Pro Spring 5

An In-Depth Guide to the Spring
Framevvork and Its Tools

Fifth Edition

luliana Cosmina
Rob Harrop

Chris Schaefer
Clarence Ho

Apress’

Pro Spring 5

An In-Depth Guide to the Spring
Framework and Its Tools

Fifth Edition

luliana Cosmina
Rob Harrop
Chris Schaefer
Clarence Ho

Apress-

Pro Spring 5: An In-Depth Guide to the Spring Framework and Its Tools

Tuliana Cosmina Rob Harrop

Sibiu, Sibiu, Romania Reddish, United Kingdom

Chris Schaefer Clarence Ho

Venice, Florida, USA Hong Kong, China

ISBN-13 (pbk): 978-1-4842-2807-4 ISBN-13 (electronic): 978-1-4842-2808-1

DOI10.1007/978-1-4842-2808-1
Library of Congress Control Number: 2017955423
Copyright © 2017 by Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www. freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484228074. For more
detailed information, please visit waw.apress.com/source-code.

Printed on acid-free paper

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/
rights-permissions
www.apress.com/
rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484228074
www.apress.com/source-code

I dedicate this book to my friends, to my godson stefan, and to all the
musicians who have made working on this book easy with their music.

—Iuliana Cosmina

Contents at a Glance

About the AUthOrS.........cccsmiemmismmm s ————————————— Xxiii
About the Technical REVIEWETccusemmsmmsssmssmsssmsssmssmssssssssssssssssssssssssssssssnsssnsns XXV
AcknowledgmEents.......cceerusssssssmnsnmmmmssssssssssssnsssssssssssssnsnnnnssesssssssssnnnnnssssssssssnnnnnns XXvii
INtroduction ... —————=——=—— XXixX
Chapter 1: Introducing SPringc.cccusesmmsssssssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssanssssnns 1
Chapter 2: Getting Started.........oocvemmmmmmmnmmssssssnsnmnmmmmmsssssss - 19
Chapter 3: Introducing 10C and DI in SPring.....cccccussseennessssssssssssssssssssssssssssssssnnnss 37
Chapter 4: Spring Configuration in Detail and Spring Bootccosceemrinsssnnnnns 125
Chapter 5: Introducing Spring AOQP........couunemmmmmmmmmmmmssssssssmmmmsssssss—.- 211
Chapter 6: Spring JDBC Supportc.cccccmmnnsmmnmmmssssnmmssssssssmssssssssssssssssssssssnnns 297
Chapter 7: Using Hibernate in SPringc..ccvusemmmmssnmmsssnsmsssssssssnsssssssssssssssssnnsnss 355
Chapter 8: Data Access in Spring with JPA2...........cccocncmmmmmnnnnnsssssssssssnnsenssnnes 393
Chapter 9: Transaction Management.........cccuscenmmnssennmmmssssnmmssssssnssssssssessssnnns 467
Chapter 10: Validation with Type Conversion and Formattingccciunisnnnnnns 509
Chapter 11: Task Schedulingcccosusssnnnmmssssnsnmsssssnsnssssssssnssssssnsnsssssnnnnsssssnnnnss 537
Chapter 12: Using Spring Remotingccccunseemmmmssssnnsmmssssssnssssssssssssssssssssssssnnns 557
Chapter 13: Spring Testingcccuccemmmusssnmnmmmsssssnmmssssssnmmsssssnnmesssssnsssssssnnssssssnnnnns 615
Chapter 14: Scripting Support in SPringccccccmimmmisssmssssmmssmssss—————— 639
Chapter 15: Application Monitoringcccccusssesnmmssssnsnsmssssssnssssssssnsssssssssssssssnnns 655

CONTENTS AT A GLANCE

Chapter 16: Web Applicationscccccrrrmmmmmmmmssssssmmmmsmmmsssssssssssssssssssssssssssssnnns 665
Chapter 17: WehSocKetccccuiummmmmmsssnmnmmssssssnmmssssssnssssssssnsssssssnsssssssnnssssssnnnnes 751
Chapter 18: Spring Projects: Batch, Integration, XD, and More...........ccevrsrnnnnnns 773
Appendix A: Setting Up Your Development Environment..........ccccuseemnnnsssnnnnnnans 829
1T 841

vi

Contents

ADOUT the AUTNOLS......iirremeiirsnnnssrrsnnsssssssssssssssnsssssssnnssssnsnnssssssnnnsssssnnnsnssnsnnnnssnnnns XXiii

About the Technical REVIEWETcerrrrrremmmmsssssssssmssssnnssssssssssssssnnnsssssssssssssnnnnnssnnnes XXV

AcknowledgmEents.......cceerusssssssmnsnmmmmssssssssssssnsssssssssssssnsnnnnssesssssssssnnnnnssssssssssnnnnnns XXvii
INtroductioncccuvmmimmismm s ——————_— XXixX
Chapter 1: Introducing SPring ... —————— 1
WhaL IS SPIiNG? ..ot s ae e sn s e e 1
Evolution of the SPring FIaAmMEWOIKcccciierriiienirnse s se s s sas s nes 2
Inverting Control or Injecting DEPENUENCIES?.........cccveriiiererinne s 8
Evolution of Dependency INJECHONccccceerecsiese e e 8
Beyond Dependency INJECHONcoveererererire e e s nnn e 10
The SPriNg PrOjJECT........cocvcrcrer sttt sn e sn e nenn 15
0T o 11 o OSSPSR 15
The SPring COMIMUNILYccoceuiiiirireee st p e nnns 15
The SPring TOOI SUIE..........cceeeeereeeereeeceser et 16
The SPring SECUILY PrOJECT.........ccorureeeeeriricescrir e 16
SPHING BOOT.......e ettt e bR e e e e R 16
Spring Batch and INtegration............cccoocnrneesr e s 17
ManY Other PrOJECEScvoueceeieecccririe et 17
AIErnatives t0 SPriNg.....ccccvevererirerere e e sa s sa s sr s sa e r e snesa e sa e snenaennens 17
JB0SS S€AM FrameWOrK.ccvrriiiiriiniisssiisss s 17
60T <o R 17
PICOCONTAINET ...t 17
B 0]y T N 18
SUMMEAIY ...ttt e e s e e s A e Re e e R e e s Re e e e nne e nanan 18

CONTENTS

Chapter 2: Getting Started.........c.cccccnmnnnnmmnmmnssennmmnnsssnnmmsssnnmnssssssssssssesssssnes 19

Obtaining the Spring FrameworK ... 20
Getting Started QUICKIY ..o 20
Checking Spring Out Of GItHUDcoveeeeeeeeerer e e e nnn e 20
USing the Right JDK.........coiiiiiiiiiiiisssssssssssss s 21

Understanding Spring Packaging.........cccceoeeereresesessessesssssesssssssssssssssssssssssssssssssssssssens 21
Choosing Modules for YOUr APPICALIONccccorueeeerireecnere s ses 24
Accessing Spring Modules on the Maven REpOSItOry.........cocoveeeeerrenenesernesesesesee e 24
Accessing Spring Modules USING GIradlecovueeeererreiererisreesesesseesesessssssesesssssesessssssssesesssssssssssens 26
Using Spring DOCUMENTALION........cccouiveeeeririeeser e 26
Putting @ Spring into HEIO WOIId..........coommeeeee et 27
Building the Sample Hello World AppliCatioN..........ccorueeeerererccririrssees e 27
Refactoring With SPFING......cco et 31

R 141 0P S 35

Chapter 3: Introducing 10C and DI in SPring.......commmmmemmemmsmsmsmmsmse, 37

Inversion of Control and Dependency INJeCtion..........cccocevvverervresescsee s 37

Types of INVersion 0f CONTIOL..........ccovererniernsre e 38
DEPENUENCY PUIL........eeee ettt e r e b p e e p s n e n e e ne e e e nnnnnns 38
Contextualized Dependency LOOKUP......cccceercrereresire s sss e sss e sn e sss e sns s sesnssnnnens 39
Constructor Dependency INJECLION.........ccccciercrerere e sr e nnn e 40
Setter Dependency INJECLION..........ccoecrecie e sr e s r e nr s 41
INJECTION VS. LOOKUP...cviueetierrecriesise e e s se e s s ae s se s sn s b s r e e e p e n e ne e enennsnnnnnaens 41
Setter Injection vs. Constructor INJECLIONccceecerisrccr e 42

Inversion of CONtrol in SPriNg.......ccccceceiece e n s 45

Dependency INjection in SPring........cccvcvvrirrrienrensrser e ees 46
Beans and BeanFaCIOry.........cccceveiiricc e e sr e n e e nn e nnennen 46
BeanFactory IMmplementations.........coeevecerereresre e sa e ae e naenens 46
Y0 L0 L0 (0] 1] 48

Configuring ApplicationConteXt...........ccooeerierninerniere s 48
Setting Spring Configuration OPLioNScccoieeicies s 49
Basic Configuration QVEIVIBW..........cccuiiriierecresise s e e s ss s r e sn e s s s e snesnsnsnnnnens 49

viii

CONTENTS

Declaring SPring COMPONENEScccvevereererere s rereree e sese e sa s e sse e ssesessessssesassesaesessesessesesaenanaens 50
USing Method INJECTION........coeiiiicece e s s r e sa e s e s a e sa e b e saesaenaen 84
Understanding Bean NamiNg.........ccooveririnininenenesese e sss e ssssssssssssssessssssssssssssssssssssssssssssssssssssnns 95
Understanding Bean Instantiation MOGEccceveririninnnennnnre s sse s s 105
Resolving DEPeNdENCIESccvrerrerrerserseressisses s s e s s e s e s e s e s e snssrssnssnssnssnssnssnesnnnans 109
AUTOWIFING YOUF BRANc.eeceeeeceeriereerie e sae e s e s ssessesaesae s s saesa s sassas s s sassnssnssns s s 112
WHEN t0 USE AUTOWIKING ...ecueeerereeererirreesesssseesesesssesesesss e e sesss s sssssss e s ssssssssssssssssssssssssnssssssssnsssnsans 121
Setting Bean INNEHTANCE.........cceveeveererier s se e e n s 122
1111 112 SRS 124
Chapter 4: Spring Configuration in Detail and Spring Bootccocceenrenssnnnnnns 125
Spring’s Impact on Application Portability..........ccccoeererersececrce e, 126
Bean Life-Cycle Managementcccuvvvervnnennensesses s s ssssessessesssssesssssssssssassssssssnns 127
Hooking into Bean Creation............cccceeenicresnesnscsessssesss e sse s sse e snsseenes 128
Executing a Method When a Bean IS Created...........ccovvveveriereerereesensesesesesesssessssessssesssssssessssessenenns 128
Implementing the InitializingBean INErface..........ccoovvererernner s 132
Using the JSR-250 @PostConstruct ANNOtationccccvceverieverrercsene st 134
Declaring an Initialization Method Using @Beanc.ccocververcercssessessessessessessennnns 137
Understanding Order of RESOIULIONcccouruiiiiririiecrreees e 138
Hooking into Bean DeStruCtioN............cocceveeeenmnesnsesesnsseses e sse e e se s snsennes 139
Executing a Method When a Bean IS Destroyed..........cccueveereernersessessessessessessesssnsensenns 139
Implementing the DisposableBean INTErface..........cocvvviverinnnnncsr s 141
Using the JSR-250 @PreDestroy ANNotation...........cccceeeeeeeecsessseses s sesseesennnns 143
Declaring a Destroy Method USing @BeaN............ccocevereereresneeseesesssesessesssssessessasssssenns 144
Understanding Order of ReSOIULiONccocerveeenirierncre e 146
USING @ SNUTAOWN HOOKoveeerreereeere e e ssesessssesaesessesassesse e ssssessesessesassesassessssesssssssssassesassesssnenes 146
Making Your Beans “Spring AWAre”cccecrrrrersmssessessssssssesssssssssssssssssssssssssssssssnsnns 146
Using the BeanNameAWware INterface.........couovvrriierenncrinesss s ses s s 147
Using the ApplicationContextAware INTErface..........ccvvrierrirnrcnn s s 148
Use Of FACTOIYBEANScccceieerrerrerserinse e ses s sss s snesn s sns e sns e s 151
FactoryBean Example: The MessageDigestFactoryBean...........ccccovreeenernenenssesesssesessssssssesesssesenens 151

CONTENTS

Accessing a FactoryBean DireCtly...........ccuocerierenerienesmsennsese e sessesnes 156
Using the factory-bean and factory-method Attributes.......cccccovvrvevrvrrrvrvrcrcene 157
JavaBeans PropertyEditorscccvcvvrierinsenses s 158
Using the Built-in PropertyEditorsccocvireicrincscnne s ses s sssens 159
Creating @ Custom PropertyEditorc.o e 164
More Spring ApplicationContext Configurationcccvevervrrrsrcncr s 167
Internationalization with the MESSAgESOUICEcccceererueerirereeserere e 168
Using MessageSource in Stand-Alone AppliCAtioNScccecererererereeieneseseesesesese e 171
APPICALION EVENTS ...ttt et 17
ACCESSING RESOUICESeevvereerrersereersessessessessassssnes 174
Configuration Using Java ClASSEScccererererrerressessessessesssssessssssssssssssssssssssssssssssnsnns 175
ApplicationContext Configuration in Java............cecrernenninncnn e 175
Spring Mixed Configurationccoveeeienniesnesr e s r s e e nn e 185
Java or XML Configuration?...........ccoverennnneniesinesinesssesss s sss e se s e e ssssesssessssessssssssssssessssens 187
o (0111 TSRS 187
An Example of Using the Spring Profiles FEAtUre..........ccvrevrcrerre s 187
Spring Profiles Using Java Configuration..........ccccvvrvrvnnnnssesses s sessenens 190
Considerations for USING ProfilEscccvriererererererersreseressessssessesessesessessssessssessesessssessessssessssessenenes 193
Environment and PropertySource ADStractionccceereversessessessesses s 193
Configuration Using JSR-330 ANNOtAtiONScccveererrerenmnsennsrsess s 198
Configuration USING GrOOVYccecererereereessessessesssnns 201
SPrING BOOL...... oottt n s n e r e n e n e nn e n e nnennnan 204
SUMMEAIY ...t a s a s s re e s e r e e s e nn e e s ne e e e nnnnnnnas 210
Chapter 5: Introducing Spring AOQP........ccouummmmmmmmmmmmsssssssmmmesssssss .- 211
L0 o 00T e o) SRR 212
L7 L0 L V0 S 213
ST TS = 20 213
USING DYNAMIC ADP ... e 213

CHOOSING AN ADP TYPE ...veereeeeereeereesersesessesaesessesessssessssassesassessssessesessessssessssesssssssssesssnssssssssesassesseneres 213

CONTENTS

AOP iN SPFNG weveeeirieeeserre e se s s e ss s as e s sas e sae s s snsse e snssannnsnes 214
THE AOP AIlINCE.....c.ceeeeeresirisesisise s se e e nn s 214
HEHO WOIIA N ADP ... 214

Spring AOP ArCRItECIUIEocvevercee ettt sn s sn e n s 216
JOINPOINTS IN SPIiNG...riueireiererererere e re s e s e s s e ss e e aesesserasaesae e sae e s aesesaesasseraesesaenesaenanaeanaens 216
ASPECLS IN SPIING...eireereerererereriererserereseseresessesessesessesessesassesasessesesaesassesassesassessssssessnsesassersenessenssaes 217
About the ProXYFACIOrY ClASS......ccciererererererereerersesersesessessssessssessesessssessessssessssesssssssessssessssessensssenssaes 217
Creating AdVICE iN SPIINGcoeeeerererererereressersesersesessssessesassessssessesessesessessssessssessssesssssssssassessssessenees 217
INEErfAaCES fOr AUVICE.ccrrriiires i 219
Creating BefOre AGVICEcvicveeerererrererereresessersesessesessesessesassessssessesessesessessssessssessesesssnsssesassessssessenenes 219
Securing Method Access by USing BEfOre AQVICEcccveverererererieressersesesesessesesessssessssessssessessssens 220
Creating After-RetUrniNg AQVICEccceerercereererierere s rereseresesse e ssesessesessesassesassesaesessssessssassesassessenenes 224
Creating ArOUNG AGVICEccvverereererrerereeresesessersesessesessssassessssessssessesessessssessssessssessssessensssessssessssessenens 227
Creating TRIOWS AGQVICEccceueerrererrererserersersssessssessesessssassessssessssessesessessssessssessssessssessenssssssssessssessenees 230
ChoOSING @N AGVICE TYPE .eveeeeerreereererseresseresessesessssessesessessssessssessesessessssessssessssessssesssnsssssassessssessenees 232

Advisors and Pointcuts in SPringccccceeeeeeenenesese e sns s sne e s 233
The Pointcut INTEITACEcvvvrrirrirr 233
Available Pointcut Implementations ..o e s 235
Using DefaultPOINTCULATVISONccvieiiirerr s n s r e 236
Creating a Static Pointcut by Using StaticMethodMatcherPointcut...........ccocovvvvvnecnecrcccc 236
Creating a Dynamic Pointcut by Using DyanmicMethodMatcherPointcutccccccoevriivnicnnccnnnnnn 239
Using Simple Name MatChingccooiiiernicrcre e sa e 242
Creating Pointcuts with Regular EXPreSSions..........ccccvvrernernnesssesesessssssessssessesessssessssessessssessssesns 244
Creating Pointcuts with AspectJ Pointcut EXpressioncccovvvnnsneseniesnsess s ssse s 246
Creating Annotation Matching POINTCULScccecerrriinrcrnrr e 247
Convenience Advisor IMplementations..........coccveveieninenere e e sa e e 248

Understanding PrOXiESccoceverenmiiesnsmsessssessesesesesse s sssssss s ssssssssssssssssssssesns 249
USiNG JDK DYNAMIC PrOXIES......ucueoeeerrrreereresseesesessssesesessssssssessssssssessssassens 250
USING CGLIB PrOXIEScccoveueererereeesesssseesesessssesesessssesesessssssesessssesssesssssssssssssssnssssssssnsssssssssssssssssnsssnns 250
Comparing Proxy PErfOrMAnCe............cccceererueienererreesesirinse s s e se e e e ssssssssssssssssssnens 251
ChoO0SING @ PrOXY 10 USE.....ccceereeeeciririeceresiee e se s sse s sssss e ssss s sessssssssssssssnsssnens 256

xi

CONTENTS

Advanced Use 0f POINTCULS.........coerererereric s see s s s s s e s s sns s s 256
Using Control FIOW POINTCULS.........ccovuieeeeririeescr st 256
Using @ CompoSable POINTCUL..........coiueeerercee s 259
Composition and the PoINtCUt INTEITACEcccevereeeeerrrcrerr e 262
POINTCUL SUMIMAIY ... pe e 262

Getting Started with INtrodUCLIONScoeveverercre s 263
INEFOTUCTION BASICS.....c.eueecccereseseeseseseee e 263
Object Modification Detection with INtrodUCTIONSccecevriererrererere e ra e 265

INtrodUCLION SUMMANY.....ceeceececeeeeece e e sr e sr e sr e r e sn e sn e nesn e sn e nnennnnans 270

Framework Services fOr AQP..........coccececerereree e sse e ssesss e s sssssessssasssessssnssssssssnns 271
Configuring AOP DECIAratiVelYcveceeererreeneririeesesesesssseseses e sesse e e ses s e e s sssessssssssnnnns 271
USING PrOXYFACIONYBEAN.........ccov ettt 271
USing the Q0P NAMESPACE.........ceeererrrreeererreesesesssee e e e e sesse e e e sese e e ssss e e ssssesssssssassnsnens 277

Using @AspectJ-Style ANNOtations.........ccccvevenerennse s seeseens 284
Considerations for Declarative Spring AOP Configurationccceevvevreverierenseresesesesesesesesessssenns 291

ASPECtJ INTEGrationccceeeeeece e e e 291
ADOUL ASPECT.....e et b e e e A e AR e e e e R e Re e enn 291
USING SINGIETON ASPECLSc.coereieecererreeeriri e e b se e sesn e 292

SUMMEAIY ...t ae e e ae e s s e e s e a e e ne e s nnnnnnnns 295

Chapter 6: Spring JDBC Supportccccccmmmmmmmmmmmssssnmsssssssnsssssssssssssssssssssssnnnnss 297

Introducing Lambda EXPreSSionscoccceeensernnmnesnsmssesssse s ssssssessssessesessens 298

Sample Data Model for ExXample COdE.........ccuevverrerrerserrersessessesses s sessessessessessessessessens 298

Exploring the JDBC INfrastruCture..........ccvevercescesses s ses e s e snnnns 304

