else’s) objects new

responsibilities without making any code changes to the underlying classes.

this is a new chapter 79

the starbuzz story

Welcome to Starbuzz Coffee

Starbuzz Coffee has made a name for itself as the & 2
fastest growing coffee shop around. If you’ve seen one ‘

on your local corner, look across the street; you’ll see

another one.

Because they’ve grown so quickly, they’re scrambling
to update their ordering systems to match their
beverage offerings.

When they first went into business they designed their
classes like this...

i \ass,
a0 is an abstratt ¢
?:\::\Yas?cd by all beverages
offeved in the toffee shop-
Beverage The destription instante vaviable

ipti T — s set in eath subelass and holds a
e deseription of the beverage, like

The tost() mc?\"d is getDescription() “Most Excellent Dark Roast”
abstract; subelassses ™ ——_ %I cost() iption() method
need to define theiv e 56{?;56;‘?:::“50: ’
own implementation I/l Other useful methods... veturns the destrip

HouseBlend DarkRoast Decaf

| | |
cost() I cost() I cost() I cost()

~) A

Each subtlass implements cost() to veturn the cost of the beverage.

Espresso

80 Chapter 3

the decorator pattern

In addition to your coffee, you can also ask for several condiments like
steamed milk, soy, and mocha (otherwise known as chocolate), and have
it all topped off with whipped milk. Starbuzz charges a bit for each of
these, so they really need to get them built into their order system.

Here’s their first attempt...

Beverage

description

getDescription()
cost()

11 Other useful methods.

- - ’ 1 EspressoWith dMilk
HouseBIe::mt:‘g::amedMllk DarkRoa:;V::‘lﬂllsct::medM DecafWith dMilk andMocha
HouseBle . andMocha cost()
_ad cCOS() cost() cost)
cost() . e EspressoWithSteamedMilk
DecafWithSteamedMik | andCaramel I
DarkRoastWithSteamedMilk Pl g —
cost() andCaramel andCaramel cost()| EspressoWithWhipandMocha
Hou! .
i DecafWithV
HouseBlel cost() DarkRoastWithW -
d cost().
cost() cost() | cost(DecafWithSoy
. . DecafWithSteamedMilk ||
HouseBlendWith: L DarkRoastWithSteamedMilk cost()
0 andSoy I kel | pressoWith!
HouseBlendWithWhip— - - A
i DecafWithSteamedMilk |
jmsm;'l DarkRoasththSteamedM DarkRoa: cost() DecaMithSoyandMocha

HouseB] cost()

HouseBlendWith

cost()

dMilk

=

cost()

DecafWithSteame
al

EspressoWithSteamedMilk
andWhip

DarkRoastWithWhipandSoy

DecafWith

WithWhij

P!

cost()

Whoa!
Can you say

“class explosion?”

the

h tost method com?u{',CS.

E:sc{: oE the CO‘Q‘CCC along with the
other tondiments in Lhe ovder-

81

you are here »

violating design principles

i @3 RALN
PQAQWEWR
It's pretty obvious that Starbuzz has created a maintenance nightmare for

themselves. What happens when the price of milk goes up? What do they do
when they add a new caramel topping?

Thinking beyond the maintenance problem, which of the design principles that
we’ve covered so far are they violating?

iAem BIq e ul wayj Jo om) bunejoin al fay) JuiH

This is stupid; why do we need
all these classes? Can't we just use

instance variables and inheritance in
the superclass to keep track of the
condiments?

Well, let's give it a try. Let's start with the Beverage base
class and add instance variables to represent whether or
not each beverage has milk, soy, mocha and whip...

Beverage

description New boolean values ‘("OY'

milk tondiment.
oy k/%/ eath tondiment

mocha
whip

hasMilk()

hasMocha()

setMocha()

hasWhip() \ These oet and set the boolean
setWhip() 1 i 2‘” the tondiments.

/I Other useful methods..

82 Chapter 3

Now we'll implement cost() in Beverage (instead of
getDescription() — kcc\?ing it abstract), so that it can caleulate the

cost() (-—// costs assotiated with the condiments for a particular

beverage instance. Subelasses will still overvide

setMiIk(() eost(), but they will also invoke the super version so
hasSoy() that they can caleulate the total eost of the basic
setSoy() beverage plus the osts of the added tondiments.

the decorator pattern

Beverage
, . descriofi
Now let's add in the subclasses, one m?ﬁ(Cf'P ion
for each beverage on the menu: soy
mocha
whip

ss tost() will calevlate the

The sw ertld of the Lond\mcn{:s, while getDescription()

i,‘\)\s{-’:ve\orvr'\;‘c\icn tost() in the sublasses > cost)

\c\ extend that §vné’c\°"a"‘bf to hasMilk()
. de tosks for that specitit setMilk()
ntlude o{\/‘:c hasSoy()
beverage) setSoy()

i h 3 s£() method needs o tompute hasMocha()

Bach i< of the beveraoe and then sethlocha()

the tost ks by calling the hasWhip()

add in the tondiments 0Y setWhip()

Lakion of tost().

SS Im lemen
5“?‘”“3 (/I Other useful methods..

lg\\ ——

HouseBlend i DarkRoast i Decaf i Espresso i

cost() cost() cost() I cost() I

G harpen our pencil
o y

Write the cost() methods for the following classes (pseudo-Java is okay):

public class Beverage { public class DarkRoast extends Beverage {

public double cost() {
public DarkRoast() {

description = "Most Excellent Dark Roast";

}
public double cost() {

you are here » 83

impact of

See, five
classes total. This is
definitely the way to go.

I'm not so sure; I can
see some potential problems
with this approach by thinking
about how the desigh might need
to change in the future.

e dbharpen your penci
What requirements or other factors might change that will impact this design?

Price thanges £or tondiments will foree us to alter c%is{ing tode.

New condiments will forte us to add new methods and alter the cost method in the superclass.

We may have new beverages. For some of these beverages (iced tea?), the condiments
may not be appropriate, yet the Tea subelass will still inherit methods like hasWhipQ).

e yex

What if a customer wants a double motha?

\(ow ‘b““..

84

we Gt

\s
O\“&*\;a

wel

w

e

N .\6@3 g

the decorator pattern

Master and Student...

. =« Master: Grasshopper, it has been some time since our last
\7 © meeting. Have you been deep in meditation on inheritance?

Student: Yes, Master. While inheritance is powerful, | have
learned that it doesn’t always lead to the most flexible or
maintainable designs.

Master: Ah yes, you have made some progress. So, tell me my student, how
then will you achieve reuse if not through inheritance?

Student: Master, | have learned there are ways of “inheriting” behavior at
runtime through composition and delegation.

Master: Please, go on...

Student: When | inherit behavior by subclassing, that behavior is set statically
at compile time. In addition, all subclasses must inherit the same behavior. If
however, | can extend an object’s behavior through composition, then | can do
this dynamically at runtime.

Master: Very good, Grasshopper, you are beginning to see the power of
composition.

Student: Yes, it is possible for me to add multiple new responsibilities to objects
through this technique, including responsibilities that were not even thought of
by the designer of the superclass. And, | don’t have to touch their code!

Master: What have you learned about the effect of composition on maintaining
your code?

Student: Well, that is what | was getting at. By dynamically composing objects,
I can add new functionality by writing new code rather than altering existing
code. Because I'm not changing existing code, the chances of introducing bugs
or causing unintended side effects in pre-existing code are much reduced.

Master: Very good. Enough for today, Grasshopper. | would like for you to
go and meditate further on this topic... Remember, code should be closed (to
change) like the lotus flower in the evening, yet open (to extension) like the
lotus flower in the morning.

85

the open-closed

The Open-Closed Principle

Grasshopper is on to one of the most important design principles:

Design Principle

Classes should be open
for extension, but closed for
modification.

S CLOSED

open. Feel free to extend BUSINESS HOURS:
our classes with any new behavior you von IR 1o -y
like. If your needs or requirements change (and we EN

know they will), just go ahead and make your own
extensions.

Sorry, we’re closed.
That’s right, we spent
alot of time getting this code correct and

bug free, so we can’t let you alter the existing code.
It must remain closed to modification. If you don’t
like it, you can speak to the manager.

Our goal is to allow classes to be easily extended to
incorporate new behavior without modifying existing code.
What do we get if we accomplish this? Designs that are
resilient to change and flexible enough to take on new
functionality to meet changing requirements.

86

there]gre no

Dumb Questions

Q': Open for extension and closed
for modification? That sounds very
contradictory. How can a design be
both?

A: That’s a very good question. It
certainly sounds contradictory at first.

After all, the less modifiable something
is, the harder it is to extend, right?

As it turns out, though, there are some
clever OO techniques for allowing
systems to be extended, even if we can't
change the underlying code. Think
about the Observer Pattern (in Chapter
2)...by adding new Observers, we can
extend the Subject at any time, without
adding code to the Subject.You'll see
quite a few more ways of extending
behavior with other OO design
techniques.

Q: Okay, | understand Observable,
but how do | generally design
something to be extensible, yet closed
for modification?

A: Many of the patterns give us
time tested designs that protect your

code from being modified by supplying
a means of extension. In this chapter
you'll see a good example of using the
Decorator pattern to follow the Open-
Closed principle.

Q: How can | make every part of
my design follow the Open-Closed
Principle?

the decorator pattern

A: Usually, you can’t. Making OO
design flexible and open to extension

without the modification of existing
code takes time and effort. In general,
we don't have the luxury of tying

down every part of our designs (and it
would probably be wastefu). Following
the Open-Closed Principle usually
introduces new levels of abstraction,
which adds complexity to our code.
You want to concentrate on those areas
that are most likely to change in your
designs and apply the principles there.

Q_: How do | know which areas of
change are more important?

A: That is partly a matter of
experience in designing OO systems and

also a matter of the knowing the domain
you are working in. Looking at other
examples will help you learn to identify
areas of change in your own designs.

While 1t may seem like a contradiction,
there are teclmin[ues for allowing code to be
extended without direct modification.