Spring JDBC INfrastrUCIUNEcccceiereiirernscsesns e sn e se s snssnsnens 309
Overview and USEU PACKAGEScorueerererreeneressesesesesesssesesesesesesessnns 309

Database Connections and DataSOurCesccocvvereenierssmssesnsese s ssseenes 310

Embedded Database SUPPOI..........cccoeeeeererere e sseseesnesnssnesnesnssnssnennenens 315

Using DataSources in DAQ CIASSES........cuuuermrserresmsessssessessssessssssssssssessssssssssssssssssssenns 317

Exception Handling.........ccooevveviiiemnercerrer s s s 319

xii

CONTENTS

The JdbcTemplate Class.........ccccvververrerrerierserses s nne s 321
Initializing JdbcTemplate in @ DAQD ClaSS.......cccoererrrerererereerereseesesesseese e sesssss e sessssssssesesssssssens 321
Using Named Parameters with NamedParameterJdbcTemplate...........cccovveeennnenenenenesenenneeeens 323
Retrieving Domain Objects with ROWMAPPEr<T>ccceerrreiererirreesesessse e eeens 325

Retrieving Nested Domain Objects with ResultSetExtractor.........ccccocvvvvrvrvrierieninnns 327

Spring Classes That Model JDBC Operations..........ccccceeeersesnssnssssssssessesssssesssssesssnnens 330

Querying Data by Using MappingSqlQUEry<T>........couerrmerermssnesesesesesssessssesessssens 333
Updating Data by USiNg SQIUPUALE.........ccourueereririeeerisieecseses e 337

Inserting Data and Retrieving the Generated Keyccccoceverererrsressessessensessensessennenns 340

Batching Operations with BatchSqlUpdate ... 342

Calling Stored Functions by Using SQIFUNCHION.........cccocveniiennnnncnne s 347

Spring Data Project: JDBC EXENSIONS........ccccvverrerrerrerserressessesssssesssssesssssessessasssssssssssens 349

Considerations for USing JDBC...........cccooeeeierineiese s e e e ssesssssessssnssnssnssnsssssnsnnnns 349

SPring BOOt JDBC......cceeiirerrerrir e ses s ss s s e s snssn s e s sn s sn s sn e sn e snenan 350

B30 T2 353

Chapter 7: Using Hibernate in SPringc.cccsuusemmmmssnnmsssnsmsssssssssssssssnsssssssssssnnsnss 355

Sample Data Model for EXample COdE.........ccevurrerrerrerserressesses s s s sessessesssssessessssssssens 356

Configuring Hibernate’s SesSSiONFACIOrYccccceeeeiierene s e e 358

ORM Mapping Using Hibernate Annotationscccevereevienennniesnscseseseses e 362
SIMPIE MBPPINGS ...ceirireererrrieesiresee e se s e e a s se e e s se e e s s se e e e nse e nenensasn e e nsnnnaes 363
0NE-10-MaNY MaAPPINGScueoerererreererrrreeseresreesesesssssesesesss e e s e e e sesse e e e sssss s sessssssesessssssssssssensnsens 367
Many-t0-Many MaPPINGSccoveeererrreiereresresesesesreese s sesss e e e sesse e e sesssssssssssssssssssssssssssssssansnsnns 369

The Hibernate Session INTErfacecovveeeernrerrrsiese e 371
Querying Data by Using the Hibernate QUEry LANQUAGEcceererrererrerererererenersesessesessesessesessessenees 372
Simple Querying With Lazy FEChINGccccvererere et sse s ses e sas e saesessesessesanaens 372
Querying with AssSoCIations FEIChINGcccvueieverererre e sa e sae e e e e s 375

INSEIrtING DAA......cceeeeeecee e sr e sr e sr e sr e sn e n e sn e nn e nn e nnnnan 378

UPdating Data..........ccccoviierniiierinirese e 382

DL (<] (14T D - S 384

xiii

CONTENTS

Configuring Hibernate to Generate Tables from Entitiesc.cccccvviennncicnncicnnnnnes 386
Annotating Methods or FIeltdS?ccverererencrcrrrr e 389
Considerations When Using HIDernatecccoceeeeeeeresesssessses e ssesse s sesssssssssnnnnns 391
SUMMEAIY ...t r s as e a s s ae e s e s e e s e ne e s ne e s snnnnnnnnas 392
Chapter 8: Data Access in Spring with JPA2............cccccmmmmmnnnnnnsssssssssnnnnssssnnes 393
INTrOAUCING JPA 2.1 ...t s 394
Sample Data Model for EXample COUEovueeererereeenirereesesesise e sesesss s e s e sessssenes 394
Configuring JPA’s EntityManagerFactory..........coveeeerrrecserisesesesesie s ssseeens 395
Using JPA Annotations for ORM MapPingcccceeeeeeerereneneresenenesesesssssesessssssssesssssssesssssssssssssssssssens 398
Performing Database Operations With JPAcccovrvrrrrnrnsenses e sesseseens 400
Using the Java Persistence Query Language to Query Data..........ccccoereriererrereniersreneneresesesesesesenns 400
Querying With Untyped RESUILSccceereriererrerereresereesessesesessssessesessesessessssessssessssessssssssssssesassesssnenes 410
Querying for a Custom Result Type with a Constructor EXpressioncccccvveevieriannne 412
INSEIEING DALA ..o e AR R 415
UPdating Data.........ccooeieeiericc e e p s 417
Deleting data ..o —————————————— 419
USiNg @ NatiVE QUETYccouvueereriecrereesessesese e se s s ss s ss s ss s ss s nesnnnes 420
Using a Simple Native QUETY........cccccveerieresncre e s sn s sns s e s 421
Native Querying with SQL ResultSet Mappingcccoovverrvniernicnnsnsesssesesessesesennes 421
Using the JPA 2 Criteria API for @ Criteria QUETYccccuevriernrcrenese e s e ses e s ssssens 422
Introducing Spring Data JPA ... s 429
Adding Spring Data JPA Library DEPeNUeNCIESccrueerererreesererrsesesessssssesesesssesesessssssesessssssesessens 429
Using Spring Data JPA Repository Abstraction for Database Operations...........c.oceeevrresenerenesenennns 430
USING JPAREPOSITONYecvereereereerierreree s sse e sse s s e seesassassasssssassnesassassaesassnssnssassnnns 436
Spring Data JPA with CuStOmM QUEKIEScceceeeeeeerrrrrerserses s sn e e sn e 437
Keeping Track of Changes on the Entity Class.........cccorrierrreienenereeesesseeseses e 440
Keeping Entity Versions by Using Hibernate Envers...........cccceeviereniicnnsesesessesennennas 451
Adding Tables for Entity VErSIONINgccccoeecrerereneneseneesesesssseses s sssssesessssssssessssssssesssssssssssssens 452
Configuring EntityManagerFactory for Entity Versioning...........ccceereenrsnesessnesesesese s 453

xiv

CONTENTS

Enabling Entity Versioning and History Retrieval...........ccoovviiininnnnnnnnsn e ses e 456
Testing Entity VErsSioning......ccocvveveiinieninsis st sss s ss s s ss s s e s ss s st s ssssas s s sassassassassnsnnns 457
SPriNG BOOt JPA.........eeeee ettt sn e n e e n e n e n e n e nn e n e n e nn e 459
Considerations When USINg JPA........co s ssssssssssssssssssssssssssssssssssnns 465
SUMMEAIY ...t e as e b e ae b e a e e s e a e ae e s e nnennanas 466
Chapter 9: Transaction Management..........ccuccmmmmnsnnnnmnssssssssmsssssssssssssssssssssannss 467
Exploring the Spring Transaction Abstraction Layer...........cccceervrienniennscsennnsessnsennes 468
TraNSACTION TYPES ...uveeieiierirrir ettt se e e s e e e s a e b e b e e e e e e e n e e s 468
Implementations of the PlatformTransactionManagerccoceeeeevesesesessensensennnnns 469
Analyzing Transaction Propertiesccuverererersnsss s s s ssssssssssesssssssssssssses 470
The TransactionDefinition INTEITACE.........cccvvvererrreiererree s 471
The TransactionStatus INTEITACEcucceerrrerererrrneserre e p e nnns 472
Sample Data Model and Infrastructure for Example Codecccoevvrrrrrierrersersensennnns 473
Creating a Simple Spring JPA Project with DependencCiesccvreverrererererseressessesessesessesessessssesseenes 473
Sample Data Model and COmMMON ClASSESccverererrererrererseressesssessssessesessessssessssessssesssssssessssessssens 475
Using AOP Configuration for Transaction Management..........cccccvvvererereresseressessesessesessesessesessesseens 486
Using Programmatic TranSactions...........ccceeeeererresressessessesssssessessssssssssnsssssnsssssssssnsnns 488
Considerations on Transaction Management.............ccoorrrnneiennneneserse e 490
Global Transactions With SPring........c.ccecvcieeniesennesssese e 490
Infrastructure for Implementing the JTA SAMPIE........ccoreeeerreienrreere e 491
Implementing Global Transactions With JTA ..o e 491
SPHING BOOT JTA ...ttt b s e s e e s e e s e e e e npnnn s 501
Considerations on Using JTA Transaction Manager...........ccccceerererererereresseressessesessesessssessessssessenens 507
31111 1P 7SS 507
Chapter 10: Validation with Type Conversion and Formattingccccrnsnnnnnns 509
DEPENUENCIES......cecereerer e s n e s n s 510
Spring Type Conversion SYSIEM ... e 510
Conversion from a String Using PropertyEditors.........ccocevevevevesessessessesses s sessessensenns 511

XV

CONTENTS

Introducing Spring TYyPe CONVEIrSION.........ccoccevrerrenireressesesesse s e sse s ssssessesessens 514
Implementing @ CUSTOM CONVEIETcccourueeerirreeesisese e n e 514
Configuring CONVEISIONSEIVICEcourueerererreereresresesesesesseeseseseesesessesssesessssssssessssssssssssssssssssssensnsens 515
Converting Between Arbitrary TYPES.......covuruererererrssseseressesesesesseesesessssssesessssssssssssssssssssssssssssssssssssens 517

Field Formatting in SPring.......ccccvcvvrvrnnsessennenses s sesses s ses e sessesssssesssssessessasssssssnnnns 521
Implementing a Custom FOrMatter..........oooevvverre e sa e sa e sa e 521
Configuring ConversionServiceFaCtOryBeaNccvvvercereriereererterersesessesesesasessesessesessssassesassesssnenes 523

Validation in SPringccccccvirrrrrrrsr s 524
Using the Spring Validator INterface...........covceecrrrninnccrrcr e 525
Using JSR-349 Bean Validation ..o e sss e sssse s 527
Configuring Bean Validation Support in SPring.........ccccvvirinnnnnnessesssesse s sseens 528
Creating @ CuSTOM VAlIAALOFcccou i 531

Using AssertTrue for Custom Validationccccveeninennscnssnsess s 534

Considerations for Custom Validation ... 535

Deciding Which Validation AP {0 USE..........ccccvininmnninnninss s 535

SUMMEAIY ...ttt r s a s e a s s resr s e r e e s e ne e e ne e nsnnnnnnnnas 535

Chapter 11: Task Schedulingccccrussmmnmmssssnsnmmssssnsnmsssssssnssssssnnnsssssnnnnessssnnnnss 537

Dependencies for the Task Scheduling SAMPIEScccvvvvrverrerrrcr s 537

Task SCheduling in SPriNg......cccvevvriririersir e sa e sa e sa e sn s 538
Introducing the Spring TaskScheduler ADSTraCtion...........ccoveereerererererereresseresserse e sseressesessessssees 539
EXPIOFiNG @ SAMPIE TASK......coveereererrerererereressersssessesessesessesassessssessesessesessessssessssessssessensssessssesassessenenes 540
Using Annotations for TaSK SCNEAUIINGccceeevrerererererererereree e rrererse e e e ras e ssesesaesessesassesassesssnenes 547
Asynchronous Task EXECULION iN SPIiNQccccverererererereresereerersesessesesessssessssessssessessssessssessssessenssses 551

Task EXeCution in SPringc.ccccvcrerirsnses s sn s sn s e 554

SUMMEAIY ...ttt e s e sae e s e re e s e a e e ne e s nnnnnnnnnas 956

Chapter 12: Using Spring Remotingccuuuneemmmmmmmmmmssssssssssmmmssssssssssssssssssessssnns 557

Using a Data Model for SAMPIESccccecreerierennnerneres e 558

Adding Required Dependencies for the JPA Back End..........cccccevvvvvrvrvrrersennensensenne 560

xvi

CONTENTS

Implementing and Configuring SiNQgErServiCe..........ccooernnernnesesnsesesssseseesessesessens 562
IMPIEMENtiNG SINGEISEIVICEccceeeerieeeririeee s e s e e 562
CoNfigUIiNG SINGEISEIVICE......coveveererrrreeriresree s e ses e e e s s s se s se e e s se e e sensennnees 564
EXPOSING ThE SEIVICEc.veeeceririeeirie et p s e e 567
INVOKING thE SEIVICE ... 568

USING JMS iN SPIING ..cviieireireierererse e sse e ssesssssesassassasssssssssssssssssssssssssssssssssssassnns 570
Implementing a JMS LiStener in SPring ... 573
Sending JMS MeSSages iN SPriNQ ... 574

Spring Boot Artemis STArterccceeececece e 576

Using RESTUI-WS i SPriNG.......cccoeemiiernirresineresesesesse s se s ssssesse s 579
Introducing RESTIUI WED SEIVICESccceererreeeririeeseririsse e sesss s sssesssssssssnens 579
Adding Required Dependencies for SAMPIEScccovreierernnenesesse e sesens 580
Designing the Singer RESTIUI WED SEIVICEccoueeeerirircererireeseresie e nenens 580
Using Spring MVC to Expose RESTul WEb SEIVICES.........ccccerreierererieeneserieesesesessee s sesesssseneens 581

Configuring Castor XIML.........ccceeerereererereessesseseesssssesssssssassssssssssssssssssssasssssssssssssssssnns 582
Implementing SiNQGErCONTIOIIET..........cccererereererre et re e s e rre e s sesesse e e e sae e sae e saesesaesasaesasnesannenes 584
Configuring @ Spring Web ApPlICAtioNc.ccccverererererre s reererseresse e e ras e ssesesaesessesassesassesaenenes 586
Using curl 10 TeSt RESTIUISWS ...ttt resseses e sss e ssesessesessesassesassesassessssessssassesassesasnenes 590
Using RestTemplate t0 ACCESS RESTIUI-WS.........covirererererererrerre e sessesesse s e ssesessesesaesassesassesssnenes 592
Securing RESTful-WS With SPring SECUNTY.......cceverrrererererere s rere e rre e sesseses e saesesaesesaesessesanaens 597

RESTful-WS with Spring with Spring BoOtccocvercrcrcrcrser e 602

USiNG AMQP iN SPriNQ.....ccoiiiirincresrsesisss e s ssssessssssssssssssssssssesns 605
Using AMQP With SPriNg BOOT........ccccveererernierererree st se e sesessssesesessssssesessssssesessssssensssssssensnens 611

31111 1P 7SS 613

Chapter 13: Spring Testingccusceemmmmsssnmnmmssssnsnmmssssssnmmssssssnmsssssnsnssssssnnssssssnnnnss 615

Introducing Testing Categories.......uiurererrrerererse e sae e e e e sassaesaenens 616

Using Spring Test ANNOtations.........cccoeeeeerecece s e 617

Implementing LOgiC UNit TESTScccccvcerrierenneressresss s sns s ssesesse s 618
Adding Required DEPENUENCIES........ceererrrreerererreesesesrsesesessssssesessssssesessssssssessssssssssssssssssssssssssssssans 619
Unit Testing SPring MVC CONEIOIIEIScccovrueeeeririecesisise e nens 620

CONTENTS

Implementing an Integration TeSt.........cccocvriineniicr e 623
Adding Required DEPENUENCIES.cucueeeerrrreerererseesesesressesessssssesessssssesessssssssessssssssssssssssssssssssssssssens 623
Configuring the Profile for Service-Layer TESNG.......c.coverererreiererrieesesessese e 623
Java Configuration VEISIONccceceerieencnirne e es 625
Implementing the INfrastructure CIASSEScccoreeeerrreierer e 627
Unit TeStiNG the SErVICE LAYETccoceureeeeerirteeesir e 630
Dropping DBUNILcocoviieeecririreieses e bbb s s e e ne e e e nennneas 634

Implementing @ Front-End Unit TeSt.........cccconnmmnnses s 637
INtroduCiNg SEIBMIUMceviiiccr i —— 638

BT 111 112 SRS 638

Chapter 14: Scripting Support in SPringc..ccccimnnsmmmmmmmssnnmmmsssmmsssm———m" 639

Working with Scripting Support in Java..........ccernn 640

INTrOAUCING GIOOVYceeieeeeceeis e s 641
DYNAMIC TYPING .t a s e s e s e se et ssse e e esnse e e e nsennnnes 642
SIMPIIfIE SYNTAX.....corieeeeiereeir e e r e p e e s s 643
010 E T 643

USing Groovy With SPFiNGcccccerererereress e ssesee e ssssas s sessassessassassassasssssassnnns 644
Developing the SiNGEr DOMAINcceereriereererereresereseseresersesessesessesessessssessssessssesssssssesassessssessenenes 645
Implementing the RUIE ENQINE........ccoecerererrere e seree e reserss e ssesessesessesassesassessssessssessssessesassesssnenes 646
Implementing the Rule Factory as a Spring Refreshable Bean.............cccevvvevrvevereresenenesenessersenenns 648
Testing the Age Category RUIE.........ccvevererererere s s ssesesae e e sas e sas e sassessesasaesassesasesaensnas 650
Inlining Dynamic LanguAge COEccerrereererrerereerereesereresessssessesessesessessssessssessesesssnsssessssessssesssnenes 652

BT 111 112 SRS 654

Chapter 15: Application Monitoringccussssmssmismsmmmsmmmsmsmssms s, 655

JMX SUPPOIE iN SPriNG ..o s r e s 655

Exporting a Spring Bean t0 JMX..........ccoiirennenniresse e 656

Using Java VisualVM for JMX MONitoring........cocurrmmnnmsmnensmssnssssssesssssssssssssens 657

Monitoring Hibernate Statistics........c..cocveririncscrsr s 659

JMX With SPring BOOL.........coieeiircsiicrss s sn s e 661

E3 U112 7 664

xviii

CONTENTS

Chapter 16: Web Applicationscccccimmmmmmmmmssssssnnmmmmmmmssssssssssssssssssssssssssssssnsss 069

Implementing the Service Layer for SAMPIESccccevererriernrnienns s 666
Using a Data Model for the SAMPIES ... s 666
Implementing the DAQ LAYET ..o sn e sns e s sn s sns e s s 670
Implementing the SErviCe LAYETccecieerrierecrr e ss e e sn s 670

Configuring SINGEIrSEIVICE.........cucereriiiernsiresise s 672

Introducing MVC and Spring MVC ..o sesses s sessasssssessssssssssssnns 673
INTFOAUCING MVC ...ttt a e ae e s e e s ae e s e e sae e e s e e e e e e e ae e sae e naenannenaeneres 674
Introducing SPriNG MVC ...ttt ree e rae s e e s e e sae e s e sae e s e sa e e s ae e sae e saenasaesasnesaeneres 675
Spring MVC WebApplicationContext HIerarchycoecveererercesnsersseresesesesesesesesseseeseseesessesesaens 675
Spring MVC ReqUESTE LIfe CYCIE ...ecuereeeerreereerere s rer et seree e sessesessesae e saesessesesaesassesassesssnesssnessesassens 676
SPring MVGC CoNfigUIATION.......ccceeererererteertesere s res e e see e see e s e sesaesas e saesessesesaesessesassessesesssnessesanaens 678
Creating the First View in SPring MVC..........cooeorerrerre et rerte e sessesesseses e ssesesaesesassassesassesasnenes 681
Configuring DiSPAtCREISEIVIEL..........ccccereeereer e ae e ae e sa e e s a e s 683
Implementing SiNGErCONTIOIIET..........cceeerereeeree e rere e e e ree e re e e s e s s ae e ae e sae e saesaenenaeneres 684
Implementing the SiNGEr LIS VIEWcoccveerererere et ree e resse e sesas e sse e s sesassassesassesasnenes 685
Testing the SINGEr LISEVIBWcccoeeerercerre st re s reesesaesessesas e sas e sassasaesesaesassesasnesssenaes 686

Understanding the Spring MVC Project Structurecoeevveverrecsscvesessesns e 686

Enabling Internationalization (I18N).......cccoeeeeerecccc s 687
Configuring i18n in the DispatcherServiet Configurationccooveeeerrnesesnsesesess s 688
Modifying the Singer List View for i18n SUPPOI ... 690

Using Theming and Templatingcccocevererinnnercsrre s ses e seneens 691
B0 1T 0T0 S 170 1] O 691

View Templating with APache Tilesccceeeeercrcrerece s 693
Designing the Template LaYOULccooreeiienecere e sn s 693
Implementing Page Layout COMPONENTS.........covcveeeienneriness e se e sns e sss s 694

Configuring Tiles in SPring MVC ... sresne e sns e sns e nns 698

Implementing the Views for Singer Information..........ccccoeeevvvevrnrvnss s 699
MapPiNg URLS 10 the VIEWScovecereeerererertr e reree s sesseses e ses e ssesessesesssssssesassessssessssessssassessssesasnenes 699
Implementing the SNOW SINGEI VIBW.........cccoueerererererererererersssereeseseesessesessesesessesessssessssessesassesssnenes 700

Xix

CONTENTS

Implementing the Edit SINGEr VIBWcccceveiereieresere e sse e sessesassesssessssesssssssssassessssessenenns 703
Implementing the Add SINQGEr VIBW.........ccveveiereiererere s ssesessesessessssessssessssessssssssssssessssessenenns 708
Enabling JSR-349 (Bean Validation) ... 709
Using jQuery and JAUEIY Ul.........ccoeerierrieneneress e sss s ssssessesessessssessssssenns 71
Introducing jQuery and JAUEIY Ul.........cococveeeeererererenesesesenesesesesesese e sss e s sssesssssssssssssssssnns 711
Enabling jQuery and JQUErY ULIN @ VIEW........ccocverererererenenenenesesesesese s sesesesesssssssesssssesssesssssssens 712
Rich-Text Editing With CKEGITOr ..o 714
Using jgGrid for a Data Grid with Pagination ..o 715
Enabling jqGrid in the Singer LISt VIEW..........ccriieeeeeeere e 715
Enabling Pagination on the SErver SIde ... 717
Handling File UPIOAdcoceieemierreieresincese e ss e se e sss e sse e s nnes 721
Configuring File Upload SUPPOM.........ceceereeresirieee s e sesss e se s s e sssssssssssssssssnnens 721
Modifying Views for File Upload SUPPOIT.........cccovreenererrneesessseesesesssssesessssssesessssssssssssssssssssssssssnens 723
Modifying Controllers for File Upload SUPPOM..........ccoevrerrierrrcre et ses e e sae s 724
Securing a Web Application with Spring SECUNtYccccvvrrrrrrrrerrr e 726
Configuring SPriNG SECUITY......ceeeerrererererereererreserre s se s s e sas e sse e ssesessesessesassesassesaesesaesesaesansesassesasnenes 726
Adding Login Functions to the AppliCation ... 729
Using Annotations to Secure Controller MEthodScccvveveriereerererererere e sessesassessesenes 731
Creating Spring Web Applications with Spring Boot.............cccconinnnnncsnnccnennnes 732
Setting Up the DAOD LAYETccceveeverrererser s ses e s sessss s sss s sessssssssssssssssssssssnens 733
Setting Up the SEIVICE LAYEKoveeerereeecrerire e ssss s ss s s sssnns 735
Setting Up the WED LAYETcceeeeeeeeeeeceeeerire e snss s e nsn s 735
Setting Up SPriNg SECUNLYcccoceerieeereriresesisise e sss s s sensesnnes 737
Creating Thymeleaf VIEWSccccceeerernsire e sss s se s sns e s sns s 738
Using Thymeleaf EXIENSIONS........cccoeeererererreirece s e ssessesssssessesnssnesnssnesnssnssnsssssssnsnns 743
USING WEDJAIS.....cveeeeeeerececreriee e b s s ae e bebe e e e e ne e e e 747
SUMMEAIY ...ttt e s ae e e s sre e e ere e s e nan e e nennn e nsnnnnnnns 749
Chapter 17: WebSoCKetccvvmmimmmsmsmmssmmsssmsssssssssss s s ssssssssssnssssssnsnsnssnsnsnnes 751
INtroducing WEDSOCKELcoeeviereerrerinse e s 751
Using WebSocket With SPringccccvceeniiecncnessers s 752

XX

CONTENTS

Using the WEDSOCKEL APcooeeeeiierreresesese s s 752
USING SOCKUS ...t et e b e e s e se e b s s se e e nsnse e e e nnannnens 760
Sending Messages With STOMP..........ccccorrrrnnenrerese e 765
ST R 772
Chapter 18: Spring Projects: Batch, Integration, XD, and More...........cccvssnnnnnns 773
SPriNG BAtCN......eeeeee s 774
USR-352.... ettt 783
Spring BoOot BAtChcccceevrierree st 786
SPring INTEgration........cccoe e s 790
SPIING XD .ovieeereriesese e e s se s ns e a s saesn e er e s n e e ne e nennnnas 796
Spring Framework’s Five Most Notable FEaturescccovvvvrvrnersessensensessessessessenens 798
The Functional Web FrameWOrKooeerrererernesereseseseseseseseseseseseseseses s esesesesesesesesesesesesesesesenes 799

B LTz e B 1T (0] 0 T=T - Lo 811
JDK MOUUIAIILY .vuveeeeeeereeerreseresesesessesse e saesessesessesassessesesaesessesessessssesassessssessessssessssesssnessensssensssensnsens 811
Reactive Programming with Java 9 and Spring WEBFIUXcccverererererersererreree s e sesesesseseeenns 814
Spring Support fOr JUNIE 5 JUPITETcoveeereererererererersesersesessesessesassesssessesessessssessssessssessensssensssesansens 817
SUMMAIY ...ttt sr e srssn s sa e e s n s sn s s e sn e s s nr s s s nnenn e nnenn e e e nnenn e e e nnennennennnnnnnnan 827
Appendix A: Setting Up Your Development Environment..........ccccuseennnnsssnnnnnnans 829
Introducing Project pro-Spring=15.......coreerenesese e sne e 829
Understanding the Gradle Configurationccccvveennnennsenssnnse s 831
Building and TroubleSh0O0tingccccvverrerrnsenserserser s se s se e e e e e nens 834
Deploy on Apache TOMCALccccverirircrsrser s snennnnns 837
1T - 841

xxi

About the Authors

Iuliana Cosmina is a Spring-certified Web Application Developer and is also a Spring-certified Spring
Professional, as defined by Pivotal, the makers of Spring Framework, Boot, and other tools. She has authored
books with Apress on core Spring certification and Spring-certified web development. She is a software
architect at Bearing Point Software and is an active coder and software contributor on GitHub, Stack
Overflow, and more.

Rob Harrop is a software consultant specializing in delivering high-performance, highly scalable enterprise
applications. He is an experienced architect with a particular flair for understanding and solving complex
design issues. With a thorough knowledge of both Java and .NET, Harrop has successfully deployed projects
across both platforms. He also has extensive experience across a variety of sectors, retail and government

in particular. Harrop is the author of five books, including the book you are currently reading, not at its

fifth edition, a widely acclaimed, comprehensive resource on the Spring Framework.

Chris Schaefer is a principle software developer for Spring projects at Pivotal, the makers of Spring
Framework, Boot, and other Spring tools.

Clarence Ho is the senior Java architect of a Hong Kong-based software consultancy firm, SkywideSoft
Technology Limited. Having been worked in the IT field for more than 20 years, Clarence has been the team
leader of many in-house application development projects, as well as providing consultancy services on
enterprise solutions to clients.

xxiii

About the Technical Reviewer

Massimo Nardone has more than 23 years of experience in security,
web/mobile development, cloud computing, and IT architecture. His true
IT passions are security and Android.

He currently works as the chief information security officer (CISO) for
Cargotec Oyj and is a member of the ISACA Finland Chapter board. Over
his long career, he has held these positions: project manager, software
engineer, research engineer, chief security architect, information security
manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA
architect. In addition, he has been a visiting lecturer and supervisor
for exercises at the Networking Laboratory of the Helsinki University of
Technology (Aalto University).

Massimo has a master of science degree in computing science from
the University of Salerno in Italy, and he holds four international patents
(PKI, SIP, SAML, and proxy areas). Besides working on this book, Massimo
has reviewed more than 40 IT books for different publishing companies
and is the coauthor of Pro Android Games (Apress, 2015).

XXV

Acknowledgments

It is a huge honor for me to be the main author of the fifth edition of this book. Would you believe I got this
assignment by mistake? I thought I was getting an assignment as a technical reviewer for this book. Only
when I received the files did I realize that I was going to be one of the authors of the fifth edition of one of the
best Spring books on the market.

Apress has published many of the books I have read and used to improve myself professionally
during my studies and even after that. This is my third book with Apress, and it is great to contribute to the
education of the next generation of developers.

I am grateful to all my friends who had the patience to listen to me complain about losing sleep, having
too much work to do, and encountering writer’s block. Thank you all for being supportive and making sure
I still had some fun while writing this book.

Also, Iwould like to give a big thanks to all my favorite singers who made my work easier with their
wonderful music, especially John Mayer; I was so determined to finish this book on time just so I could go
to the United States to one of his concerts. That is why I changed the topic of the examples in this book to be
about singers and their music; it’s a tribute to their art and talent.

—TIuliana Cosmina

xxvii

Introduction

Covering version 5 of the Spring Framework, this book is the most comprehensive Spring reference and
practical guide available for harnessing the power of this leading enterprise Java application development
framework.

This edition covers core Spring and its integration with other leading Java technologies, such as
Hibernate, JPA 2, Tiles, Thymeleaf, and WebSocket. The focus of the book is on using Java configuration
classes, lambda expressions, Spring Boot, and reactive programming. We share our insights and real-world
experiences with enterprise application development, including remoting, transactions, the web and
presentation tiers, and much more.

With Pro Spring 5, you'll learn how to do the following:

e Use inversion of control (IoC) and dependency injection (DI)

e Discover what’s new in Spring Framework 5

e Build Spring-based web applications using Spring MVC and WebSocket
e Build Spring web reactive applications with Spring WebFlux

e Test Spring applications using Junit 5

e Utilize the new Java 8 lambda syntax

e Use Spring Boot to an advanced level to get any kind of Spring application up and
running in no time

e UseJava 9 features in Spring applications

Because the Java 9 release date kept being postponed, Spring 5 was released based on Java 8. Thus,
interoperability with Java 9 is covered in this book based on an early-access build.

There is a multimodule project associated with this book, configured using Gradle 4. The project
is available on the Apress official repository: https://github.com/Apress/pro-spring-5. The project
can be built right after cloning according to the instructions in its README . adoc file as long as Gradle is
installed locally. If you do not have Gradle installed, you can rely on Inteli] IDEA to download it and use
it to build your project by using the Gradle Wrapper. (https://docs.gradle.org/current/userguide/
gradle wrapper.html). There is a small appendix at the end of the book describing the project structure,
configuration and additional details related to development tools that can be used to develop and run the
code samples of the book, which are available on GitHub.

As the book was being written, new release candidate versions of Spring 5 were released, a new version of
Intellij IDEA was released, and new versions of Gradle and other technologies used in the book were updated.
We upgraded to the new versions to provide the most recent information and keep this book synchronized
with the official documentation. Several reviewers have checked the book for technical accuracy, but if you
notice any inconsistencies, please send an email to editorial@apress.com and errata will be created.

You can access the example source code for this book via the Download Source Code button at
www.apress.com/9781484228074. It will be maintained, synchronized with new versions of the technologies,
and enriched based on the recommendations of the developers using it to learn Spring.

We truly hope you will enjoy using this book to learn Spring as much as we enjoyed writing it.

XXix

https://github.com/Apress/pro-spring-5
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
http://www.apress.com/9781484228074

CHAPTER 1

Introducing Spring

When we think of the community of Java developers, we are reminded of the hordes of gold rush prospectors
of the late 1840s, frantically panning the rivers of North America, looking for fragments of gold. As Java
developers, our rivers run rife with open source projects, but, like the prospectors, finding a useful project
can be time-consuming and arduous.

A common gripe with many open source Java projects is that they are conceived merely out of the need
to fill the gap in the implementation of the latest buzzword-heavy technology or pattern. Having said that,
many high-quality, usable projects meet and address a real need for real applications, and in the course of
this book, you will meet a subset of these projects. You will get to know one in particular rather well—Spring.
The first version of Spring was released in October 2002 and consisted of a small core with an inversion
of control (IoC) container that was easy to configure and use. Over the years Spring has become the main
replacement of Java Enterprise Edition (JEE) servers and has grown into a full-blown technology made up of
many distinct projects, each with its own purpose, so whether you want to build microservices, applications,
or classical ERPs, Spring has a project for that.

Throughout this book, you will see many applications of different open source technologies, all of
which are unified under the Spring Framework. When working with Spring, an application developer can
use a large variety of open source tools, without needing to write reams of code and without coupling an
application too closely to any particular tool.

In this chapter, as its title indicates, we introduce you to the Spring Framework, rather than presenting
any solid examples or explanations. If you are already familiar with Spring, you might want to skip this
chapter and proceed straight to Chapter 2.

What Is Spring?

Perhaps one the hardest parts of explaining Spring is classifying exactly what it is. Typically, Spring is
described as a lightweight framework for building Java applications, but that statement brings up two
interesting points.

First, you can use Spring to build any application in Java (for example, stand-alone, web, or JEE
applications), unlike many other frameworks (such as Apache Struts, which is limited to web applications).

Second, the lightweight part of the description doesn’t really refer to the number of classes or the size
of the distribution but rather defines the principle of the Spring philosophy as a whole—that is, minimal
impact. Spring is lightweight in the sense that you have to make few, if any, changes to your application code
to gain the benefits of Spring Core, and should you choose to stop using Spring at any point, you will find
doing so quite simple.

Notice that we qualified that last statement to refer to Spring Core only—many of the extra Spring
components, such as data access, require a much closer coupling to the Spring Framework. However, the
benefits of this coupling are quite clear, and throughout the book we present techniques for minimizing the
impact this has on your application.

© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017 1
1. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_1

https://doi.org/10.1007/978-1-4842-2808-1_1
http://dx.doi.org/10.1007/978-1-4842-2808-1_2

CHAPTER 1 © INTRODUCING SPRING

Evolution of the Spring Framework

The Spring Framework originated from the book Expert One-on-One: J2EE Design and Development by
Rod Johnson (Wrox, 2002). Over the last decade, the Spring Framework has grown dramatically in core
functionality, associated projects, and community support. With the new major release of the Spring
Framework, it's worthwhile to take a quick look back at important features that have come along with each
milestone release of Spring, leading up to Spring Framework 5.0.

e Spring 0.9: This is the first public release of the framework, based on the book Expert
One-on-One: J2EE Design and Development, that offered a bean configuration
foundation, AOP support, a JDBC abstraction framework, abstract transaction
support, and so on. This version does not have official reference documentation, but
you can find the existing sources and documentation on SourceForge.!

e Spring 1.x: This is the first version released with official reference documentation. It
is composed of the seven modules shown in Figure 1-1.

Spring Spring
ORM Web Sori
: rin
Spring V‘*J! ebg
AOP Spring Spring MVC
DAO Context
Spring Core

Figure 1-1. Overview of the Spring Framework, version 1.x

— Spring Core: Bean container and supporting utilities

— Spring Context: ApplicationContext, Ul, validation, JNDI, Enterprise
JavaBeans (EJB), remoting, and mail support

— Spring DAO: Transaction infrastructure, Java Database Connectivity (JDBC),
and data access object (DAO) support

— Spring ORM: Hibernate, iBATIS, and Java Data Objects (JDO) support

— Spring AOP: An AOP Alliance-compliant aspect-oriented programming (AOP)
implementation

— Spring Web: Basic integration features such as multipart functionality, context
initialization through servlet listeners, and a web-oriented application context

— Spring Web MVC: Web-based Model-View-Controller (MVC) framework

e Spring 2.x: This is composed of the six modules shown in Figure 1-2. The Spring
Context module is now included in Spring Core, and all Spring web components
have been represented here by a single item.

"You can download older versions of Spring including 0.9 from the SourceForge site: https://sourceforge.net/
projects/springframework/files/springframework/.

2

https://sourceforge.net/projects/springframework/files/springframework/
https://sourceforge.net/projects/springframework/files/springframework/

CHAPTER 1 * INTRODUCING SPRING

Spring Spring
DAO ORM Spring Spring
(Web MVC
. (JMX, JMS, Alterleibel
Spnng AOP RM!, ...) Struts, Jsf, ...)
Spring Core

Figure 1-2. Overview of the Spring Framework, version 2.x

— Easier XML configuration through the use of the new XML Schema-based
configuration rather than the DTD format. Notable areas of improvement include
bean definitions, AOP, and declarative transactions.

— New bean scopes for web and portal usage (request, session, and global
sessions).

— @Aspect] annotation support for AOP development.
— Java Persistence API (JPA) abstraction layer.

— Full support for asynchronous JMS message-driven POJOs (for plain old Java
objects).

— JDBC simplifications including SimpleJdbcTemplate when using Java 5+.

— JDBC named parameter support (NamedParameterJdbcTemplate).

— Form tag library for Spring MVC.

— Introduction of the Portlet MVC framework.

— Dynamic language support. Beans can be written in JRuby, Groovy, and BeanShell.
— Notification support and controllable MBean registration in JMX.

— TaskExecutor abstraction introduced for scheduling tasks.

— Java 5 annotation support, specifically for @Transactional, @Required, and
@Aspect].

e Spring 2.5.x: This version has the following features:

— A new configuration annotation called @Autowired and support for JSR-250
annotations (@Resource, @PostConstruct, @PreDestroy)

— New stereotype annotations: @Component, @Repository, @Service, @Controller

— Automatic classpath-scanning support to detect and wire classes annotated with
stereotype annotations

— AOP updates, including a new bean pointcut element and Aspect] load-time
weaving

— Full WebSphere transaction management support

CHAPTER 1

INTRODUCING SPRING

— Inaddition to the Spring MVC @Controller annotation, @RequestMapping,
@RequestParam, and @ModelAttribute annotations added to support request
handling through annotation configuration

— Tiles 2 support
— JSF 1.2 support
— JAX-WS 2.0/2.1 support

— Introduction of the Spring TestContext Framework, providing annotation-driven
and integration testing support, agnostic of the testing framework being used

— Ability to deploy a Spring application context as a JCA adapter

Spring 3.0.x: This is the first version of Spring based on Java 5 and is designed to
take full advantage of Java 5 features such as generics, varargs, and other language
improvements. This version introduces the Java-based @Configuration model. The
framework modules have been revised to be managed separately with one source
tree per module JAR. This is abstractly depicted in Figure 1-3.

Spring Data Access/Integration Spring Web
(JDBC, ORM, JMS, OXM., Transactions) (MVC, Senviet, Portlet, Struts)

Figure 1-3.

Spring AOP

(AOP, Aspects, Instrumentation)

Spring Core

(Cors, Beans, Context, SpEL)
Spring Test
Overview of the Spring Framework, version 3.0.x

— Support for Java 5 features such as generics, varargs, and other improvements

— First-class support for Callables, Futures, ExecutorService adapters, and
ThreadFactory integration

— Framework modules now managed separately with one source tree per module JAR
— Introduction of the Spring Expression Language (SpEL)

— Integration of core Java Config features and annotations

— General-purpose type conversion system and field-formatting system

— Comprehensive REST support

— New MVC XML namespace and additional annotations such as @CookieValue
and @RequestHeaders for Spring MVC

CHAPTER 1 * INTRODUCING SPRING

— Validation enhancements and JSR-303 (Bean Validation) support

— Early support for Java EE 6, including ®@Async/@Asynchronous annotation,
JSR-303, JSF 2.0, JPA 2.0, and so on

— Support for embedded databases such as HSQL, H2, and Derby

Spring 3.1.x: This version has the following features:
— New cache abstraction

— Bean definition profiles can be defined in XML as well as support for the
@Profile annotation

— Environment abstraction for unified property management

— Annotation equivalents for common Spring XML namespace elements such as
@ComponentScan, @EnableTransactionManagement, @EnableCaching,
@EnableWebMvc, @EnableScheduling, @EnableAsync, @EnableAspectJAutoProxy,
@EnableLoadTimeWeaving, and @EnableSpringConfigured

— Support for Hibernate 4

— Spring TestContext Framework support for @Configuration classes and bean
definition profiles

— c:namespace for simplified constructor injection
— Support for Servlet 3 code-based configuration of the Servlet container
— Ability to bootstrap the JPA EntityManagerFactory without persistence.xml

— Flash and RedirectAttributes added to Spring MVC, allowing attributes to
survive a redirect by using the HTTP session

— URI template variable enhancements
— Ability to annotate Spring MVC @RequestBody controller method arguments with @/alid

— Ability to annotate Spring MVC controller method arguments with the
@RequestPart annotation

Spring 3.2.x: This version has the following features:

— Support for Servlet 3-based asynchronous request processing.