Be careful when choosing the areas of code
that need 1o bhe extended; applying the
Open-Closec[Principle EVERYWHERE

is wasteful, unnecessary, and can lead to
com]olex, hard to understand code.

87

meet the decorator pattern

Okay, enough of the "Object
Oriented Design Club." We have real
problems here! Remember us? Starbuzz
Coffee? Do you think you could use
some of those design principles to
actually help us?

Meet the Pecorator Pattern

Okay, we’ve seen that representing our beverage plus condiment pricing
scheme with inheritance has not worked out very well — we get class
explosions, rigid designs, or we add functionality to the base class that isn’t
appropriate for some of the subclasses.

So, here’s what we’ll do instead: we’ll start with a beverage and “decorate”
it with the condiments at runtime. For example, if the customer wants a
Dark Roast with Mocha and Whip, then we’ll:

© Take a DarkRoast object

© Decorate it with a Mocha object
© Decorate it with a Whip object

Q Call the cost() method and rely on
delegation to add on the condiment costs

Okay, but how do you “decorate” an object, and how does delegation
come into this? A hint: think of decorator objects as “wrappers.” Let’s
see how this works...

88 Chapter 3

the decorator pattern

Constructing a drink order with Pecorators

© We start with our DarkRoast object.

o
ber -\;\'\a‘\: an ')
Remem veragt
m 'mhc\'-‘*’s Qv::\\B; ‘\;\\3‘\3 f,o"‘?“*‘cs
™ 'S

6 The customer wants Mocha, so we create a Mocha
object and wrap it around the DarkRoast.

i tor. ks
bietk is a decovd .
P i M?::ir: he ob)cc'h s ‘c‘ic_t,o\ri{,‘;mg,
m i ’
{':\IY‘:h\s case, @ Deverdde: (By “wie
‘:c mean it is the same Lyve-

() c{‘,hod {;oo,
So, Motha has 2 tost :, we tan tred

morph
’K and Eheoudh poly °YYd‘.m Motha 3s

B apye :
evevrage WY .
a'% Vcragc? too (betauvse Moc\n

a pe

svbtype § Beveraoe):

Q The customer also wants Whip, so we create a
Whip decorator and wrap Mocha with it.

Whip is a detorator, so it also
miveors DavkRoast’s type and
intludes a tost() method.

So, a DarkRoast wrapped in Motha and Whip is still
a Bcvcvage and we ¢an do an\/{:hing with it we ¢an do
with a DavkRoast, intluding call its cost() method.

you are here » 89

decorator

Q Now it’s time to compute the cost for the customer. We do this
by calling cost() on the outermost decorator, Whip, and Whip is
going to delegate computing the cost to the objects it decorates.

Once it gets a cost, it will add on the cost of the Whip. .
(You'l see how in

cs,)
e Whip calls cost() on Mocha. é? a few P39

First, we call cost() on the Mocha calls cost() on
outmost decorator, Whip. DarkRoast.

e DarkRoast
returns its cost,

99 cents.
Whip adds its total, 10 cents,
to the result from Mocha, and Mocha adds its cost, 20
returns the final result—$1.29. e cents, to the result from
parkRoast, and returns
the new total, $1.19.
Okay, here’s what we know so far...
= Decorators have the same supertype as the objects they decorate.
= You can use one or more decorators to wrap an object.
= Given that the decorator has the same supertype as the object it decorates, we can pass
around a decorated object in place of the original (wrapped) object. |
ey Pore

= The decorator adds its own behavior either before and/or after delegating to the object it
decorates to do the rest of the job.

= Objects can be decorated at any time, so we can decorate objects dynamically at runtime
with as many decorators as we like.

Now let’s see how this all really works by looking at the
Pecorator Pattern definition and writing some code.

90

The Decorator Pattern defined

Let’s first take a look at the Decorator Pattern description:

The Decorator Pattern attaches additional
responsibilities to an object dynamically.
Decorators provide a flexible alternative to
subclassing for extending functionality.

While that describes the role of the Decorator Pattern, it doesn’t give us a lot
of insight into how we’d apply the pattern to our own implementation. Let’s
take a look at the class diagram, which is a little more revealing (on the next
page we’ll look at the same structure applied to the beverage problem).

Component i

The Contrc{:eComPoncv\{:
is the objeet we're 9oing
to d\/namicall\/ add new
behavior to. [t extends

DY

methodA()

methodB()
Il other methods

the decorator pattern

Eath (.om?oncn{: ¢tan be used on its

C°MY°"°"J° ConcreteComponent i Decorator
methodA() methodA()
methodB() methodBy()

I other methods Il other methods

>

has an
The Cov\crc{:chcora{:or .
inskante vaviable Lor the thing
it decovates (the Com?oncv&
the Detorator wraps)-

\

ConcereteDecoratorA

ConcereteDecoratorB

own, or wraﬂ?cd b\/ a decorator.

component

Eath detorator HAS-A
(wraps) a tomponent, whith
means the detorator has an
instante vaviable that holds
a veferente to a component.

Dectorators implement the

same inkecfate or asbstract

tlass as the tomponent they

are 9oiny ko decorate

Component wrappedObj

methodA()
methodB()
newBehavior()
Il other methods

Component wrappedObj
Object newState

R

methodA()
methodBj()
Il other methods

Detovators tan extend the
skate of the ¢omponent.

—

Detorators tan add new methods; however, new
behavior is typically added by doing computation
before or after an existing method in the component.

you are here » 91

decorating beverages

Pecorating our Beverages

Okay, let’s work our Starbuzz beverages into this framework...

Deveraoe atts as owr
Jbstract componen

AN

L class

Beverage

description

getDescription()
cost()
I/ other useful methods

component

HouseBlend DarkRoast CondimentDecorator
cost() cost() getDescription()
v 1
Espresso Decaf
cost() cost()
X Milk Mocha Soy Whip
erete B b B b B b B b
S}o\r‘f (X YC‘(everage beverage everage beverage everage beverage everage beverage
e e
T onent " cost() cost() cost() cost()
c’o:\;i et A\—‘\RC getDescription() getDescription() getDescription() getDescription()
t

NY 7oA

And here are our tondiment detorators; noti

get

estription(). We'll see why in @ moment...

ce

{hc%nccd to imFICmcn{; not only tost() but also

RANN
PQWEWR

Before going further, think about how you’d implement the cost() method of
the coffees and the condiments. Also think about how you’'d implement the
getDescription() method of the condiments.

92 Chapter 3

the decorator pattern

Cubicle Conversation

Some confusion over Inheritance versus Composition

going to use inheritance in this

Okay, I'm a little
confused...I thought we weren't

pattern, but rather we were going
to rely on composition instead.

Sue: What do you mean?

Mary: Look at the class diagram. The CondimentDecorator is extending the Beverage class.
That’s inheritance, right?

Sue: True. I think the point is that it’s vital that the decorators have the same type as the
objects they are going to decorate. So here we’re using inheritance to achieve the &ype matching,
but we aren’t using inheritance to get behavior.

Mary: Okay, I can see how decorators need the same “interface” as the components they wrap
because they need to stand in place of the component. But where does the behavior come in?

Sue: When we compose a decorator with a component, we are adding new behavior. We
are acquiring new behavior not by inheriting it from a superclass, but by composing objects
together.

Mary: Okay, so we're subclassing the abstract class Beverage in order to have the correct type,
not to inherit its behavior. The behavior comes in through the composition of decorators with
the base components as well as other decorators.

Sue: That’s right.

Mary: Ooooh, I see. And because we are using object composition, we get a whole lot more
flexibility about how to mix and match condiments and beverages. Very smooth.

Sue: Yes, if we rely on inheritance, then our behavior can only be determined statically at
compile time. In other words, we get only whatever behavior the superclass gives us or that we
override. With composition, we can mix and match decorators any way we like... at runtime.

Mary: And as I understand it, we can implement new decorators at any time to add new
behavior. If we relied on inheritance, we’d have to go in and change existing code any time we
wanted new behavior.

Sue: Exactly.

Mary: Ijust have one more question. If all we need to inherit is the type of the component,
how come we didn’t use an interface instead of an abstract class for the Beverage class?

Sue: Well, remember, when we got this code, Starbuzz already /ad an abstract Beverage class.
Traditionally the Decorator Pattern does specify an abstract component, but in Java, obviously,
we could use an interface. But we always try to avoid altering existing code, so don’t “fix” it if
the abstract class will work just fine.

93

decorator fraining

Okay, I need for you to
make me a double mocha,
soy latte with whip.

New barista training

Make a picture for what happens when the order is for a
“double mocha soy lotte with whip” beverage. Use the menu

to get the correct prices, and draw your picture using the

same format we used earlier (from a few pages back):

© whip calls cost() on Mocha.
Mocha calls cost() on

DarkRoast.
as for

wetwre W
—\ This pict e
=t 1B

& 5 “dark v
\m‘, " \peverade:
ocha

First, we call cost() on the
outmost decorator, Whip.

$1.29

o DarkRoast
returns its cost,

99 cents.
5] rlh‘l: adds its total, 10 cents,
e e e, © Mokt
DarkRoast, and returns
the new total, $1.19.
g i Starbuzz
L arpen your Pen(}l Draw your picture here. uzz ﬁoﬁ‘e .
Coffees
House Blend .89
Dark Roast .99
Decaf G
Espresso 1.99
Condiments
Steamed Milk 19
Mocha 20
Soy .15
Whip .10

94 Chapter 3

the decorator pattern

Writing the Starbuzz code

It’s time to whip this design into some real code.

Let’s start with the Beverage class, which doesn’t need to
change from Starbuzz’s original design. Let’s take a look:

public abstract class Beverage { s an a\;s{:‘rac‘t

String description = “Unknown Beverage”; Bcvcﬂﬁ;\“ fhe two methods
elass W 0 0.
‘ohi and Cos
public String getDescription () { 5C£DCSL\'\Y£‘O“
return description;
} \ getDeseription is alveady
i but we
public abstract double cost(); |mﬂtma¢£d§orus t w
} need to m?lcrncn{: COS‘[;()

in the subelasses.