— New Spring MVC test framework.

— New Spring MVC annotations @ControllerAdvice and @MatrixVariable.

— Support for generic types in RestTemplate and in @RequestBody arguments.
— Jackson JSON 2 support.

— Support for Tiles 3.

— (@RequestBody or an @RequestPart argument can now be followed by an Exrrors
argument, making it possible to handle validation errors.

— Ability to exclude URL patterns by using the MVC namespace and Java Config
configuration options.

— Support for @ateTimeFormat without Joda Time.

CHAPTER 1

INTRODUCING SPRING

— Global date and time formatting.

— Concurrency refinements across the framework, minimizing locks and generally
improving concurrent creation of scoped/prototyped beans

— New Gradle-based build system.
— Migration to GitHub (https://github.com/SpringSource/spring-framework).

— Refined Java SE 7/Open]JDK 7 support in the framework and third-party depen-
dencies. CGLIB and ASM are now included as part of Spring. Aspect] 1.7 is
supported in addition to 1.6.

Spring 4.0.x: This is a major Spring release and the first to fully support Java 8. Older
versions of Java can be used, but the minimum requirement has been raised to Java
SE6. Deprecated classes and methods were removed, and the module organization is
pretty much the same, as depicted in Figure 1-4.

Spring Data Access/Integration Spring Web
(JDBC, ORM, JMS, OXM, Transactions) (Web, MVC, Portiet, WebSocket)
Spring AOP Spring
(AOP. Aspects, Instrumentation) Meﬁsaglng
Spring Core

Figure 1-4.

(Core, Beans, Conlext, SpEL)
Spring Test
Overview of the Spring Framework, version 4.0.x
— Improved getting-started experience via a series of Getting Started guides on the
new www.spring.io/guides web site
— Removal of deprecated packages and methods from the prior Spring 3 version
— Java 8 support, raising the minimum Java version to 6 update 18

— Java EE 6 and above is now considered the baseline for Spring Framework 4.0

— Groovy bean definition DSL, allowing bean definitions to be configured via
Groovy syntax

— Core container, testing, and general web improvements

— WebSocket, Sock]S, and STOMP messaging

Spring 4.2.x: This version has the following features:

— Core improvements (eg., introduction of @A1iasFor and modification of existing
annotation to make use of it)

— Full support for Hibernate ORM 5.0

https://github.com/SpringSource/spring-framework
http://www.spring.io/guides

CHAPTER 1 * INTRODUCING SPRING

— JMS and web improvements
— WebSocket messaging improvements

— Testing improvements, most notably the introduction of @Commit to replace
@Rollback(false) and the introduction of the AopTestUtils utility class that
allows access to the underlying object hidden behind a Spring proxy

e Spring 4.3.x: This version has the following features:
— The programming model has been refined.

— Considerable improvements in the core container (inclusions of ASM 5.1, CGLIB
3.2.4, and Objenesis 2.4 in spring-core.jar) and MVC.

— Composed annotations were added.
— Spring TestContext Framework requires JUnit 4.12 or higher.

— Support for new libraries, including Hibernate ORM 5.2, Hibernate Validator 5.3,
Tomcat 8.5 and 9.0, Jackson 2.8, and so on

e Spring 5.0.x: This is a major release. The entire framework codebase is based on Java 8
and is fully compatible with Java 9 as of July 2016.

— Support was dropped for Portlet, Velocity, JasperReports, XMLBeans, JDO, Guava,
Tiles2, and Hibernate3.

— XML configuration namespaces are now streamed to unversioned schemas; version-
specific declarations are still supported but validated against the latest XSD schema.

— Overall improvements were introduced by harnessing the full power of Java 8 features.
— The Resource abstraction provides isFile indicator for defensive getFile access.
— Full Servlet 3.1 signature support in Spring-provided Filter implementations.

— Support for Protobuf 3.0.

— Support for JMS 2.0+, JPA 2.1+.

— Introduction of Spring Web Flow, a project that is an alternative to Spring MVC built
on a reactive foundation, which means that it is fully asynchronous and non-blocking,
intended for use in an event-loop execution model vs. traditional large thread pool
with a thread-per-request execution model (built upon Project Reactor®).

— The web and core modules were adapted to the reactive programming model.*

— There are a lot of improvements in the Spring test module. JUnit 5 is now
supported, and new annotations were introduced to support the Jupiter
programming and extension model such as @SpringJUnitConfig,
@SpringJUnitWebConfig, @EnabledIf, @DisabledIf.

— Support for parallel test execution in the Spring TestContext Framework.

*Keep in mind that Java 9 will be released officially to the public in September 2017, according to the Oracle schedule
available at http://openjdk.java.net/projects/jdk9/.

*Project Reactor implements the Reactive Streams API specification; see https://projectreactor.io/.

“Reactive programming is a style of micro-architecture involving intelligent routing and consumption of events. This
should lead to nonblocking applications that are asynchronous and event-driven and require a small number of threads to
scale vertically within the JVM, rather than horizontally through clustering.

http://openjdk.java.net/projects/jdk9/
https://projectreactor.io/

CHAPTER 1 © INTRODUCING SPRING

Inverting Control or Injecting Dependencies?

The core of the Spring Framework is based on the principle of inversion of control. IoC is a technique that
externalizes the creation and management of component dependencies. Consider an example in which class
Foo depends on an instance of class Bar to perform some kind of processing. Traditionally, Foo creates an
instance of Bar by using the new operator or obtains one from some kind of factory class. Using the IoC approach,
an instance of Bar (or a subclass) is provided to Foo at runtime by some external process. This behavior, the
injection of dependencies at runtime, led to IoC being renamed by Martin Fowler as the much more descriptive
dependency injection (DI). Chapter 3 discusses the precise nature of the dependencies managed by DI.

A As you will see in Chapter 3, using the term dependency injection when referring to inversion of control
is always correct. In the context of Spring, you can use the terms interchangeably, without any loss of meaning.

Spring’s DI implementation is based on two core Java concepts: JavaBeans and interfaces. When you
use Spring as the DI provider, you gain the flexibility of defining dependency configuration within your
applications in different ways (for example, XML files, Java configuration classes, annotations within your
code, or the new Groovy bean definition method). JavaBeans (POJOs) provide a standard mechanism for
creating Java resources that are configurable in a number of ways, such as constructors and setter methods.
In Chapter 3, you will see how Spring uses the JavaBean specification to form the core of its DI configuration
model; in fact, any Spring-managed resource is referred to as a bean. If you are unfamiliar with JavaBeans,
refer to the quick primer we present at the beginning of Chapter 3.

Interfaces and DI are technologies that are mutually beneficial. Clearly designing and coding
an application to interfaces makes for a flexible application, but the complexity of wiring together an
application designed using interfaces is quite high and places an additional coding burden on developers.
By using DI, you reduce the amount of code you need to use an interface-based design in your application to
almost zero. Likewise, by using interfaces, you can get the most out of DI because your beans can utilize any
interface implementation to satisfy their dependency. The use of interfaces also allows Spring to utilize JDK
dynamic proxies (the Proxy pattern) to provide powerful concepts such as AOP for crosscutting concerns.

In the context of DI, Spring acts more like a container than a framework—providing instances of your
application classes with all the dependencies they need—but it does so in a much less intrusive way. Using
Spring for DI relies on nothing more than following the JavaBeans naming conventions within your classes—
there are no special classes from which to inherit or proprietary naming schemes to follow. If anything, the
only change you make in an application that uses DI is to expose more properties on your JavaBeans, thus
allowing more dependencies to be injected at runtime.

Evolution of Dependency Injection

In the past few years, thanks to the popularity gained by Spring and other DI frameworks, DI has gained wide
acceptance among Java developer communities. At the same time, developers were convinced that using DI
was a best practice in application development, and the benefits of using DI were also well understood.

The popularity of DI was acknowledged when the Java Community Process (JCP) adopted JSR-330
(Dependency Injection for Java) in 2009. JSR-330 had become a formal Java specification request, and as
you might expect, one of the specification leads was Rod Johnson—the founder of the Spring Framework.
In JEE 6, JSR-330 became one of the included specifications of the entire technology stack. In the meantime,
the EJB architecture (starting from version 3.0) was also revamped dramatically; it adopted the DI model in
order to ease the development of various Enterprise JavaBeans apps.

http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_3

CHAPTER 1 * INTRODUCING SPRING

Although we leave the full discussion of DI until Chapter 3, it is worth taking a look at the benefits of
using DI rather than a more traditional approach.

Reduced glue code: One of the biggest plus points of Dl is its ability to dramatically
reduce the amount of code you have to write to glue the components of your
application together. Often this code is trivial, so creating a dependency involves
simply creating a new instance of an object. However, the glue code can get quite
complex when you need to look up dependencies in a JNDI repository or when the
dependencies cannot be invoked directly, as is the case with remote resources. In
these cases, DI can really simplify the glue code by providing automatic JNDI lookup
and automatic proxying of remote resources.

Simplified application configuration: By adopting DI, you can greatly simplify the
process of configuring an application. You can use a variety of options to configure
those classes that were injectable to other classes. You can use the same technique to
express the dependency requirements to the “injector” for injecting the appropriate
bean instance or property. In addition, DI makes it much simpler to swap one
implementation of a dependency for another. Consider the case where you have a
DAO component that performs data operations against a PostgreSQL database and
you want to upgrade to Oracle. Using DI, you can simply reconfigure the appropriate
dependency on your business objects to use the Oracle implementation rather than
the PostgreSQL one.

Ability to manage common dependencies in a single repository: Using a traditional
approach to dependency management of common services—for example, data
source connection, transaction, and remote services—you create instances (or lookup
from some factory classes) of your dependencies where they are needed (within the
dependent class). This will cause the dependencies to spread across the classes in
your application, and changing them can prove problematic. When you use D], all the
information about those common dependencies is contained in a single repository,
making the management of dependencies much simpler and less error prone.

Improved testability: When you design your classes for DI, you make it possible to
replace dependencies easily. This is especially handy when you are testing your
application. Consider a business object that performs some complex processing; for
part of this, it uses a DAO to access data stored in a relational database. For your test,
you are not interested in testing the DAO; you simply want to test the business object
with various sets of data. In a traditional approach, whereby the business object is
responsible for obtaining an instance of the DAO itself, you have a hard time testing
this, because you are unable to easily replace the DAO implementation with a mock
implementation that returns your test data sets. Instead, you need to make sure
your test database contains the correct data and uses the full DAO implementation
for your tests. Using DI, you can create a mock implementation of the DAO object
that returns the test data sets, and then you can pass this to your business object

for testing. This mechanism can be extended for testing any tier of your application
and is especially useful for testing web components where you can create mock
implementations of HttpServletRequest and HttpServletResponse.

Fostering of good application design: Designing for DI means, in general, designing
against interfaces. A typical injection-oriented application is designed so that all
major components are defined as interfaces, and then concrete implementations of
these interfaces are created and hooked together using the DI container. This kind of
design was possible in Java before the advent of DI and DI-based containers such as
Spring, but by using Spring, you get a whole host of DI features for free, and you are
able to concentrate on building your application logic, not a framework to support it.

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

CHAPTER 1 © INTRODUCING SPRING

Asyou can see from this list, DI provides a lot of benefits for your application, but it is not without its
drawbacks. In particular, DI can make it difficult for someone not intimately familiar with the code to see
just what implementation of a particular dependency is being hooked into which objects. Typically, this is a
problem only when developers are inexperienced with DI; after becoming more experienced and following
good DI coding practice (for example, putting all injectable classes within each application layer into the
same package), developers will be able to discover the whole picture easily. For the most part, the massive
benefits far outweigh this small drawback, but you should consider this when planning your application.

Beyond Dependency Injection

Spring Core alone, with its advanced DI capabilities, is a worthy tool, but where Spring really excels is in its
myriad of additional features, all elegantly designed and built using the principles of DI. Spring provides
features for all layers of an application, from helper application programming interfaces (APIs) for data
access right through to advanced MVC capabilities. What is great about these features in Spring is that,
although Spring often provides its own approach, you can easily integrate them with other tools in Spring,
making these tools first-class members of the Spring family.

Support for Java 9

Java 8 brings many exciting features that Spring Framework 5 supports, most notably lambda expressions
and method references with Spring’s callback interfaces. The Spring 5 release plan was aligned with the
initial release plan for JDK 9, and although the release deadline for JDK 9 has been postponed, Spring 5 was
released according to plan. It is estimated that Spring 5.1 will fully embrace JDK 9. Spring 5 will make use of
JDK 9 features such as compact strings, the ALPN stack, and the new HTTP Client implementation. While
Spring Framework 4.0 supports Java 8, compatibility is still maintained back to JDK 6 update 18. The use of a
more recent version of Java such as 7 or 8 is recommended for new development projects. Spring 5.0 requires
Java 8+ because the Spring development team has applied the Java 8 language level to the entire framework
codebase, but Spring 5 was built on JDK 9 too, even from the start, to provide comprehensive support for
advertised features of JDK 9.

Aspect-Oriented Programming with Spring

AOP provides the ability to implement crosscutting logic—that is, logic that applies to many parts of

your application—in a single place and to have that logic applied across your application automatically.
Spring’s approach to AOP is to create dynamic proxies to the target objects and weave the objects with the
configured advice to execute the crosscutting logic. By the nature of JDK dynamic proxies, target objects
must implement an interface declaring the method in which the AOP advice will be applied. Another
popular AOP library is the Eclipse Aspect] project,® which provides more-powerful features including object
construction, class loading, and stronger crosscutting capability. However, the good news for Spring and
AOP developers is that starting from version 2.0, Spring offers much tighter integration with Aspect]. The
following are some highlights:

e Support for Aspect]-style pointcut expressions
e Support for @Aspect] annotation style, while still using Spring AOP for weaving
e Support for aspects implemented in Aspect] for DI

e Support for load-time weaving within the Spring ApplicationContext

‘www.eclipse.org/aspect]

10

http://www.eclipse.org/aspectj

CHAPTER 1 * INTRODUCING SPRING

A Starting with Spring Framework version 3.2, @AspectJ annotation support can be enabled with Java
configuration.

Both kinds of AOP have their place, and in most cases, Spring AOP is sufficient for addressing an
application’s crosscutting requirements. However, for more complicated requirements, Aspect] can be used,
and both Spring AOP and Aspect] can be mixed in the same Spring-powered application.

AOP has many applications. A typical one given in many of the traditional AOP examples involves
performing some kind of logging, but AOP has found uses well beyond the trivial logging applications.
Indeed, within the Spring Framework itself, AOP is used for many purposes, particularly in transaction
management. Spring AOP is covered in full detail in Chapter 5, where we show you typical uses of AOP
within the Spring Framework and your own applications, as well as AOP performance and areas where
traditional technologies are better suited than AOP.

Spring Expression Language

Expression Language (EL) is a technology to allow an application to manipulate Java objects at runtime.
However, the problem with EL is that different technologies provide their own EL implementations and
syntaxes. For example, Java Server Pages (JSP) and Java Server Faces (JSF) both have their own EL, and their
syntaxes are different. To solve the problem, the Unified Expression Language (EL) was created.

Because the Spring Framework is evolving so quickly, there is a need for a standard expression language
that can be shared among all the Spring Framework modules as well as other Spring projects. Consequently,
starting in version 3.0, Spring introduced the Spring Expression Language. SpEL provides powerful features
for evaluating expressions and for accessing Java objects and Spring beans at runtime. The result can be
used in the application or injected into other JavaBeans.

Validation in Spring

Validation is another large topic in any kind of application. The ideal scenario is that the validation rules of
the attributes within JavaBeans containing business data can be applied in a consistent way, regardless of
whether the data manipulation request is initiated from the front end, a batch job, or remotely (for example,
via web services, RESTful web services, or remote procedure calls [RPCs]).

To address these concerns, Spring provides a built-in validation API by way of the Validator interface.
This interface provides a simple yet concise mechanism allowing you to encapsulate your validation logic
into a class responsible for validating the target object. In addition to the target object, the validate method
takes an Exrrors object, which is used to collect any validation errors that may occur.

Spring also provides a handy utility class, ValidationUtils, which provides convenience methods for
invoking other validators, checking for common problems such as empty strings, and reporting errors back
to the provided Errors object.

Driven by need, the JCP also developed JSR-303 (Bean Validation), which provides a standard way of
defining bean validation rules. For example, when applying the @NotNull annotation to a bean’s property,
it mandates that the attribute shouldn’t contain a null value before being able to persist into the database.

Starting in version 3.0, Spring provides out-of-the-box support for JSR-303. To use the API, just declare a
LocalValidatorFactoryBean and inject the Validator interface into any Spring-managed beans. Spring will
resolve the underlying implementation for you. By default, Spring will first look for the Hibernate Validator
(hibernate.org/subprojects/validator), which is a popular JSR-303 implementation. Many front-end
technologies (for example, JSF 2 and Google Web Toolkit), including Spring MVC, also support the application
of JSR-303 validation in the user interface. The time when developers needed to program the same validation
logic in both the user interface and the back-end layer is gone. Chapter 10 discusses the details.

11

http://dx.doi.org/10.1007/978-1-4842-2808-1_5
http://dx.doi.org/10.1007/978-1-4842-2808-1_10

CHAPTER 1 © INTRODUCING SPRING

A Starting with Spring Framework version 4.0, the 1.1 version of JSR-349 (Bean Validation) is supported.

Accessing Data in Spring

Data access and persistence seem to be the most discussed topics in the Java world. Spring provides
excellent integration with a choice selection of these data access tools. In addition, Spring makes plain-
vanilla JDBC a viable option for many projects, with its simplified wrapper APIs around the standard API.
Spring’s data access module provides out-of-the-box support for JDBC, Hibernate, JDO, and the JPA.

A Starting with Spring Framework version 4.0, iBATIS support has been removed. The MyBatis-Spring project
provides integration with Spring, and you can find more information at http://mybatis.github.io/spring/.

However, in the past few years, because of the explosive growth of the Internet and cloud computing,
besides relational databases, a lot of other “special-purpose” databases were developed. Examples include
databases based on key-value pairs to handle extremely large volumes of data (generally referred to as
NoSQL), graph databases, and document databases. To help developers support those databases and to not
complicate the Spring data access module, a separate project called Spring Data® was created. The project
was further split into different categories to support more specific database access requirements.

A Spring’s support of nonrelational databases is not covered in this book. If you are interested in this topic,
the Spring Data project mentioned earlier is a good place to look. The project page details the nonrelational
databases that it supports, with links to those databases’ home pages.

The JDBC support in Spring makes building an application on top of JDBC a realistic undertaking, even for
more complex applications. The support for Hibernate, JDO, and JPA makes already simple APIs even simpler,
thus easing the burden on developers. When using the Spring APIs to access data via any tool, you are able to
take advantage of Spring’s excellent transaction support. You'll find a full discussion of this in Chapter 9.

One of the nicest features in Spring is the ability to easily mix and match data access technologies
within an application. For instance, you may be running an application with Oracle, using Hibernate for
much of your data access logic. However, if you want to take advantage of some Oracle-specific features, it is
simple to implement that part of your data access tier by using Spring’s JDBC APIs.

Object/XML Mapping in Spring

Most applications need to integrate or provide services to other applications. One common requirement is

to exchange data with other systems, either on a regular basis or in real time. In terms of data format, XML is
the most commonly used. As a result, you will often need to transform a JavaBean into XML format, and vice
versa. Spring supports many common Java-to-XML mapping frameworks and, as usual, eliminates the need
for directly coupling to any specific implementation. Spring provides common interfaces for marshalling
(transforming JavaBeans into XML) and unmarshalling (transforming XML into Java objects) for DI into any
Spring beans. Common libraries such as Java Architecture for XML Binding (JAXB), Castor, XStream, JiBX, and
XMLBeans are supported. In Chapter 12, when we discuss remotely accessing a Spring application for business
data in XML format, you will see how to use Spring’s Object/XML Mapping (OXM) support in your application.

*http://projects.spring.io/spring-data

12

http://mybatis.github.io/spring/
http://dx.doi.org/10.1007/978-1-4842-2808-1_9
http://dx.doi.org/10.1007/978-1-4842-2808-1_12
http://projects.spring.io/spring-data

CHAPTER 1 * INTRODUCING SPRING

Managing Transactions

Spring provides an excellent abstraction layer for transaction management, allowing for programmatic and
declarative transaction control. By using the Spring abstraction layer for transactions, you can make it simple
to change the underlying transaction protocol and resource managers. You can start with simple, local,
resource-specific transactions and move to global, multiresource transactions without having to change your
code. Transactions are covered in full detail in Chapter 9.