Beverage is simple enough. Let’s implement the abstract
class for the Condiments (Decorator) as well:

public abstract class CondimentDecorator extends Beverage {

public abstract String getDescription(); (\
}

We've also going to require

that the tondiment

decorators all veimplement the
gc{:Dcscriy{:ion() method. Aoain,

we'll see why in a sec..

95

implementing the beverages
Coding beverages

Now that we’ve got our base classes out of the way, let’s
implement some beverages. We’ll start with Espresso.
Remember, we need to set a description for the specific
beverage and also implement the cost() method.

First we extend the DPeverage

. .
¢lass, sinte Lhis 1s 3 beveraqy
public class Espresso extends Beverage {

public Espresso() {

otion, we
description = “Espresso”; & To takectare of the dcscrl?E|0h£:’
: set this in the tonstruttor Yor he
tlass. Remember the destription instance
public double cost() { vaviable is hevited ‘Crom Bcvevagc.
return 1.99;
| We dont
} tost of an Espresse :
L Finally, we reed ©0 eompute the B 0 b in Ehis lass, e just
' n)

need to worey about addin

1197
d ko vekuen the prite ot an Espresso |
nee

public class HouseBlend extends Beverage {
public HouseBlend() {

description = “House Blend Coffee”;
) : o
} StarbuzZ Coffee |
bli doubl t s
public double cost () { 992222— - 9
return .89; House 99
/ park Roast .05
: pecaf 1.99
ss0
,L Okay, here’s another Beverage. All we Espre
do is set the ap row;ialcc deseviption, (w 10
“House Blend Coffee,” and then veturn = Coamed wilk L
the corveet tost: 89¢. ocha e
soy 10
Whip
You tan treate the other two Beverage elassses

(DavkRoast and Decaf) in exattly the same way.

96 Chapter 3

Coding condiments

the decorator pattern

If you look back at the Decorator Pattern class diagram, you’ll
see we’ve now written our abstract component (Beverage), we
have our concrete components (HouseBlend), and we have our
abstract decorator (CondimentDecorator). Now it’s time to
implement the concrete decorators. Here’s Mocha:

Motha is a detorator, so we b
extend CondimentDetorator. Reme™

e e.
L ke o %mfa‘b

public class Mocha extends CondimentDecorator ({
Beverage beverage; A -
(2) way to e
{ vaviable to Lhe dbjett we J;:‘c \::4 C\:“;S?
Here, we've 909 pass the beve

public Mocha (Beverage beverage)
this.beverage = beverage;

}

public String getDescription() {

return beverage.getDescription() + “, Mocha”;

N

}

public double cost () {
return .20 + beverage.cost();
}
: beverage
ouke Lhe eost of our beverad

¢ the tall to the

tom
Now we need {o to "'e deleoat

with Motha: Fiest, <o Fhat it tan compute the

| ' torating, |
Zb i:tj{l{\‘:‘:n“v:ca;; {:\ncgcos{: of Motha to fhe vesult
osT))

Condimer e

(',oralwY

to \v\shan{:\a{c Motha with
toa Peverage using
le Lo hold the

We've ooing
a3 rcﬁcrcncc

(1) An instante vaviab

¢ we are Wrappind

beveray
et this instance

we' e wrapping Lo the detorator's

COhs‘b'\AC‘hor N

We want our deseription to not only
intlude the beverage — say “Davk
Roast” - but also to intlude each

item decorating the beverage, for
insfancc,“l)ark Roast, Motha”. So
we first delegate to the object we ave
decorating to get its description, then
append “, Motha” to that destription.

On the next page we'll actually instantiate the beverage and
wrap it with all its condiments (detorators), but First..

Write and compile the code for the other Soy and Whip
condiments. You'll need them to finish and test the application.

e harpen our pencil
S y

you are here »

97

testing the beverages

Serving some coffees

Congratulations. It’s time to sit back, order a few coffees and marvel at
the flexible design you created with the Decorator Pattern.

Here’s some test code to make orders:

public class StarbuzzCoffee { o“&mﬂAﬁ
an €5 esso d Los‘\'/
; - ; ' : Ovdec ¥ wpuon
public static void main(String args[]) { Vs . &\ksdchv
_ . 4 prw
Beverage beverage = new Espresso();
System.out.println (beverage.getDescription ()
+ N $” + beverage.cost()); b t
objett
Ma\(C a Da‘(‘kRoas‘t \)
Beverage beverage2 = new DarkRoast (); ¢~ Wrap it with 3 Motha-
beverage2 = new Mocha (beverage2) ;
beverage2 = new Mocha (beverage?2) ; V——- W”'aP itina setond Motha.
beverage2 = new Whip (beverage2); &——— WV'&P itina Whip
System.out.println (beverage2.getDescription ()
+ N $” + beverage2.cost());
Beverage beverage3 = new HouseBlend() ; 4?’_—“\\\
beverage3 = new Soy (beverage3) ; F'm&“‘[; oive us a HouscBlcnd
beverage3 = new Mocha (beverage3) ; with Soy, Motha, and Whip-

beverage3 = new Whip (beverage3) ;
System.out.println (beverage3.getDescription ()
+ N $” + beverage3.cost());

*We've 9oing to see a much better way of
ereating detorated ochch,s when we tover the

Now, let’s get those orders in: Factory and Builder

% java StarbuzzCoffee
Espresso $1.99
Dark Roast Coffee, Mocha, Mocha, Whip $1.49

House Blend Coffee, Soy, Mocha, Whip $1.34

%

98 Chapter 3

csign Patterns.

therejare no

Dumb Questions

Q: I'm a little worried about code
that might test for a specfic concrete
component — say, HouseBlend - and

do something, like issue a discount.
Once I've wrapped the HouseBlend
with decorators, this isn’t going to work
anymore.