Simplifying and Integrating with JEE

With the growing acceptance of DI frameworks such as Spring, a lot of developers have chosen to construct
applications by using DI frameworks in favor of JEE’s E]B approach. As a result, the JCP communities also
realize the complexity of EJB. Starting in version 3.0 of the EJB specification, the API was simplified, so it now
embraces many of the concepts from DI.

However, for those applications that were built on EJB or need to deploy the Spring-based applications
in a JEE container and utilize the application server’s enterprise services (for example, Java Transaction API’s
Transaction Manager, data source connection pooling, and JMS connection factories), Spring also provides
simplified support for those technologies. For E]B, Spring provides a simple declaration to perform the
JNDI lookup and inject into Spring beans. On the reverse side, Spring also provides simple annotation for
injecting Spring beans into EJBs.

For any resources stored in a JNDI-accessible location, Spring allows you to do away with the complex
lookup code and have JNDI-managed resources injected as dependencies into other objects at runtime. As a
side effect of this, your application becomes decoupled from JNDI, allowing you more scope for code reuse
in the future.

MVC in the Web Tier

Although Spring can be used in almost any setting, from the desktop to the Web, it provides a rich array of
classes to support the creation of web-based applications. Using Spring, you have maximum flexibility when
you are choosing how to implement your web front end. For developing web applications, the MVC pattern
is the most popular practice. In recent versions, Spring has gradually evolved from a simple web framework
into a full-blown MVC implementation. First, view support in Spring MVC is extensive. In addition to
standard support for JSP and Java Standard Tag Library (JSTL), which is greatly bolstered by the Spring tag
libraries, you can take advantage of fully integrated support for Apache Velocity, FreeMarker, Apache Tiles,
Thymeleaf, and XSLT. In addition, you will find a set of base view classes that make it simple to add Microsoft
Excel, PDF, and JasperReports output to your applications.

In many cases, you will find Spring MVC sulfficient for your web application development needs.
However, Spring can also integrate with other popular web frameworks such as Struts, JSE Atmosphere,
Google Web Toolkit (GWT), and so on.

In the past few years, the technology of web frameworks has evolved quickly. Users have required
more responsive and interactive experiences, and that has resulted in the rise of Ajax as a widely adopted
technology in developing rich Internet applications (RIAs). On the other hand, users also want to be able
to access their applications from any device, including smartphones and tablets. This creates a need for
web frameworks that support HTMLS5, JavaScript, and CSS3. In Chapter 16, we discuss developing web
applications by using Spring MVC.

13

http://dx.doi.org/10.1007/978-1-4842-2808-1_9
http://dx.doi.org/10.1007/978-1-4842-2808-1_16

CHAPTER 1 © INTRODUCING SPRING

WebSocket Support

Starting with Spring Framework 4.0, support for JSR-356 (Java API for WebSocket) is available. WebSocket
defines an API for creating a persistent connection between a client and server, typically implemented

in web browsers and servers. WebSocket-style development opens the door for efficient, full-duplex
communication enabling real-time message exchanges for highly responsive applications. Use of WebSocket
support is detailed further in Chapter 17.

Remoting Support

Accessing or exposing remote components in Java has never been the simplest of jobs. Using Spring, you can
take advantage of extensive support for a wide range of remoting techniques to quickly expose and access
remote services. Spring provides support for a variety of remote access mechanisms, including Java Remote
Method Invocation (RMI), JAX-WS, Caucho Hessian and Burlap, JMS, Advanced Message Queuing Protocol
(AMQP), and REST. In addition to these remoting protocols, Spring provides its own HTTP-based invoker
that is based on standard Java serialization. By applying Spring’s dynamic proxying capabilities, you can
have a proxy to a remote resource injected as a dependency into one of your classes, thus removing the need
to couple your application to a specific remoting implementation and also reducing the amount of code you
need to write for your application. We discuss remote support in Spring in Chapter 12.

Mail Support

Sending e-mail is a typical requirement for many kinds of applications and is given first-class treatment
within the Spring Framework. Spring provides a simplified API for sending e-mail messages that fits nicely
with the Spring DI capabilities. Spring supports the standard JavaMail API. Spring provides the ability to
create a prototype message in the DI container and uses this as the base for all messages sent from your
application. This allows for easy customization of mail parameters such as the subject and sender address.
In addition, for customizing the message body, Spring integrates with template engines, such as Apache
Velocity; this allows the mail content to be externalized from the Java code.

Job Scheduling Support

Most nontrivial applications require some kind of scheduling capability. Whether this is for sending updates
to customers or performing housekeeping tasks, the ability to schedule code to run at a predefined time is an
invaluable tool for developers. Spring provides scheduling support that can fulfill most common scenarios.
A task can be scheduled either for a fixed interval or by using a Unix cron expression. On the other hand,

for task execution and scheduling, Spring integrates with other scheduling libraries as well. For example, in
the application server environment, Spring can delegate execution to the Common] library that is used by
many application servers. For job scheduling, Spring also supports libraries including the JDK Timer API
and Quartz, a commonly used open source scheduling library. The scheduling support in Spring is covered
in full in Chapter 11.

Dynamic Scripting Support

Starting with JDK 6, Java introduced dynamic language support, in which you can execute scripts written

in other languages in a JVM environment. Examples include Groovy, JRuby, and JavaScript. Spring also
supports the execution of dynamic scripts in a Spring-powered application, or you can define a Spring

bean that was written in a dynamic scripting language and injected into other JavaBeans. Spring-supported
dynamic scripting languages include Groovy, JRuby, and BeanShell. In Chapter 14, we discuss the support of
dynamic scripting in Spring in detail.

14

http://dx.doi.org/10.1007/978-1-4842-2808-1_17
http://dx.doi.org/10.1007/978-1-4842-2808-1_12
http://dx.doi.org/10.1007/978-1-4842-2808-1_11
http://dx.doi.org/10.1007/978-1-4842-2808-1_14

CHAPTER 1 * INTRODUCING SPRING

Simplified Exception Handling

One area where Spring really helps reduce the amount of repetitive, boilerplate code you need to write

is in exception handling. The core of the Spring philosophy in this respect is that checked exceptions

are overused in Java and that a framework should not force you to catch any exception from which you
are unlikely to be able to recover—a point of view that we agree with wholeheartedly. In reality, many
frameworks are designed to reduce the impact of having to write code to handle checked exceptions.
However, many of these frameworks take the approach of sticking with checked exceptions but artificially
reducing the granularity of the exception class hierarchy. One thing you will notice with Spring is that
because of the convenience afforded to the developer from using unchecked exceptions, the exception
hierarchy is remarkably granular. Throughout the book, you will see examples in which the Spring
exception-handling mechanisms can reduce the amount of code you have to write and, at the same time,
improve your ability to identify, classify, and diagnose errors within your application.

The Spring Project

One of the most endearing things about the Spring project is the level of activity present in the community
and the amount of cross-pollination between Spring and other projects such as CGLIB, Apache Geronimo,
and Aspect]. One of the most touted benefits of open source is that if the project folded tomorrow, you
would be left with the code; but let’s face it—you do not want to be left with a codebase the size of Spring
to support and improve. For this reason, it is comforting to know how well established and active the
Spring community is.

Origins of Spring

As noted earlier in this chapter, the origins of Spring can be traced back to Expert One-to-One: J2EE

Design and Development. In this book, Rod Johnson presented his own framework, called the Interface 21
Framework, which he developed to use in his own applications. Released into the open source world, this
framework formed the foundation of the Spring Framework as we know it today. Spring proceeded quickly
through the early beta and release candidate stages, and the first official 1.0 release was made available in
March 2004. Since then, Spring has undergone dramatic growth, and at the time of this writing, the latest
major version of Spring Framework is 5.0.

The Spring Community

The Spring community is one of the best in any open source project we have encountered. The mailing
lists and forums are always active, and progress on new features is usually rapid. The development team is
truly dedicated to making Spring the most successful of all the Java application frameworks, and this shows
in the quality of the code that is reproduced. As we mentioned already, Spring also benefits from excellent
relationships with other open source projects, a fact that is extremely beneficial when you consider the
large amount of dependency the full Spring distribution has. From a user’s perspective, perhaps one of

the best features of Spring is the excellent documentation and test suite that accompany the distribution.
Documentation is provided for almost all the features of Spring, making it easy for new users to pick up the
framework. The test suite Spring provides is impressively comprehensive—the development team writes
tests for everything. If they discover a bug, they fix that bug by first writing a test that highlights the bug and
then getting the test to pass. Fixing bugs and creating new features is not limited just to the development
team! You can contribute code through pull requests against any portfolio of Spring projects through the
official GitHub repositories (http://github.com/spring-projects). Additionally, issues can be created and

15

http://github.com/spring-projects

CHAPTER 1 © INTRODUCING SPRING

tracked by way of the official Spring JIRA (https://jira.spring.io/secure/Dashboard.jspa). What does
all this mean to you? Well, put simply, it means you can be confident in the quality of the Spring Framework
and confident that, for the foreseeable future, the Spring development team will continue to improve what is
already an excellent framework.

The Spring Tool Suite

To ease the development of Spring-based applications in Eclipse, Spring created the Spring IDE project.
Soon after that, SpringSource, the company behind Spring founded by Rod Johnson, created an integrated
tool called the Spring Tool Suite (STS) , which can be downloaded from https://spring.io/tools.
Although it used to be a paid-for product, the tool is now freely available. The tool integrates the Eclipse
IDE, Spring IDE, Mylyn (a task-based development environment in Eclipse), Maven for Eclipse, Aspect]
Development Tools, and many other useful Eclipse plug-ins into a single package. In each new version,
more features are being added, such as Groovy scripting language support, a graphical Spring configuration
editor, visual development tools for projects such as Spring Batch and Spring Integration, and support for
the Pivotal tc Server application server.

A SpringSource was bought by VMware and incorporated into Pivotal Software.

In addition to the Java-based suite, a Groovy/Grails Tool Suite is available with similar capabilities but
targeted at Groovy and Grails development (http://spring.io/tools).

The Spring Security Project

The Spring Security project (http://projects.spring.io/spring-security), formerly known as the Acegi
Security System for Spring, is another important project within the Spring portfolio. Spring Security provides
comprehensive support for both web application and method-level security. It tightly integrates with the
Spring Framework and other commonly used authentication mechanisms, such as HTTP basic authentication,
form-based login, X.509 certificate, and single sign-on (SSO) products (for example, CA SiteMinder). It
provides role-based access control to application resources, and in applications with more-complicated
security requirements (for example, data segregations), use of an access control list (ACL) is supported.
However, Spring Security is mostly used in securing web applications, which we discuss in detail in Chapter 16.

Spring Boot

Setting up the basis of an application is a cumbersome job. Configuration files for the project must be
created, and additional tools (like an application server) must be installed and configured. Spring Boot
(http://projects.spring.io/spring-boot/) is a Spring project that makes it easy to create stand-alone,
production-grade Spring-based applications that you can just run. Spring Boot comes with out-of-the-box
configurations for different types of Spring applications that are packed in starter packages. The web-starter
package, for example, contains a preconfigured and easily customizable web application context and
supports Tomcat 7+, Jetty 8+, and Undertow 1.3 embedded servlet containers out of the box.

Spring Boot also wraps up all dependencies a Spring application needs, taking into account
compatibility between versions. At the time of writing, the current version of Spring Boot is 2.0.0.RELEASE.

Spring Boot is covered in Chapter 4, as an alternative Spring project configuration, and most of the
projects assigned to later chapters will be run using Spring Boot because it makes development and testing
more practical and faster.

16

https://jira.spring.io/secure/Dashboard.jspa
https://spring.io/tools
http://spring.io/tools
http://projects.spring.io/spring-security
http://dx.doi.org/10.1007/978-1-4842-2808-1_16
http://projects.spring.io/spring-boot/
http://dx.doi.org/10.1007/978-1-4842-2808-1_4

CHAPTER 1 * INTRODUCING SPRING

Spring Batch and Integration

Needless to say, batch job execution and integration are common use cases in applications. To cope with
this need and to make it easy for developers in these areas, Spring created the Spring Batch and Spring
Integration projects. Spring Batch provides a common framework and various policies for batch job
implementation, reducing a lot of boilerplate code. By implementing the Enterprise Integration Patterns
(EIP), Spring Integration can make integrating Spring applications with external systems easy. We discuss
the details in Chapter 20.

Many Other Projects

We've covered the core modules of Spring and some of the major projects within the Spring portfolio,

but there are many other projects that have been driven by the need of the community for different
requirements. Some examples include Spring Boot, Spring XD, Spring for Android, Spring Mobile, Spring
Social, and Spring AMQP. Some of these projects are discussed further in Chapter 20. For additional details,
you can refer to the Spring by Pivotal web site (www.spring.io/projects).

Alternatives to Spring

Going back to our previous comments on the number of open source projects, you should not be surprised
to learn that Spring is not the only framework offering dependency injection features or full end-to-end
solutions for building applications. In fact, there are almost too many projects to mention. In the spirit of
being open, we include a brief discussion of several of these frameworks here, but it is our belief that none of
these platforms offers quite as comprehensive a solution as that available in Spring.

JBoss Seam Framework

Founded by Gavin King (the creator of the Hibernate ORM library), the Seam Framework (http://
seamframework.org) is another full-blown DI-based framework. It supports web application front-

end development (JSF), business logic layer (EJB 3), and JPA for persistence. As you can see, the main
difference between Seam and Spring is that the Seam Framework is built entirely on JEE standards. JBoss
also contributes the ideas in the Seam Framework back to the JCP and has become JSR-299 (Contexts and
Dependency Injection for the Java EE Platform).

Google Guice

Another popular DI framework is Google Guice (http://code.google.com/p/google-guice). Led by the search
engine giant Google, Guice is a lightweight framework that focuses on providing DI for application configuration
management. It was also the reference implementation of JSR-330 (Dependency Injection for Java).

PicoContainer

PicoContainer (http://picocontainer.com) is an exceptionally small DI container that allows you to

use DI for your application without introducing any dependencies other than PicoContainer. Because
PicoContainer is nothing more than a DI container, you may find that as your application grows, you need
to introduce another framework, such as Spring, in which case you would have been better off using Spring
from the start. However, if all you need is a tiny DI container, then PicoContainer is a good choice, but since
Spring packages the DI container separately from the rest of the framework, you can just as easily use that
and keep the flexibility for the future.

17

http://dx.doi.org/10.1007/978-1-4842-2808-1_20
http://dx.doi.org/10.1007/978-1-4842-2808-1_20
http://www.spring.io/projects
http://seamframework.org/
http://seamframework.org/
http://code.google.com/p/google-guice
http://picocontainer.com/

CHAPTER 1 © INTRODUCING SPRING

JEE 7 Container?’

As discussed previously, the concept of DI was widely adopted and also realized by JCP. When you are
developing an application for application servers compliant with JEE 7 (JSR-342), you can use standard DI
techniques across all layers.

Summary

In this chapter, we gave you a high-level view of the Spring Framework, complete with discussions of all the
major features, and we guided you to the relevant sections of the book where these features are discussed
in detail. After reading this chapter, you should understand what Spring can do for you; all that remains is
to see how it can do it. In the next chapter, we discuss all the information you need to know to get up and
running with a basic Spring application. We show you how to obtain the Spring Framework and discuss the
packaging options, the test suite, and the documentation. Also, Chapter 2 introduces some basic Spring
code, including a time-honored Hello World example in all its DI-based glory.

"The JEES release date has been postponed to the end of 2017; see https://jcp.org/en/jsr/detail?id=366.

18

https://jcp.org/en/jsr/detail?id=366
http://dx.doi.org/10.1007/978-1-4842-2808-1_2

CHAPTER 2

Getting Started

Often the hardest part of learning to use any new development tool is figuring out where to begin. Typically,
this problem is worse when the tool offers as many choices as Spring. Fortunately, getting started with Spring

isn’t that hard if you know where to look first. In this chapter, we present you with all the basic knowledge

you need to get off to a flying start. Specifically, you will look at the following:

Obtaining Spring: The first logical step is to obtain or build the Spring JAR files. If
you want to get up and running quickly, simply use the dependency management
snippets in your build system with the examples provided at http://projects.
spring.io/spring-framework. However, if you want to be on the cutting edge of
Spring development, check out the latest version of the source code from Spring’s
GitHub repository.*

Spring packaging options: Spring packaging is modular; it allows you to pick and
choose which components you want to use in your application and to include
only those components when you are distributing your application. Spring has
many modules, but you need only a subset of these modules depending on your
application’s needs. Each module has its compiled binary code in a JAR file along
with corresponding Javadoc and source JARs.

Spring guides: The new Spring web site includes a Guides section located at http://
spring.io/guides. The guides are meant to be quick, hands-on instructions for
building the Hello World version of any development task with Spring. These guides
also reflect the latest Spring project releases and techniques, providing you with the
most up-to-date samples available.

Test suite and documentation: One of the things members of the Spring community

are most proud of is their comprehensive test suite and documentation set. Testing is

a big part of what the team does. The documentation set provided with the standard
distribution is also excellent.

Putting some Spring into Hello World: All bad punning aside, we think the best way

to get started with any new programming tool is to dive right in and write some code.
We present a simple example, which is a full DI-based implementation of everyone’s

favorite Hello World application. Don’t be alarmed if you don’t understand all the
code right away; full discussions follow later in the book.

'Find Spring’s GitHub repository at http://github.com/spring-projects/spring-framework.

© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_2

19

https://doi.org/10.1007/978-1-4842-2808-1_2
http://projects.spring.io/spring-framework
http://projects.spring.io/spring-framework
http://spring.io/guides
http://spring.io/guides
http://github.com/spring-projects/spring-framework

CHAPTER 2 * GETTING STARTED

If you are already familiar with the basics of the Spring Framework, feel free to proceed straight to
Chapter 3 to dive into IoC and DI in Spring. However, even if you are familiar with the basics of Spring,
you may find some of the discussions in this chapter interesting, especially those on packaging and
dependencies.

Obtaining the Spring Framework

Before you can get started with any Spring development, you need to obtain the Spring libraries. You have a
couple of options for retrieving the libraries: you can use your build system to bring in the modules you want
to use, or you can check out and build the code from the Spring GitHub repository. Using a dependency
management tool such as Maven or Gradle is often the most straightforward approach; all you need to do is
declare the dependency in the configuration file and let the tool obtain the required libraries for you.

A If you have an Internet connection and use a build tool such as Maven or Gradle in combination with

a smart IDE like Eclipse or IntelliJ IDEA, you can download the Javadoc and libraries automatically so you can
access them during development. When you upgrade the versions in the build configuration files when building
the project, the libraries and Javadoc will be updated too.

Getting Started Quickly

Visit the Spring Framework project page? to obtain a dependency management snippet for your build system
to include the latest-release RELEASE version of Spring in your project. You can also use milestones/nightly
snapshots for upcoming releases or previous versions.

When using Spring Boot, there is no need to specify the Spring version you want to use, as Spring Boot
provides opinionated “starter” project object model (POM) files to simplify your Maven configuration
and default Gradle starter configuration. Just keep in mind that Spring Boot versions that precede version
2.0.0.RELEASE use Spring 4.x versions.

Checking Spring Out of GitHub

If you want to learn about new features before they make their way even into the snapshots, you can check
out the source code directly from Pivotal’s GitHub repository. To check out the latest version of the Spring
code, first install Git, which you can download from http://git-scm.com. Then open a terminal shell and
run the following command:

git clone git://github.com/spring-projects/spring-framework.git

See the README . md file in the project root for full details and requirements on how to build from source.

*http://projects.spring.io/spring-framework

20

http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://git-scm.com/
http://projects.spring.io/spring-framework

CHAPTER 2 © GETTING STARTED

Using the Right JDK

The Spring Framework is built in Java, which means you need to be able to execute Java applications on your
computer to use it. For this you need to install Java. There are three widely used Java acronyms when people
talk about Java applications development.

e AJava virtual machine (JVM) is an abstract machine. It is a specification that
provides a runtime environment in which Java bytecode can be executed.

e The Java Runtime Environment (JRE) is used to provide a runtime environment. It is
the implementation of the JVM that physically exists. It contains a set of libraries and
other files that the JVM uses at runtime. Oracle bought Sun Microsystems in 2010;
since then, new versions and patches have been actively provided. Other companies,
such as IBM, provide their own implementations of the JVM.

e The Java Development Kit (JDK) contains the JRE, documentation, and Java tools.
This is what Java developers install on their machines. A smart editor like IntelliJ
IDEA or Eclipse will require you to provide the location of the JDK so classes and
documentation can be loaded and used during development.