A: That is exactly right. If you have
code that relies on the concrete component’s

type, decorators will break that code.

As long as you only write code against

the abstract component type, the use of
decorators will remain transparent to your
code. However, once you start writing code
against concrete components, you'll want to
rethink your application design and your use
of decorators.

Q: Wouldn't it be easy for some
client of a beverage to end up with

a decorator that isn’t the outermost
decorator? Like if | had a DarkRoast with
Mocha, Soy, and Whip, it would be easy
to write code that somehow ended up
with a reference to Soy instead of Whip,
which means it would not including Whip
in the order.

A: You could certainly argue that

you have to manage more objects with

the Decorator Pattern and so there is

an increased chance that coding errors
will introduce the kinds of problems you
suggest. However, decorators are typically
created by using other patterns like Factory
and Builder. Once we've covered these
patterns, you'll see that the creation of the
concrete component with its decorator is
“well encapsulated” and doesn't lead to
these kinds of problems.

the decorator pattern

Q: Can decorators know about the
other decorations in the chain? Say, |
wanted my getDecription() method to
print “Whip, Double Mocha” instead of
“Mocha, Whip, Mocha”? That would
require that my outermost decorator
know all the decorators it is wrapping.

AZ Decorators are meant to add
behavior to the object they wrap. When
you need to peek at multiple layers into
the decorator chain, you are starting to
push the decorator beyond its true intent.
Nevertheless, such things are possible.
Imagine a CondimentPrettyPrint decorator
that parses the final decription and can print
“Mocha, Whip, Mocha” as “Whip, Double
Mocha.” Note that getDecription() could
return an ArrayList of descriptions to make
this easier.

— s oharpen your pencil
i’ your p

Our friends at Starbuzz have introduced sizes to their menu. You can now order
a coffee 1n tall, grande, and vent sizes (translation: small, medium, and large).
Starbuzz saw this as an intrinsic part of the coffee class, so they’ve added two
methods to the Beverage class: setSize() and getSize(). They’d also like for the
condiments to be charged according to size, so for instance, Soy costs 10¢, 15¢
and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

929

decorators in java i/o

Real World Pecorators: Java 170

The large number of classes in the java.io package is... overwhelming. Don’t feel alone
if you said “whoa” the first (and second and third) time you looked at this API. But
now that you know the Decorator Pattern, the I/O classes should make more sense
since the java.io package is largely based on Decorator. Here’s a typical set of

objects that use decorators to add functionality to reading data from a file:

A text file for veading,

<

Pnak's
wm 1S the tom O“c“.

Fx\.c\“";‘it:fcd‘\‘r he Java _/ ?,\‘\,‘:::’\l

\oc\'\‘b' cs al componen™ g‘ n wkSream

supplies rekream S‘\’X""?)ng cvgzw ner
LineNumbernputStream is Flehts aylnputStred™ and onent X¥0
also a contrete detorator-. Bl FevedlnputShrean B\f{',CP“’"\‘ \lsc give vs 2 base tom?
I adds the abilfy fo wreres P Al ok the

i i evete detorator
tount the line numbers as s @ ton ol

I'& !rcads da‘ta bcha\[ior in {wo Wa\lsz i

bu‘u:crs 'm\?u{: to improve
ycv(:o\rmancc, and also augmcn{s
he interface with a new
method readLine() for veading
thavatter—based nput, a line
at a time.

BufferedInputStream and LineNumberInputStream both extend
FilterInputStream, which acts as the abstract decorator class.

100 Chapter 3

BufferedlnputStream adds whith

Lo vead bytes

the decorator pattern

Pecorating the java.io classes

y\cn{’,
s owr a\)sjcxad’« tomye
fece

InputStream FilterlnputStream
/\ s an abs{:rac{:
decovator.

‘ FilelnputStream StnngBufferInputStream N ByteArraylnputStream FilterinputStream
‘ PushbackinputStream H BufferedinputStream h‘ DatalnputStream H LineNumberinputStream b
These InputStreams act as 7‘ / /
the tontrete tomponents that
we will wrap with detorators. ctovators.

Theve are a few more we didn't
show, like ObJCC‘EIn?u'ES‘Evcam

And (-"ma\l\/, heve ave all owr tontrete d

You can see that this isn’t so different from the Starbuzz design. You should
now be in a good position to look over the java.io API docs and compose
decorators on the various mput streams.

You'll see that the output streams have the same design. And you’ve probably
already found that the Reader/Writer streams (for character-based data)
closely mirror the design of the streams classes (with a few differences and
inconsistencies, but close enough to figure out what’s going on).

Java I70 also points out one of the downsides of the Decorator Pattern:
designs using this pattern often result in a large number of small classes

that can be overwhelming to a developer trying to use the Decorator-based
API. But now that you know how Decorator works, you can keep things in
perspective and when you’re using someone else’s Decorator-heavy API, you
can work through how their classes are organized so that you can easily use
wrapping to get the behavior you’re after.

you are here » 101

write your own

Writing your own Java 170 Decorator

Okay, you know the Pecorator Pattern, you've
seen the 170 class diagram. You should be ready to
write your own input decorator.

No problem. I just have to
extend the FilterInputStream class

How about this: write a decorator that converts and override the read() methods.

all uppercase characters to lowercase in the
input stream. In other words, if we read in “I
know the Pecorator Pattern therefore | RULE!”
then your decorator converts this to “i know the
decorator pattern therefore i rule!”

mport First, extend the Fi"{?CVI“\"‘{"S{"Ycam’ the
Dont foroet ::own§ abstract detorator for all InputStreams.

58V3.\o~-~ (not l

public class LowerCaselnputStream extends FilterInputStream {
public LowerCaselInputStream(InputStream in) {
super (in) ;

}

public int read() throws IOException {
int ¢ = super.read();
return (¢ == -1 ? ¢ : Character.tolLowerCase ((char)c));

}

public int read(byte[] b, int offset, int len) throws IOException {
int result = super.read(b, offset, len);

for (int i = offset; i < offset+result; i++) { \
b[i] = (byte)Character.toLowerCase ((char)b[i]); Now we need to im\’lc:rncv\{: two
} vead methods. They take a
st e byte (ov an arvay of bytes)
} and tonvert each byte (that

vepresents a thavatter) to
lowerease if it's an upperease
tharatter.

REMEMBER: we don't provide import and package

statements in the code listings. Get the complete

sourte tode from the wickedlysmart web site. Youll

find the URL on page xxxiii in the [ntvo.

102

the decorator pattern

Test out your new Java 170 Decorator

Write some quick code to test the 1/0 decorator:

public class InputTest {
public static void main(String[] args) throws IOException {

int c;
try {
InputStream in =) wtStream
new LowerCaseInputStream (K"_\ Qet v the F‘\i“?ﬁ'\rsjc with
new BufferedInputStream and dct,ov‘a‘h\c ! ,{—,S{‘xca"‘
new FileInputStream(“test.txt”))); Leceding¥
a Bv& bvahd new

Lhen owr
while ((c = in.read()) >= 0) { alrgwcvcasc\y\vuhg{’xcam

System.out.print ((char)c);

}

in.close();

filker-

} catch (IOException e) {
e.printStackTrace() ;

I know the Decorator Pattern therefore I RULE!

}

} Just use the stream to vead

thavatters until the end of

test.ixt file
file and print as we 90 I

\(O“ v\CCd {',O
Give it a spin: | ke this Fle

File Edit Window Help DecoratorsRule

% java InputTest
i know the decorator pattern therefore i rule!

%

you are here »

103

decorator

104

~ Patterns Exposed
This week’s interview:
Confessions of a Decorator

HeadFirst: Welcome Decorator Pattern. We've heard that you’ve been a bit
down on yourself lately?

Decorator: Yes, I know the world sees me as the glamorous design pattern, but
you know, I've got my share of problems just like everyone.

HeadFirst: Can you perhaps share some of your troubles with us?

Decorator: Sure. Well, you know I've got the power to add flexibility to
designs, that much is for sure, but I also have a dark side. You see, I can sometimes
add a lot of small classes to a design and this occasionally results in a design
that’s less than straightforward for others to understand.

HeadFirst: Can you give us an example?

Decorator: Take the Java I/0 libraries. These are notoriously difficult for
people to understand at first. But if they just saw the classes as a set of wrappers
around an InputStream, life would be much easier.

HeadFirst: That doesn’t sound so bad. You're still a great pattern, and
improving this is just a matter of public education, right?

Decorator: There’s more, I'm afraid. I've got typing problems: you see,
people sometimes take a piece of client code that relies on specific types and
introduce decorators without thinking through everything. Now, one great thing
about me is that you can usually insert decorators transparently and
the client never has to know it’s dealing with a decorator. But like |
said, some code is dependent on specific types and when you start introducing
decorators, boom! Bad things happen.

HeadFirst: Well, I think everyone understands that you have to be careful
when inserting decorators, I don’t think this is a reason to be too down on
yourself.

Decorator: I know, I try not to be. T also have the problem that introducing
decorators can increase the complexity of the code needed to instantiate the
component. Once you’ve got decorators, you've got to not only instantiate the
component, but also wrap it with who knows how many decorators.

HeadFirst: I'll be interviewing the Factory and Builder patterns next week — I
hear they can be very helpful with this?

Decorator: That’s true; I should talk to those guys more often.

HeadFirst: Well, we all think you’re a great pattern for creating flexible designs
and staying true to the Open-Closed Principle, so keep your chin up and think
positively!