If you are using a build tool like Maven or Gradle (the source code accompanying the book is organized
in a Gradle multimodule project), it will require a JVM as well; Maven and Gradle are both Java-based
projects themselves.

The latest stable Java version is Java 8, and Java 9 is scheduled to be released on 21 September 2017.
You can download the JDK from https://www.oracle.com/. By default it will be installed in some default
location on your computer, depending on your operating system. If you want to use Maven or Gradle from
the command line, you need to define environment variables for the JDK and Maven/Gradle and to add the
path to their executables to the system path. You can find instructions on how to do this on the official site
for each product and in the appendix of this book.

Chapter 1 presented a list with Spring versions and the required JDK version. The Spring version
covered in the book is 5.0.x. The source code presented in the book is written using Java 8 syntax, so you
need at least JDK version 8 to be able to compile and run the examples.

Understanding Spring Packaging

Spring modules are simply JAR files that package the required code for that module. After you understand
the purpose of each module, you can select the modules required in your project and include them in
your code. As of Spring version 5.0.0.RELEASE, Spring comes with 21 modules, packaged into 21 JAR

files. Table 2-1 describes these JAR files and their corresponding modules. The actual JAR file name is, for
example, spring-aop-5.0.0.RELEASE. jar, though we have included only the specific module portion for
simplicity (as in aop, for example).

21

https://www.oracle.com/
http://dx.doi.org/10.1007/978-1-4842-2808-1_1

CHAPTER 2 * GETTING STARTED

Table 2-1. Spring modules

Module

Description

aop

aspects

beans

beans-groovy

context

context-indexer

context-support

core

expression

instrument

This module contains all the classes you need to use Spring’s AOP features within
your application. You also need to include this JAR in your application if you

plan to use other features in Spring that use AOP, such as declarative transaction
management. Moreover, classes that support integration with Aspect] are packed in
this module.

This module contains all the classes for advanced integration with the Aspect] AOP
library. For example, if you are using Java classes for your Spring configuration and
need Aspect]-style annotation-driven transaction management, you will need this
module.

This module contains all the classes for supporting Spring’s manipulation of Spring
beans. Most of the classes here support Spring’s bean factory implementation. For
example, the classes required for processing the Spring XML configuration file and
Java annotations are packed into this module.

This module contains Groovy classes for supporting Spring’s manipulation of
Spring beans.

This module contains classes that provide many extensions to Spring Core.

You will find that all classes need to use Spring’s ApplicationContext feature
(covered in Chapter 5), along with classes for Enterprise JavaBeans (EJB), Java
Naming and Directory Interface (JNDI), and Java Management Extensions (JMX)
integration. Also contained in this module are the Spring remoting classes, classes
for integration with dynamic scripting languages (for example, JRuby, Groovy, and
BeanShell), JSR-303 (Bean Validation), scheduling and task execution, and so on.

This module contains an indexer implementation that provides access to the
candidates that are defined in META-INF/spring.components. The core class
CandidateComponentsIndex is not meant to be used externally.

This module contains further extensions to the spring-context module. On
the user-interface side, there are classes for mail support and integration with
templating engines such as Velocity, FreeMarker, and JasperReports. Also,
integration with various task execution and scheduling libraries including
Common] and Quartz are packaged here.

This is the main module that you will need for every Spring application. In this JAR
file, you will find all the classes that are shared among all other Spring modules (for
example, classes for accessing configuration files). Also, in this JAR, you will find
selections of extremely useful utility classes that are used throughout the Spring
codebase and that you can use in your own application.

This module contains all support classes for Spring Expression Language (SpEL).

This module includes Spring’s instrumentation agent for JVM bootstrapping. This
JAR file is required for using load-time weaving with Aspect] in a Spring application.

22

(continued)

http://dx.doi.org/10.1007/978-1-4842-2808-1_5

Table 2-1. (continued)

CHAPTER 2 © GETTING STARTED

Module

Description

dbc

jms

messaging

orm

oxm

test

tx

web

web-reactive

web-mvc

websocket

This module includes all classes for JDBC support. You will need this module for
all applications that require database access. Classes for supporting data sources,
JDBC data types, JDBC templates, native JDBC connections, and so on, are packed
in this module.

This module includes all classes for JMS support.

This module contains key abstractions taken from the Spring Integration project to
serve as a foundation for message-based applications and adds support for STOMP
messages.

This module extends Spring’s standard JDBC feature set with support for popular
ORM tools including Hibernate, JDO, JPA, and the data mapper iBATIS. Many of the
classes in this JAR depend on classes contained in the spring-jdbc JAR file, so you
definitely need to include that in your application as well.

This module provides support for Object/XML Mapping (OXM). Classes for the
abstraction of XML marshalling and unmarshalling and support for popular tools
such as Castor, JAXB, XMLBeans, and XStream are packed into this module.

Spring provides a set of mock classes to aid in testing your applications, and

many of these mock classes are used within the Spring test suite, so they are

well tested and make testing your applications much simpler. Certainly we have
found great use for the mock HttpServletRequest and HttpServletResponse
classes in unit tests for our web applications. On the other hand, Spring provides

a tight integration with the JUnit unit-testing framework, and many classes that
support the development of JUnit test cases are provided in this module; for
example, SpringJUnit4ClassRunner provides a simple way to bootstrap the Spring
ApplicationContext in a unit test environment.

This module provides all classes for supporting Spring’s transaction infrastructure.
You will find classes from the transaction abstraction layer to support the Java
Transaction API (JTA) and integration with application servers from major vendors.

This module contains the core classes for using Spring in your web applications,
including classes for loading an ApplicationContext feature automatically, file
upload support classes, and a bunch of useful classes for performing repetitive tasks
such as parsing integer values from the query string.

This module contains core interfaces and classes for Spring Web Reactive model.

This module contains all the classes for Spring’s own MVC framework. If you are
using a separate MVC framework for your application, you won’t need any of the
classes from this JAR file. Spring MVC is covered in more detail in Chapter 16.

This module provides support for JSR-356 (Java API for WebSocket).

23

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

CHAPTER 2 * GETTING STARTED

Choosing Modules for Your Application

Without a dependency management tool such as Maven or Gradle, choosing which modules to use in your
application may be a bit tricky. For example, if you require Spring’s bean factory and DI support only, you
still need several modules including spring-core, spring-beans, spring-context, and spring-aop. If you
need Spring’s web application support, you then need to further add spring-web and so on. Thanks to build
tool features such as Maven’s transitive dependencies support, all required third-party libraries would be
included automatically.

Accessing Spring Modules on the Maven Repository

Founded by Apache Software Foundation, Maven® has become one of the most popular tools in managing
the dependencies for Java applications, from open source to enterprise environments. Maven is a powerful
application building, packaging, and dependency management tool. It manages the entire build cycle

of an application, from resource processing and compiling to testing and packaging. There also exists a
large number of Maven plug-ins for various tasks, such as updating databases and deploying a packaged
application to a specific server (for example, Tomcat, JBoss, or WebSphere). As of this writing, the current
Maven version is 3.3.9.

Almost all open source projects support distribution of libraries via the Maven repository. The most
popular one is the Maven Central repository hosted on Apache, and you can access and search for the
existence and related information of an artifact on the Maven Central web site.* If you download and install
Maven into your development machine, you automatically gain access to the Maven Central repository.
Some other open source communities (for example, JBoss and Spring by Pivotal) also provide their own
Maven repository for their users. However, to be able to access those repositories, you need to add the
repository into your Maven’s setting file or in your project’s POM file.

A detailed discussion of Maven is not in the scope of this book, and you can always refer to the online
documentation or books that give you a detailed reference to Maven. However, since Maven is widely
adopted, it's worth mentioning the typical structure of the project packaging on the Maven repository.

A group ID, artifact ID, packaging type, and version identify each Maven artifact. For example, for log4j,
the group ID is 1og4j, the artifact ID is log4j, and the packaging type is jar. Under that, different versions
are defined. For example, for version 1.2.12, the artifact’s file name becomes log4j-1.2.17.jar under the
group ID, artifact ID, and version folder. Maven configuration files are written in XML and must respect the
Maven standard syntax defined by the http://maven.apache.org/maven-v4_0_0.xsd schema. The default
name of a Maven configuration file for a project is om.xml, and a sample file is shown here:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0 _0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.apress.prosprings.ch02</groupld>
<artifactId>hello-world</artifactId>
<packaging>jar</packaging>
<version>5.0-SNAPSHOT</version>
<name>hello-world</name>

*http://maven.apache.org
*http://search.maven.org

24

http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/
http://search.maven.org/

CHAPTER 2 © GETTING STARTED

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<spring.version>5.0.0.RELEASE</spring.version>
</properties>
<dependencies>
<!-- https://mvnrepository.com/artifact/log4j/logaj -->
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>

</plugin>
</plugins>

</build>
</project>

Maven also defines a typical standard project structure, as depicted in Figure 2-1.

hello-world
src
main
java
resources
test
java
@-resources
< pom.xml

Figure 2-1. Typical Maven project structure

The main directory contains the classes (the java directory) and configuration files (the resources
directory) for the application.

The test directory contains the classes (the java directory) and configuration files (the resources
directory) that are used to test the application from the main directory.

25

CHAPTER 2 * GETTING STARTED

Accessing Spring Modules Using Gradle

The Maven project standard structure and artifact categorization and organization is important because Gradle
respects the same rules and even uses the Maven central repository to retrieve artifacts. Gradle is a powerful
build tool that has given up the bloated XML for configuration and switched to the simplicity and flexibility of
Groovy. At the time of writing, the current version of Gradle is 4.0.% Starting with version 4.x, the Spring team
has switched to using Gradle for the configuration of every Spring product. That is why the source code for this
book can be built and executed using Gradle too. The default name of a Gradle configuration file for a project is
build.gradle. The equivalent of the pom.xml file depicted earlier (well, one version of it) is shown here:

group 'com.apress.prospring5.cho2’
version '5.0-SNAPSHOT'

apply plugin: 'java'

repositories {

mavenCentral()
}
ext{
springVersion = '5.0.0.RELEASE’
}

tasks.withType(JavaCompile) {
options.encoding = "UTF-8"
}

dependencies {
compile group: 'log4j', name: 'log4j', version: '1.2.17'

That’s way more readable, right? As you can observe, the artifacts are identified using the group, artifact,
and version as previously introduced with Maven, but the property names differ. And since Gradle is not in
the scope of this book either, the coverage for it must end here.

Using Spring Documentation

One of the aspects of Spring that makes it such a useful framework for developers who are building real
applications is its wealth of well-written, accurate documentation. In every release, the Spring Framework’s
documentation team works hard to ensure that all the documentation is finished and polished by the
development team. This means that every feature of Spring is not only fully documented in the Javadoc but
is also covered in the Spring reference manual included in every distribution. If you haven'’t yet familiarized
yourself with the Spring Javadoc and the reference manual, do so now. This book is not a replacement for
either of these resources; rather, it is a complementary reference, demonstrating how to build a Spring-
based application from the ground up.

0On the official project site you can find detailed instructions on how to download, install, and configure Gradle for
development: https://gradle.org/install.

26

https://gradle.org/install

CHAPTER 2 © GETTING STARTED

Putting a Spring into Hello World

We hope by this point in the book you appreciate that Spring is a solid, well-supported project that has all
the makings of a great tool for application development. However, one thing is missing—we haven’t shown
you any code yet. We are sure you are dying to see Spring in action, and because we cannot go any longer
without getting into the code, let’s do just that. Do not worry if you do not fully understand all the code in
this section; we go into much more detail on all the topics as we proceed through the book.

Building the Sample Hello World Application

Now, we are sure you are familiar with the traditional Hello World example, but just in case you have been
living on the moon for the past 30 years, the following code snippet shows the Java version in all its glory:

package com.apress.prospring5.ch2;

public class HelloWorld {
public static void main(String... args) {
System.out.println("Hello World!");
}

As examples go, this one is pretty simple—it does the job, but it is not very extensible. What if we
want to change the message? What if we want to output the message differently, maybe to standard error
instead of standard output or enclosed in HTML tags rather than as plain text? We are going to redefine
the requirements for the sample application and say that it must support a simple, flexible mechanism
for changing the message, and it must be easy to change the rendering behavior. In the basic Hello World
example, you can make both of these changes quickly and easily by just changing the code as appropriate.
However, in a bigger application, recompiling takes time, and it requires the application to be fully tested
again. A better solution is to externalize the message content and read it in at runtime, perhaps from the
command-line arguments shown in the following code snippet:

package com.apress.prospring5.ch2;
public class HelloWorldWithCommandLine {

public static void main(String... args) {
if (args.length > 0) {
System.out.println(args[0]);
} else {
System.out.println("Hello World!");
}

This example accomplishes what we wanted—we can now change the message without changing
the code. However, there is still a problem with this application: the component responsible for rendering
the message is also responsible for obtaining the message. Changing how the message is obtained means
changing the code in the renderer. Add to this the fact that we still cannot change the renderer easily; doing
so means changing the class that launches the application.

27

CHAPTER 2 * GETTING STARTED

If we take this application a step further (away from the basics of Hello World), a better solution is
to refactor the rendering and message retrieval logic into separate components. Plus, if we really want
to make your application flexible, we should have these components implement interfaces and define
the interdependencies between the components and the launcher using these interfaces. By refactoring
the message retrieval logic, we can define a simple MessageProvider interface with a single method,
getMessage(), as shown in the following code snippet:

package com.apress.prospring5.ch2.decoupled;

public interface MessageProvider {
String getMessage();

The MessageRenderer interface is implemented by all components that can render messages, and such
a component is depicted in the following code snippet:

package com.apress.prospring5.ch2.decoupled;

public interface MessageRenderer {
void render();
void setMessageProvider(MessageProvider provider);
MessageProvider getMessageProvider();

Asyou can see, the MessageRenderer interface declares a method, render (), and also a JavaBean-style
method, setMessageProvider(). Any MessageRenderer implementations are decoupled from message
retrieval and delegate that responsibility to the MessageProvider instance with which they are supplied.
Here, MessageProvider is a dependency of MessageRenderer. Creating simple implementations of these
interfaces is easy, as shown in the following code snippet:

package com.apress.prospring5.ch2.decoupled;

public class HelloWorldMessageProvider implements MessageProvider {
@verride
public String getMessage() {
return "Hello World!";
}

You can see that we have created a simple MessageProvider that always returns “Hello World!” as the
message. The StandardOutMessageRenderer class shown next is just as simple:

package com.apress.prospring5.ch2.decoupled;

public class StandardOutMessageRenderer implements MessageRenderer {
private MessageProvider messageProvider;

@0verride
public void render() {
if (messageProvider == null) {
throw new RuntimeException(
"You must set the property messageProvider of class:"

28

CHAPTER 2 © GETTING STARTED

+ StandardOutMessageRenderer.class.getName());

}
System.out.println(messageProvider.getMessage());
}
@0verride

public void setMessageProvider(MessageProvider provider) {
this.messageProvider = provider;

}

@0verride
public MessageProvider getMessageProvider() {
return this.messageProvider;

}

Now all that remains is to rewrite the main() method of the entry class.
package com.apress.prospring5.ch2.decoupled;

public class HelloWorldDecoupled {
public static void main(String... args) {
MessageRenderer mr = new StandardOutMessageRenderer();
MessageProvider mp = new HelloWorldMessageProvider();
mr . setMessageProvider(mp);
mr.render();

}
}
Figure 2-2 depicts the abstract schema of the application built so far.
I MessageRenderer ‘
4
;!mplementsa
|
€ StandardOutMessageRenderer '
i <
o s 1| “has-a"
__«create»
,—"‘ﬂf.‘_‘———’ 1
€ HelloworldDecoupled © MessageProvider '
Hh"‘“-».___% -
“creater l
TN | <implements>
“-~..> |

€ HelloWorldMessageProvider

Figure 2-2. A little more decoupled Hello World application

29

CHAPTER 2 * GETTING STARTED

The code here is fairly simple. We instantiate instances of HelloWorldMessageProvider and
StandardOutMessageRenderer, although the declared types are MessageProvider and MessageRenderer,
respectively. This is because we need to interact only with the methods provided by the interface in
the programming logic, and HelloWorldMessageProvider and StandardOutMessageRenderer already
implemented those interfaces, respectively. Then, we pass MessageProvider to MessageRenderer and
invoke MessageRenderer.render(). If we compile and run this program, we get the expected “Hello World!”
output. Now, this example is more like what we are looking for, but there is one small problem. Changing the
implementation of either the MessageRenderer or MessageProvider interface means a change to the code.
To get around this, we can create a simple factory class that reads the implementation class names from a
properties file and instantiates them on behalf of the application, as shown here:

package com.apress.prospring5.ch2.decoupled;
import java.util.Properties;

public class MessageSupportFactory {
private static MessageSupportFactory instance;

private Properties props;
private MessageRenderer renderer;
private MessageProvider provider;

private MessageSupportFactory() {
props = new Properties();

try {
props.load(this.getClass().getResourceAsStream("/msf.properties"));

String rendererClass = props.getProperty("renderer.class");
String providerClass = props.getProperty("provider.class");

renderer = (MessageRenderer) Class.forName(rendererClass).newInstance();

provider = (MessageProvider) Class.forName(providerClass).newInstance();
} catch (Exception ex) {

ex.printStackTrace();

}
}
static {

instance = new MessageSupportFactory();
}

public static MessageSupportFactory getInstance() {
return instance;
}

public MessageRenderer getMessageRenderer() {
return renderer;
}

public MessageProvider getMessageProvider() {
return provider;
}

30

CHAPTER 2 © GETTING STARTED

The implementation here is trivial and naive, the error handling is simplistic, and the name of the
configuration file is hard-coded, but we already have a substantial amount of code. The configuration file for
this class is quite simple.

renderer.class=
com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer

provider.class=
com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider

To make use of the previous implementation, you must modify the main method again.
package com.apress.prospring5.ch2.decoupled;

public class HelloWorldDecoupledWithFactory {
public static void main(String... args) {
MessageRenderer mr =
MessageSupportFactory.getInstance().getMessageRenderer();
MessageProvider mp =
MessageSupportFactory.getInstance().getMessageProvider();
mr . setMessageProvider(mp);
mr.render();

Before we move on to see how we can introduce Spring into this application, let’s quickly recap what
we have done. Starting with the simple Hello World application, we defined two additional requirements
that the application must fulfill. The first was that changing the message should be simple, and the second
was that changing the rendering mechanism should also be simple. To meet these requirements, we used
two interfaces: MessageProvider and MessageRenderer. The MessageRenderer interface depends on an
implementation of the MessageProvider interface to be able to retrieve a message to render. Finally, we added
a simple factory class to retrieve the names of the implementation classes and instantiate them as applicable.

Refactoring with Spring

The final example shown earlier met the goals laid out for the sample application, but there are still
problems with it. The first problem is that we had to write a lot of glue code to piece the application
together, while at the same time keeping the components loosely coupled. The second problem is that

we still had to provide the implementation of MessageRenderer with an instance of MessageProvider
manually. We can solve both of these problems by using Spring. To solve the problem of too much glue
code, we can completely remove the MessageSupportFactory class from the application and replace it with
a Spring interface, ApplicationContext. Don’t worry too much about this interface; for now, it is enough
to know that this interface is used by Spring for storing all the environmental information with regard to

an application being managed by Spring. This interface extends another interface, ListableBeanFactory,
which acts as the provider for any Spring-managed bean instance.

package com.apress.prospring5.ch2;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class HelloWorldSpringDI {

31

CHAPTER 2 * GETTING STARTED

public static void main(String args) {
ApplicationContext ctx = new ClassPathXmlApplicationContext
("spring/app-context.xml");

MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
mr.render();

In the previous code snippet, you can see that the main() method obtains an instance of
ClassPathXmlApplicationContext (the application configuration information is loaded from the file
spring/app-context.xml in the project’s classpath), typed as ApplicationContext, and from this, it obtains
the MessageRenderer instances by using the ApplicationContext.getBean() method. Don’t worry too
much about the getBean () method for now; just know that this method reads the application configuration
(in this case, an XML file), initializes Spring’s ApplicationContext environment, and then returns the
configured bean® instance. This XML file (app-context.xml) serves the same purpose as the one used for
MessageSupportFactory.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="provider"
class="com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider"/>

<bean id="renderer"
class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
p:messageProvider-ref="provider"/>
</beans>

The previous file shows a typical Spring ApplicationContext configuration. First, Spring’s namespaces
are declared, and the default namespace is beans. The beans namespace is used to declare the beans that
need to be managed by Spring and to declare their dependency requirements (for the preceding example,
the renderer bean’s messageProvider property is referencing the provider bean). Spring will resolve and
inject those dependencies.