Decorator: I’ll do my best, thank you.

Tools for your Design Toolbox

You’ve got another chapter under
your belt and a new principle and
pattern in the toolbox.

00 Printiples

hat vavies:
Ent,avsu\akc W —

; v
<sikion over inher

no‘h

F avor tomyo

Prooyam ‘o '\n{:cvﬁ ates)

\m\’\cmc"{"ahms'

for \oosc\\’ covv\cd desions

Ghyive ker atk
. Lhat
bebween oh)cc‘cs for A/W-c\ row have the OVCh‘C!“‘d .
Classes should be oFEY or Printiple £o quide vs. Wee 9oing
Lension bk closed to strive £o design our system
¢ (ieation: so that the tlosed parts are
modixé isolated from our new extensions.

]) ons
¢ our Kiest \JaH:crn for _cVFa\t,\ngocjc; 25 .‘
o \"C“.SQ the Ovcv\—C\oscd Printip JC.JC or v
ot 53{:)";\‘5 E’ws‘c?. |s there another Ya\ e
rcig\,’c\\ai Lollows this YY‘\V\C\\?\C as well¢
(T3

the decorator pattern

—— BULLET POINTS

= |nheritance is one form of
extension, but not necessarily
the best way to achieve flexibility
in our designs.

= |n our designs we should allow
behavior to be extended without
the need to modify existing code.

= Composition and delegation
can often be used to add new
behaviors at runtime.

= The Decorator Pattern provides
an alternative to subclassing for
extending behavior.

= The Decorator Pattern involves
a set of decorator classes that
are used to wrap concrete
components.

= Decorator classes mirror the
type of the components they
decorate. (In fact, they are the
same type as the components
they decorate, either through
inheritance or interface
implementation.)

= Decorators change the behavior
of their components by adding
new functionality before and/or
after (or even in place of) method
calls to the component.

= You can wrap a component with
any number of decorators.

= Decorators are typically
transparent to the client of the
component; that is, unless
the client is relying on the
component’s concrete type.

= Decorators can result in many
small objects in our design, and
overuse can be complex.

105

exercise solufions

Exercise solutions

public class Beverage {

// declare instance variables for milkCost,
// soyCost, mochaCost, and whipCost, and
// getters and setters for milk, soy, mocha public class DarkRoast extends Beverage {

// and whip.
public DarkRoast() {
public float cost() { description = "Most Excellent Dark Roast";
float condimentCost = 0.0;)
if (hasMilk()) { public float cost() {
condimentCost += milkCost;
} return 1.99 + super.cost():
if (hasSoy()) {
condimentCost += soyCost; } }
}

if (hasMocha()) {
condimentCost += mochaCost;
}
if (hasWhip()) {
condimentCost += whipCost;
}

return condimentCost;

New barista trainin
! “double mocha soy lotte with whip”

e Whip calls cost() on Mocha
e Mocha calls cost() on another Mocha.

° P e dec cots t()\:l:it: © e Next, Mocha calls cost() on Soy.
outmost decorator, .

"

e Last topping! Soy calls
cost() on HouseBlend.

0 HouseBlend’s cost()
method returns .89
cents and pops off
the stack.

Soy’s cost() method

adds .15 and returns
the result, and pops
off the stack.

The second Mocha’s

cost() method adds .20

and returns the result,

and pops off the stack.

@ Finally, the result returns to
Whip’s cost(), which adds .10 and
we have a final cost of $1.54.

e The first Mocha’s cost() method
adds .20 and returns the result,
and pops off the stack.

106

Chapter 3

the decorator pattern

Exercise soutions

Our friends at Starbuzz have introduced sizes to their menu. You can now order a coffee in
tall, grande, and venti sizes (for us normal folk: small, medium, and large). Starbuzz saw this
as an intrinsic part of the coffee class, so they’ve added two methods to the Beverage class:
setSize() and getSize(). They’d also like for the condiments to be charged according to size, so
for instance, Soy costs 10¢, 15¢, and 20¢ respectively for tall, grande, and venti coffees.

How would you alter the decorator classes to handle this change in requirements?

public class Soy extends CondimentDecorator ({
Beverage beverage;

aoate the
Now we need to YYJZ\: ‘3\6 wra\y\:cd_

public Soy(Beverage beverage) { N SC{S\u() md’,\\z\d wd also move 'S
this.beverage = beverage; beverage: We sho L elass sinte
} ethod to he bstrac detorators:
m‘l:’ s wsed In all CO“d""“"*‘ €
\

public getSize() {
return beverage.getSize();

}

public String getDescription() {
return beverage.getDescription() + %, Soy”;

}

public double cost() {

double cost = beverage.cost();

if (getSize() == Beverage.TALL) { L7\ Heve we 56{: the size (whith
cost += .10; onyasa’ccs all the way 4o the

} else if (getSize() == Beverage.GRANDE) ({ tontrete bcvcvagc) and then
cost += .15; add the appropriate cost.

} else if (getSize() == Beverage.VENTI) {

cost += .20;
}

return cost;

you are here » 107