Afterward, we declare the bean with the ID provider and the corresponding implementation class.
When Spring sees this bean definition during the ApplicationContext initialization, it will instantiate the
class and store it with the specified ID.

Then the renderer bean is declared, with the corresponding implementation class. Remember that
this bean depends on the MessageProvider interface for getting the message to render. To inform Spring
about the DI requirement, we use the p namespace attribute. The tag attribute p:messageProvider-
ref="provider" tells Spring that the bean’s property, messageProvider, should be injected with another
bean. The bean to be injected into the property should reference a bean with the ID provider. When Spring
sees this definition, it will instantiate the class, look up the bean’s property named messageProvider, and
inject it with the bean instance with the ID provider.

°A bean is what an instance of a class is called in Spring.

32

CHAPTER 2 © GETTING STARTED

As you can see, upon the initialization of Spring’s ApplicationContext, the main() method now just
obtains the MessageRenderer bean by using its type-safe getBean () method (passing in the ID and the
expected return type, which is the MessageRenderer interface) and calls render (); Spring has created the
MessageProvider implementation and injected it into the MessageRenderer implementation. Notice that we
didn’t have to make any changes to the classes that are being wired together using Spring. In fact, these classes
have no reference to Spring and are completely oblivious to its existence. However, this isn’t always the case.
Your classes can implement Spring-specified interfaces to interact in a variety of ways with the DI container.

With your new Spring configuration and modified main() method, let’s see it in action. Using Gradle,
enter the following commands into your terminal to build the project and the root of your source code:

gradle clean build copyDependencies

The only required Spring module to be declared in your configuration file is spring-context. Gradle
will automatically bring in any transitive dependencies required for this module. In Figure 2-3 you can see
the transitive dependencies of spring-context. jar.

:chapter02:hello-world
= Source Sets
main
Dependencies

¥ ||l org.springframework:spring-context:5.0.0.M4 (Compile)
lll org.springframework:spring-aop:5.0.0.M4 (Compile)
Il org.springframework:spring-beans:5.0.0.M4 (Compile)
|l org.springframework:spring-core:5.0.0.M4 (Compile)
Il org.springframework:spring-beans:5.0.0.M4 (Compile)

Il org.springframework:spring-core:5.0.0.M4 (Compile)
Il org.springframework:spring-expression:5.0.0.M4 (Compile)
|| org.springframework:spring-core:5.0.0.M4 (Compile)

Figure 2-3. spring-context and its transitive dependencies depicted in Intelli] IDEA

The previous command will build the project from scratch, deleting previously generated files, and copy
all required dependencies in the same location where the resulting artifact is placed, under build/1ibs. This
path value will also be used as an appending prefix to the library files added to MANIFEST.MF when building
the JAR. See the Chapter 2 source code (available on the Apress web site), specifically the Gradle hellor-
world/build.properties file, for more information if you are unfamiliar with the Gradle JAR building
configuration and process. Finally, to run the Spring DI sample, enter the following commands:

cd build/libs; java -jar hello-world-5.0-SNAPSHOT.jar

At this point, you should see some log statements generated by the Spring container’s startup process
followed by the expected Hello World output.

33

http://dx.doi.org/10.1007/978-1-4842-2808-1_2

CHAPTER 2 * GETTING STARTED

Spring Configuration Using Annotations

Starting with Spring 3.0, XML configuration files are no longer necessary when developing a Spring
application. They can be replaced with annotations and configuration classes. Configuration classes are
Java classes annotated with @Configuration that contain bean definitions (methods annotated with
@Bean) or are configured themselves to identify bean definitions in the application by annotating them with
@ComponentScanning. The equivalent of the app-context.xml file presented earlier is shown here:

package com.apress.prospring5.ch2.annotated;

import com.apress.prospring5s.ch2.decoupled.HelloWorldMessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageProvider;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;

import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration
public class HelloWorldConfiguration {

// equivalent to <bean id="provider" class=".."/>
@®Bean
public MessageProvider provider() {
return new HelloWorldMessageProvider();
}

// equivalent to <bean id="renderer" class=".."/>

@®Bean

public MessageRenderer renderer(){
MessageRenderer renderer = new StandardOutMessageRenderer();
renderer.setMessageProvider(provider());
return renderer;

The main() method has to be modified to replace ClassPathXmlApplicationContext with another
ApplicationContext implementation that knows how to read bean definitions from configuration classes.
That class is AnnotationConfigApplicationContext.

package com.apress.prospring5.ch2.annotated;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
public class HelloWorldSpringAnnotated {
public static void main(String... args) {

ApplicationContext ctx = new AnnotationConfigApplicationContext
(HelloWorldConfiguration.class);

34

CHAPTER 2 © GETTING STARTED

MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
mr.render();

This is just one version of configuration using annotations and configuration classes. Without XML,
things get pretty flexible when it comes to Spring configuration. You'll learn more about that later in this
book, but the focus when it comes to configuration is on Java configuration and annotations.

A Some of the interfaces and classes defined in the Hello World sample may be used in later chapters.
Although we showed the full source code in this sample, future chapters may show condensed versions of
code to be less verbose, especially in the case of incremental code modifications. The code has been organized
a little, and all classes that can be used in Spring future examples were placed under the com.apress.
prosprings.ch2.decoupled and com.apress.prosprings.ch2.annotated packages, but keep in mind in a
real application you would want to layer your code appropriately.

Summary

In this chapter, we presented you with all the background information you need to get up and running
with Spring. We showed you how to get started with Spring through dependency management systems
and the current development version directly from GitHub. We described how Spring is packaged and

the dependencies you need for each of Spring’s features. Using this information, you can make informed
decisions about which of the Spring JAR files your application needs and which dependencies you need to
distribute with your application. Spring’s documentation, guides, and test suite provide Spring users with an
ideal base from which to start their Spring development, so we took some time to investigate what is made
available by Spring. Finally, we presented an example of how, using Spring D], it is possible to make the
traditional Hello World a loosely coupled, extendable message-rendering application. The important thing
to realize is that we only scratched the surface of Spring DI in this chapter, and we barely made a dent in
Spring as a whole. In the next chapter, we take look at IoC and DI in Spring.

35

CHAPTER 3

Introducing loC and DI in Spring -

In Chapter 2, we covered the basic principles of inversion of control. Practically, dependency injection is
a specialized form of IoC, although you will often find that the two terms are used interchangeably. In this
chapter, we give you a much more detailed look at IoC and DI, formalizing the relationship between the two
concepts and looking in great detail at how Spring fits into the picture.

After defining both and looking at Spring’s relationship with them, we explore the concepts that
are essential to Spring’s implementation of DI. This chapter covers only the basics of Spring’s DI
implementation; we discuss more advanced DI features in Chapter 4. More specifically, this chapter covers
the following topics:

e [Inversion of control concepts: In this section, we discuss the various kinds of IoC,
including dependency injection and dependency lookup. This section presents the
differences between the various IoC approaches as well as the pros and cons of each.

e Inversion of control in Spring: This section looks at IoC capabilities available in
Spring and how they are implemented. In particular, you'll see the dependency
injection services that Spring offers, including setter, constructor, and Method
Injection.

e Dependency injection in Spring: This section covers Spring’s implementation of
the IoC container. For bean definition and DI requirements, BeanFactory is the
main interface an application interacts with. However, other than the first few, the
remainder of the sample code provided in this chapter focuses on using Spring’s
ApplicationContext interface, which is an extension of BeanFactory and provides
much more powerful features. We cover the difference between BeanFactory and
ApplicationContext in later sections.

e Configuring the Spring application context: The final part of this chapter focuses on
using the XML and annotation approaches for ApplicationContext configuration.
Groovy and Java configuration are further discussed in Chapter 4. This section starts
with a discussion of DI configuration and moves on to present additional services
provided by BeanFactory such as bean inheritance, life-cycle management, and
autowiring.

Inversion of Control and Dependency Injection

Atits core, IoC, and therefore DI, aims to offer a simpler mechanism for provisioning component
dependencies (often referred to as an object’s collaborators) and managing these dependencies throughout
their life cycles. A component that requires certain dependencies is often referred to as the dependent object
or, in the case of IoC, the farget. In general, IoC can be decomposed into two subtypes: dependency injection

© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017 37
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_3

https://doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_2
http://dx.doi.org/10.1007/978-1-4842-2808-1_4
http://dx.doi.org/10.1007/978-1-4842-2808-1_4

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

and dependency lookup. These subtypes are further decomposed into concrete implementations of the IoC
services. From this definition, you can clearly see that when we are talking about DI, we are always talking
about IoC, but when we are talking about IoC, we are not always talking about DI (for example, dependency
lookup is also a form of IoC).

Types of Inversion of Control

You may be wondering why there are two types of IoC and why these types are split further into different
implementations. There seems to be no clear answer to this question; certainly the different types provide a
level of flexibility, but to us, it seems that IoC is more of a mixture of old and new ideas. The two types of [oC
represent this. Dependency lookup is a much more traditional approach, and at first glance, it seems more
familiar to Java programmers. Dependency injection, although it appears counterintuitive at first, is actually
much more flexible and usable than dependency lookup. With dependency lookup-style IoC, a component
must acquire a reference to a dependency, whereas with dependency injection, the dependencies are
injected into the component by the IoC container. Dependency lookup comes in two types: dependency
pull and contextualized dependency lookup (CDL). Dependency injection also has two common flavors:
constructor and setter dependency injection.

A For the discussions in this section, we are not concerned with how the fictional loC container comes to
know about all the different dependencies, just that at some point, it performs the actions described for each
mechanism.

Dependency Pull

To a Java developer, dependency pull is the most familiar types of IoC. In dependency pull, dependencies
are pulled from a registry as required. Anyone who has ever written code to access an EJB (2.1 or prior
versions) has used dependency pull (that is, via the JNDI API to look up an EJB component). Figure 3-1
shows the scenario of dependency pull via the lookup mechanism.

H—') JNDI Registry i Container

~ Lookup

(

Dependent
Object

Figure 3-1. Dependency pull via JNDI lookup

38

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Spring also offers dependency pull as a mechanism for retrieving the components that the framework
manages; you saw this in action in Chapter 2. The following code sample shows a typical dependency pull
lookup in a Spring-based application:

package com.apress.prospring5.ch3;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class DependencyPull {
public static void main(String... args) {
ApplicationContext ctx = new ClassPathXmlApplicationContext
("spring/app-context.xml");

MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
mr.render();

This kind of IoC is not only prevalent in JEE-based applications (using EJB 2.1 or prior versions), which
make extensive use of JNDI lookups to obtain dependencies from a registry, but also pivotal to working with
Spring in many environments.

Contextualized Dependency Lookup

Contextualized dependency lookup (CDL) is similar, in some respects, to dependency pull, but in CDL,
lookup is performed against the container that is managing the resource, not from some central registry, and
itis usually performed at some set point. Figure 3-2 shows the CDL mechanism.

= Container

’ Lookup

" Dependent |
Object

Figure 3-2. Contextualized dependency lookup
CDL works by having the component implement an interface similar to that in the following code snippet:

package com.apress.prospring5.ch3;

public interface ManagedComponent {
void performLookup(Container container);
}

39

http://dx.doi.org/10.1007/978-1-4842-2808-1_2

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

By implementing this interface, a component is signaling to the container that it wants to obtain a
dependency. The container is usually provided by the underlying application server or framework (for
example, Tomcat or JBoss) or framework (for example, Spring). The following code snippet shows a simple
Container interface that provides a dependency lookup service:

package com.apress.prospring5.ch3;

public interface Container {
Object getDependency(String key);

When the container is ready to pass dependencies to a component, it calls performLookup() on each
component in turn. The component can then look up its dependencies by using the Container interface, as
shown in the following code snippet:

package com.apress.prospring5.ch3;

public class ContextualizedDependencylLookup
implements ManagedComponent {
private Dependency dependency;

@0verride
public void performLookup(Container container) {

this.dependency = (Dependency) container.getDependency("myDependency");
}

@0verride

public String toString() {
return dependency.toString();

}

Constructor Dependency Injection

Constructor dependency injection occurs when a component’s dependencies are provided to it in its
constructor (or constructors). The component declares a constructor or a set of constructors, taking as
arguments its dependencies, and the IoC container passes the dependencies to the component when
instantiation occurs, as shown in the following code snippet:

package com.apress.prospring5.ch3;

public class ConstructorInjection {
private Dependency dependency;

public ConstructorInjection(Dependency dependency) {

this.dependency = dependency;
}

@0verride

public String toString() {
return dependency.toString();

}

40

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

An obvious consequence of using constructor injection is that an object cannot be created without its
dependencies; thus, they are mandatory.

Setter Dependency Injection

In setter dependency injection, the IoC container injects a component’s dependencies via JavaBean-style
setter methods. A component’s setters expose the dependencies the IoC container can manage. The
following code sample shows a typical setter dependency injection-based component:

package com.apress.prospring5.ch3;

public class SetterInjection {
private Dependency dependency;

public void setDependency(Dependency dependency) {
this.dependency = dependency;
}

@verride

public String toString() {
return dependency.toString();

}

An obvious consequence of using setter injection is that an object can be created without its
dependencies, and they can be provided later by calling the setter.

Within the container, the dependency requirement exposed by the setDependency() method is referred
to by the JavaBeans-style name, dependency. In practice, setter injection is the most widely used injection
mechanism, and it is one of the simplest IoC mechanisms to implement.

A There is a another type of injection supported in Spring called field injection, but this will be covered
later in the chapter, when you learn about autowiring using the @Autowire annotation.

Injection vs. Lookup

Choosing which style of IoC to use—injection or lookup—is not usually a difficult decision. In many cases,
the type of IoC you use is mandated by the container you are using. For instance, if you are using EJB 2.1 or
prior versions, you must use lookup-style IoC (via JNDI) to obtain an EJB from the JEE container. In Spring,
aside from initial bean lookups, your components and their dependencies are always wired together using
injection-style IoC.

A When you are using Spring, you can access EJB resources without needing to perform an explicit
lookup. Spring can act as an adapter between lookup and injection-style loC systems, thus allowing you to
manage all resources by using injection.

41

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

The real question is this: given the choice, which method should you use, injection or lookup? The
answer is most definitely injection. If you look at the code in the previous code samples, you can clearly see
that using injection has zero impact on your components’ code. The dependency pull code, on the other
hand, must actively obtain a reference to the registry and interact with it to obtain the dependencies, and
using CDL requires your classes to implement a specific interface and look up all dependencies manually.
When you are using injection, the most your classes have to do is allow dependencies to be injected by using
either constructors or setters.

Using injection, you are free to use your classes completely decoupled from the IoC container that
is supplying dependent objects with their collaborators manually, whereas with lookup, your classes are
always dependent on the classes and interfaces defined by the container. Another drawback with lookup
is that it becomes difficult to test your classes in isolation from the container. Using injection, testing your
components is trivial because you can simply provide the dependencies yourself by using the appropriate
constructor or setter.

A For a more complete discussion of testing by using dependency injection and Spring, refer to Chapter 13.

Lookup-based solutions are, by necessity, more complex than injection-based ones. Although
complexity is nothing to be afraid of, we question the validity of adding unneeded complexity to a process as
central to your application as dependency management.

All of these reasons aside, the biggest reason to choose injection over lookup is that it makes your life
easier. You write substantially less code when you are using injection, and the code that you do write is
simple and can, in general, be automated by a good IDE. You will notice that all the code in the injection
samples is passive, in that it doesn’t actively try to accomplish a task. The most exciting thing you see in
injection code is that objects get stored in a field only; no other code is involved in pulling the dependency
from any registry or container. Therefore, the code is much simpler and less error prone. Passive code is
much simpler to maintain than active code because there is very little that can go wrong. Consider the
following code taken from the CDL example:

public void performLookup(Container container) {
this.dependency = (Dependency) container.getDependency("myDependency");
}

In this code, plenty could go wrong: the dependency key could change, the container instance could be
null, or the returned dependency might be the incorrect type. We refer to this code as having a lot of moving
parts, because plenty of things can break. Using dependency lookup might decouple the components of
your application, but it adds complexity in the additional code required to couple these components back
together in order to perform any useful tasks.

Setter Injection vs. Constructor Injection

Now that we have established which method of IoC is preferable, you still need to choose whether to use
setter injection or constructor injection. Constructor injection is particularly useful when you absolutely
must have an instance of the dependency class before your component is used. Many containers, Spring
included, provide a mechanism for ensuring that all dependencies are defined when you use setter
injection, but by using constructor injection, you assert the requirement for the dependency in a container-
agnostic manner. Constructor injection also helps achieve the use of immutable objects.

Setter injection is useful in a variety of cases. If the component is exposing its dependencies to the
container but is happy to provide its own defaults, setter injection is usually the best way to accomplish
this. Another benefit of setter injection is that it allows dependencies to be declared on an interface,

42

http://dx.doi.org/10.1007/978-1-4842-2808-1_13

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

although this is not as useful as you might first think. Consider a typical business interface with one business
method, defineMeaningOfLife(). If, in addition to this method, you define a setter for injection such

as setEncylopedia(), you are mandating that all implementations must use or at least be aware of the
encyclopedia dependency. However, you don’t need to define setEncylopedia() in the business interface.
Instead, you can define the method in the classes implementing the business interface. While programming
in this way, all recent IoC containers, Spring included, can work with the component in terms of the business
interface but still provide the dependencies of the implementing class. An example of this may clarify this
matter slightly. Consider the business interface in the following code snippet:

package com.apress.prosprings.ch3;

public interface Oracle {
String defineMeaningOfLife();
}

Notice that the business interface does not define any setters for dependency injection. This interface
could be implemented as shown in the following code snippet:

package com.apress.prospring5.ch3;

public class BookwormOracle implements Oracle {
private Encyclopedia encyclopedia;

public void setEncyclopedia(Encyclopedia encyclopedia) {
this.encyclopedia = encyclopedia;
}

@0verride
public String defineMeaningOfLife() {

return "Encyclopedias are a waste of money - go see the world instead";
}

As you can see, the BookwormOracle class not only implements the Oracle interface but also defines
the setter for dependency injection. Spring is more than comfortable dealing with a structure like this.
There is absolutely no need to define the dependencies on the business interface. The ability to use
interfaces to define dependencies is an often-touted benefit of setter injection, but in actuality, you
should strive to keep setters used solely for injection out of your interfaces. Unless you are absolutely
sure that all implementations of a particular business interface require a particular dependency, let each
implementation class define its own dependencies and keep the business interface for business methods.

Although you shouldn’t always place setters for dependencies in a business interface, placing setters
and getters for configuration parameters in the business interface is a good idea and makes setter injection
a valuable tool. We consider configuration parameters to be a special case for dependencies. Certainly your
components depend on the configuration data, but configuration data is significantly different from the
types of dependency you have seen so far. We will discuss the differences shortly, but for now, consider the
business interface shown in the following code snippet:

package com.apress.prospring5.ch3;
public interface NewsletterSender {

void setSmtpServer(String smtpServer);
String getSmtpServer();

43

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

void setFromAddress(String fromAddress);
String getFromAddress();

void send();

Classes that send a set of newsletters via e-mail implement the NewsletterSender interface. The
send() method is the only business method, but notice that we have defined two JavaBean properties on the
interface. Why are we doing this when we just said that you shouldn’t define dependencies in the business
interface? The reason is that these values, the SMTP server address and the address the e-mails are sent
from, are not dependencies in the practical sense; rather, they are configuration details that affect how all
implementations of the NewsletterSender interface function. The question here then is this: what is the
difference between a configuration parameter and any other kind of dependency? In most cases, you can
clearly see whether a dependency should be classified as a configuration parameter, but if you are not sure,
look for the following three characteristics that point to a configuration parameter:

e Configuration parameters are passive. In the NewsletterSender example depicted
in the previous code snippet, the SMTP server parameter is an example of a passive
dependency. Passive dependencies are not used directly to perform an action;
instead, they are used internally or by another dependency to perform their actions.
In the MessageRenderer example from Chapter 2, the MessageProvider dependency
was not passive; it performed a function that was necessary for the MessageRenderer
to complete its task.

e Configuration parameters are usually information, not other components. By this
we mean that a configuration parameter is usually some piece of information that
a component needs to complete its work. Clearly, the SMTP server is a piece of
information required by the NewsletterSender, but the MessageProvider is really
another component that the MessageRenderer needs to function correctly.

e Configuration parameters are usually simple values or collections of simple
values. This is really a by-product of the previous two points, but configuration
parameters are usually simple values. In Java this means they are a primitive (or
the corresponding wrapper class) or a String or collections of these values. Simple
values are generally passive. This means you can’t do much with a String other
than manipulate the data it represents; and you almost always use these values for
information purposes, for example, an int value that represents the port number
that a network socket should listen on or a String that represents the SMTP server
through which an e-mail program should send messages.

When considering whether to define configuration options in the business interface, also consider
whether the configuration parameter is applicable to all implementations of the business interface
or just one. For instance, in the case of implementations of NewsletterSender, it is obvious that all
implementations need to know which SMTP server to use when sending e-mails. However, we would
probably choose to leave the configuration option that flags whether to send secure e-mail off the
business interface because not all e-mail APIs are capable of this, and it is correct to assume that many
implementations will not take security into consideration at all.

A Recall that in Chapter 2 it was chosen to define the dependencies in the business purposes. This was
for illustration purposes and should not be treated in any way as a best practice.

44

http://dx.doi.org/10.1007/978-1-4842-2808-1_2
http://dx.doi.org/10.1007/978-1-4842-2808-1_2

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Setter injection also allows you to swap dependencies for a different implementation on the fly without
creating a new instance of the parent component. Spring’s JMX support makes this possible. Perhaps the
biggest benefit of setter injection is that it is the least intrusive of the injection mechanisms.

In general, you should choose an injection type based on your use case. Setter-based injection allows
dependencies to be swapped out without creating new objects and also lets your class choose appropriate
defaults without the need to explicitly inject an object. Constructor injection is a good choice when you
want to ensure that dependencies are being passed to a component and when designing for immutable
objects. Do keep in mind that while constructor injection ensures that all dependencies are provided to a
component, most containers provide a mechanism to ensure this as well but may incur a cost of coupling
your code to the framework.

Inversion of Control in Spring

As mentioned earlier, inversion of control is a big part of what Spring does. The core of Spring’s
implementation is based on dependency injection, although dependency lookup features are provided as
well. When Spring provides collaborators to a dependent object automatically, it does so using dependency
injection. In a Spring-based application, it is always preferable to use dependency injection to pass
collaborators to dependent objects rather than have the dependent objects obtain the collaborators via
lookup. Figure 3-3 shows Spring’s dependency injection mechanism. Although dependency injection is
the preferred mechanism for wiring together collaborators and dependent objects, you need dependency
lookup to access the dependent objects. In many environments, Spring cannot automatically wire up all
of your application components by using dependency injection, and you must use dependency lookup to
access the initial set of components. For example, in stand-alone Java applications, you need to bootstrap
Spring’s container in the main() method and obtain the dependencies (via the ApplicationContext
interface) for processing programmatically. However, when you are building web applications by using
Spring’s MVC support, Spring can avoid this by gluing your entire application together automatically.
Wherever it is possible to use dependency injection with Spring, you should do so; otherwise, you can fall
back on the dependency lookup capabilities. You will see examples of both in action during the course of
this chapter, and we will point them out when they first arise.

Dependent ¢ Spring BeanFactory
Object Injection of Container

Figure 3-3. Spring’s dependency injection mechanism

An interesting feature of Spring’s IoC container is that it has the ability to act as an adapter between its
own dependency injection container and external dependency lookup containers. We discuss this feature
later in this chapter.

Spring supports both constructor and setter injection and bolsters the standard IoC feature set with a
whole host of useful additions to make your life easier.

The rest of this chapter introduces the basics of Spring’s DI container, complete with plenty of
examples.

45

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Dependency Injection in Spring

Spring’s support for dependency injection is comprehensive and, as you will see in Chapter 4, goes beyond
the standard IoC feature set we have discussed so far. The rest of this chapter addresses the basics of Spring’s
dependency injection container, looking at setter, constructor, and Method Injection, along with a detailed
look at how dependency injection is configured in Spring.

Beans and BeanFactory

The core of Spring’s dependency injection container is the BeanFactory interface. BeanFactory is
responsible for managing components, including their dependencies as well as their life cycles. In Spring,
the term bean is used to refer to any component managed by the container. Typically, your beans adhere, at
some level, to the JavaBeans specification, but this is not required, especially if you plan to use constructor
injection to wire your beans together.

If your application needs only DI support, you can interact with the Spring DI container via the
BeanFactory interface. In this case, your application must create an instance of a class that implements the
BeanFactory interface and configures it with bean and dependency information. After this is complete, your
application can access the beans via BeanFactory and get on with its processing.

In some cases, all of this setup is handled automatically (for example, in a web application, Spring’s
ApplicationContext will be bootstrapped by the web container during application startup via a Spring-
provided ContextLoaderListener class declared in the web.xml descriptor file). But in many cases, you
need to code the setup yourself. All of the examples in this chapter require manual setup of the BeanFactory
implementation.

Although the BeanFactory can be configured programmatically, it is more common to see it
configured externally using some kind of configuration file. Internally, bean configuration is represented
by instances of classes that implement the BeanDefinition interface. The bean configuration stores
information not only about a bean itself but also about the beans that it depends on. For any BeanFactory
implementation classes that also implement the BeanDefinitionReader interface, you can read the
BeanDefinition data from a configuration file, using either PropertiesBeanDefinitionReader or
XmlBeanDefinitionReader. PropertiesBeanDefinitionReader reads the bean definition from properties
files, while Xm1BeanDefinitionReader reads from XML files.

So, you can identify your beans within BeanFactory; each bean can be assigned an ID, a name, or both.
A bean can also be instantiated without any ID or name (known as an anonymous bean) or as an inner bean
within another bean. Each bean has at least one name but can have any number of names (additional names
are separated by commas). Any names after the first are considered aliases for the same bean. You use bean
IDs or names to retrieve a bean from BeanFactory and also to establish dependency relationships (that is,
bean X depends on beanY).

BeanFactory Implementations

The description of the BeanFactory interface may appear overly complex, but in practice, this is not the case.
Take a look at a simple example. Let’s say you have an implementation that mimics an oracle that can tell
you the meaning of life.

//interface
package com.apress.prosprings.ch3;

public interface Oracle {
String defineMeaningOfLife();
}

46

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

//implementation
package com.apress.prospring5.ch3;

public class BookwormOracle implements Oracle {
private Encyclopedia encyclopedia;

public void setEncyclopedia(Encyclopedia encyclopedia) {
this.encyclopedia = encyclopedia;
}

@0verride
public String defineMeaningOfLife() {

return "Encyclopedias are a waste of money - go see the world instead";
}

Now let’s see, in a stand-alone Java program, how Spring’s BeanFactory can be initialized and obtain
the oracle bean for processing. Here’s the code:

package com.apress.prospring5.ch3;

import org.springframework.beans.factory.support.DefaultListableBeanFactory;
import org.springframework.beans.factory.xml.XmlBeanDefinitionReader;
import org.springframework.core.io.ClassPathResource;

public class XmlConfigWithBeanFactory {

public static void main(String... args) {
DefaultListableBeanFactory factory = new DefaultlListableBeanFactory();
XmlBeanDefinitionReader rdr = new XmlBeanDefinitionReader(factory);
rdr.loadBeanDefinitions(new

ClassPathResource("spring/xml-bean-factory-config.xml"));

Oracle oracle = (Oracle) factory.getBean("oracle");
System.out.println(oracle.defineMeaningOfLife());

}

}

In the previous code sample, you can see that we are using DefaultListableBeanFactory, which is
one of the two main BeanFactory implementations supplied with Spring, and that we are reading in the
BeanDefinition information from an XML file by using XmlBeanDefinitionReader. Once the BeanFactory
implementation is created and configured, we retrieve the oracle bean by using its name, oracle, which is
configured in the XML configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

47

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

<bean id="oracle"
name="wiseworm"
class="com.apress.prospring5.ch3.BookwormOracle"/>
</beans>

A When declaring a Spring XSD location, it’s a best practice to not include the version number. This
resolution is already handled for you by Spring as the versioned XSD file is configured through a pointer in the
spring.schemas file. This file resides in the spring-beans module defined as a dependency in your project.
This also prevents you from having to modify all of your bean files when upgrading to a new version of Spring.

The previous file declares a Spring bean, gives it an ID of oracle and a name of wiseworm, and tells
Spring that the underlying implementation class is com.apress.prospring4.ch3.BookwormOracle. Don’t
worry too much about the configuration at the moment; we discuss the details in later sections.

Having the configuration defined, run the program shown in the previous code sample; you will see the
phrase returned by the defineMeaningOfLife() method in the console output.

In addition to XmlBeanDefinitionReader, Spring also provides PropertiesBeanDefinitionReader,
which allows you to manage your bean configuration by using properties rather than XML. Although
properties are ideal for small, simple applications, they can quickly become cumbersome when you are
dealing with a large number of beans. For this reason, it is preferable to use the XML configuration format for
all but the most trivial of applications.

Of course, you are free to define your own BeanFactory implementations, although be aware that
doing so is quite involved; you need to implement a lot more interfaces than just BeanFactory to get the
same level of functionality you have with the supplied BeanFactory implementations. If all you want to do is
define a new configuration mechanism, create your definition reader by developing a class that extends the
DefaultListableBeanFactory class, which has the BeanFactory interface implemented.

ApplicationContext

In Spring, the ApplicationContext interface is an extension to BeanFactory. In addition to DI services,
ApplicationContext provides other services, such as transaction and AOP service, message source for
internationalization (i18n), and application event handling, to name a few. In developing Spring-based
applications, it's recommended that you interact with Spring via the ApplicationContext interface. Spring
supports the bootstrapping of ApplicationContext by manual coding (instantiate it manually and load the
appropriate configuration) or in a web container environment via ContextLoaderListener. From this point
onward, all the sample code in this book uses ApplicationContext and its implementations.

Configuring ApplicationContext

Having discussed the basic concepts of IoC and DI and gone through a simple example of using Spring’s
BeanFactory interface, let’s dive into the details of how to configure a Spring application. In the following
sections, we go through various aspects of configuring Spring applications. Specifically, we should focus our
attention on the ApplicationContext interface, which provides many more configuration options than the
traditional BeanFactory interface.

48

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Setting Spring Configuration Options

Before we dive into the details of configuring Spring’s ApplicationContext, let’s take a look at the options
that are available for defining an application’s configuration within Spring. Originally, Spring supported
defining beans through either properties or an XML file. Since the release of JDK 5 and Spring’s support of
Java annotations, Spring (starting from Spring 2.5) also supports using Java annotations when configuring
ApplicationContext. So, which one is better, XML or annotations? There have been lots of debates on
this topic, and you can find numerous discussions on the Internet.! There is no definite answer, and each
approach has its pros and cons. Using an XML file can externalize all configuration from Java code, while
annotations allow the developer to define and view the DI setup from within the code. Spring also supports
a mix of the two approaches in a single ApplicationContext. One common approach is to define the
application infrastructure (for example, data source, transaction manager, JMS connection factory, or JMX) in
an XML file, while defining the DI configuration (injectable beans and beans’ dependencies) in annotations.
However, no matter which option you choose, stick to it and deliver the message clearly across the entire
development team. Agreeing on the style to use and keeping it consistent across the application will make
ongoing development and maintenance activities much easier.

To facilitate your understanding of both the XML and annotation configuration, we provide sample
code for XML and annotations side by side whenever appropriate, but the focus of this book will be on
annotations and Java configuration, as XML was already covered in the previous editions of this book.

Basic Configuration Overview

For XML configuration, you need to declare the required namespace base provided by Spring that your
application requires. The following configuration sample shows the most basic sample, which declares only
the bean’s namespace for you to define the Spring beans. We refer to this configuration file as app-context-
xml.xml for XML-style configuration throughout the samples.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
</beans>

Besides beans, Spring provides a large number of other namespaces for different purposes. Some
examples include context for ApplicationContext configuration, aop for AOP support, and tx for
transactional support. Namespaces are covered in the appropriate chapters.

To use Spring’s annotation support in your application, you need to declare the tags shown in the
next configuration sample in your XML configuration. We refer to this configuration file as app-context-
annotation.xml for XML configuration with annotation support throughout the samples.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

'For example, try the Spring community forums at http://forum.spring.io.

49

http://forum.spring.io/

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

xmlns:context="http://www.springframework.org/schema/context"

xmlns:c="http://www.springframework.org/schema/c"

xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan
base-package="com.apress.prospring5.ch3.annotation"/>

</beans>

The <context: component-scan> tag tells Spring to scan the code for injectable beans annotated with
@Component, @Controller, @Repository, and @Service as well as supporting the @Autowired, @Inject, and
@Resource annotations under the package (and all its subpackages) specified. In the <context : component-scan>
tag, multiple packages can be defined by using either a comma, a semicolon, or a space as the delimiter.
Moreover, the tag supports inclusion and exclusion of a component scan for more fine-grained control.

For example, consider the following configuration sample:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan
base-package="com.apress.prospring5.ch3.annotation">

<context:exclude-filter type="assignable"
expression="com.example.NotAService"/>
</context:component-scan>

</beans>

The previous tag tells Spring to scan the package as specified but omit the classes that were assignable
to the type as specified in the expression (can be either a class or an interface). Besides the exclude filter, you
can also use an include filter. And for the type, you can use annotation, regex, assignable, Aspect], or custom
(with your own filter class that implements org.springframework.core.type.filter.TypeFilter) as the
filter criteria. The expression format depends on the type you specified.

Declaring Spring Components

After you develop some kind of service class and want to use it in a Spring-based application, you need

to tell Spring that those beans are eligible for injection to other beans and have Spring manage them

for you. Consider the sample in Chapter 2, where MessageRender outputs the message and depends on
MessageProvider to provide the message to render. The following code sample depicts the interfaces and
the implementation of the two services:

50

http://dx.doi.org/10.1007/978-1-4842-2808-1_2

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

package com.apress.prospring5.ch2.decoupled;

//renderer interface
public interface MessageRenderer {
void render();
void setMessageProvider(MessageProvider provider);
MessageProvider getMessageProvider();
}
// rendered implementation
public class StandardOutMessageRenderer
implements MessageRenderer {

private MessageProvider messageProvider;

@verride
public void render() {
if (messageProvider == null) {
throw new RuntimeException(
"You must set the property messageProvider of class:"
+ StandardOutMessageRenderer.class.getName());

}
System.out.println(messageProvider.getMessage());
}
@0verride

public void setMessageProvider(MessageProvider provider) {
this.messageProvider = provider;
}

@0verride

public MessageProvider getMessageProvider() {
return this.messageProvider;

}

}

//provider interface

public interface MessageProvider {
String getMessage();

}

//provider implementation
public class HelloWorldMessageProvider implements MessageProvider {

@0verride

public String getMessage() {
return "Hello World!";

}

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

A The classes shown previously are part of the com.apress.prosprings.ch2.decoupled package. They
are used in the project specific to this chapter as well, because in a real production application, developers try
to reuse code instead of duplicating it. That is why, as you will see when you will get the sources, the project for
Chapter 2 is defined as a dependency for some of the projects for Chapter 3.

To declare bean definitions in an XML file, the <bean ../> tagis used, and the resulting app-context-
xml.xml file now looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="provider"
class="com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider"/>

<bean id="renderer"
class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
p:messageProvider-ref="provider"/>
</beans>

The previous tags declare two beans, one with an ID of provider with the HelloWorldMessageProvider
implementation, and the other with an ID of renderer with the StandardOutMessageRenderer
implementation.

Starting with this example, namespaces will no longer be added to configuration samples, unless new
namespaces will be introduced, as this will make the bean definitions more visible.

To create bean definitions using annotations, the bean classes must be annotated with the appropriate
stereotype annotation,? and the methods or constructors must be annotated with @Autowired to tell the
Spring IoC container to look for a bean of that type and use it as an argument when calling that method.

In the following code snippet, the annotations used to create the bean definition are underlined. The
stereotype annotations can have as a parameter the name of the resulting bean.

package com.apress.prospring5.ch3.annotation;

import com.apress.prospring5s.ch2.decoupled.MessageProvider;

import org.springframework.stereotype.Component;

//simple bean

@Component ("provider")

public class HelloWorldMessageProvider implements MessageProvider {

*These annotations are called stereotype because they are part of a package named org.springframework.stereotype.
This package groups together all annotations used to define beans. These annotations are also relevant to the role of a
bean. For example, @Service is used to define a service bean, which is a more complex functional bean that provides
services that other beans may require, and @Repository is used to define a bean that is used to retrieve/save data from/to
a database, etc.

52

http://dx.doi.org/10.1007/978-1-4842-2808-1_2
http://dx.doi.org/10.1007/978-1-4842-2808-1_3

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

@0verride

public String getMessage() {
return "Hello World!";

}

}

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.stereotype.Service;

import org.springframework.beans.factory.annotation.Autowired;

//complex, service bean

@Service("renderer")

public class StandardOutMessageRenderer
implements MessageRenderer {
private MessageProvider messageProvider;

@0verride
public void render() {
if (messageProvider == null) {
throw new RuntimeException(
"You must set the property messageProvider of class:"
+ StandardOutMessageRenderer.class.getName());

}

System.out.println(messageProvider.getMessage());

}

@0verride

@Autowired

public void setMessageProvider(MessageProvider provider) {
this.messageProvider = provider;

}

@0verride
public MessageProvider getMessageProvider() {
return this.messageProvider;

}

When bootstrapping Spring’s ApplicationContext with the XML configuration depicted here, in file
app-context-annotation.xml, Spring will seek out those components and instantiate the beans with the
specified names:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans

53

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<context:component-scan
base-package="com.apress.prospring5.ch3.annotation"/>

</beans>
Using either approach doesn’t affect the way you obtain the beans from ApplicationContext.
package com.apress.prospring5.ch3;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DeclareSpringComponents {

public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();
MessageRenderer messageRenderer = ctx.getBean("renderer"”,
MessageRenderer.class);
messageRenderer.render();
ctx.close();

Instead of DefaultListableBeanFactory, an instance of GenericXmlApplicationContext is
instantiated. The GenericXmlApplicationContext class implements the ApplicationContext interface and
is able to bootstrap Spring’s ApplicationContext from the configurations defined in XML files.

You can swap the app-context-xml.xml file with app-context-annotation.xml in the provided source
code for this chapter, and you will find that both cases produce the same result: “Hello World!” is printed.
The only difference is that after the swap the beans providing the functionality are the ones defined with
annotations in the com.apress.prospring5s.ch3.annotation package.

Using Java Configuration

In Chapter 1 we mentioned that app-context-xml.xml can be replaced with a configuration class, without
modifying the classes representing the bean types being created. This is useful when the bean types that
the application needs are part of third-party libraries that cannot be modified. Such a configuration class is
annotated with @Configuration and contains methods annotated with @Bean that are called directly by the
Spring IoC container to instantiate the beans. The bean name will be the same as the name of the method
used to create it. The class is shown in the following code sample, and the method names are underlined to
make obvious how the resulting beans will be named:

54

http://dx.doi.org/10.1007/978-1-4842-2808-1_1

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

package com.apress.prospring5.ch2.annotated;

import com.apress.prospring5s.ch2.decoupled.HelloWorldMessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageProvider;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;

import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

@Configuration
public class HelloWorldConfiguration {

@®Bean
public MessageProvider provider() {

return new HelloWorldMessageProvider();
}

@®Bean

public MessageRenderer renderer(){
MessageRenderer renderer = new StandardOutMessageRenderer();
renderer.setMessageProvider(provider());
return renderer;

To read the configuration from this class, a different implementation of ApplicationContext is needed.
package com.apress.prospring5.ch2.annotated;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;

import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
public class HelloWorldSpringAnnotated {

public static void main(String... args) {
ApplicationContext ctx = new AnnotationConfigApplicationContext
(HelloWorldConfiguration.class);
MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
mr.render();

Instead of DefaultListableBeanFactory, an instance of AnnotationConfigApplicationContext
is instantiated. The AnnotationConfigApplicationContext class implements the ApplicationContext
interface and is able to bootstrap Spring’s ApplicationContext from the configurations defined by the
HelloWorldConfiguration class.

A configuration class can be used to read the annotated beans definitions as well. In this case, because
the bean’s definition configuration is part of the bean class, the class will no longer need any @Bean
annotated methods. But, to be able to look for bean definitions inside Java classes, component scanning has
to be enabled. This is done by annotating the configuration class with an annotation that is the equivalent
of the <context:component-scanning ../> element. This annotation is @omponentScanning and has the
same parameters as the XML analogous element.

55

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

package com.apress.prospring5.ch3.annotation;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@ComponentScan(basePackages = {"com.apress.prospring5.ch3.annotation"})
@Configuration

public class HelloWorldConfiguration {

}

The code to bootstrap a Spring environment using AnnotationConfigApplicationContext will work
with this class too, with no additional changes.

In real-life production applications, there might be legacy code, developed with older versions of
Spring, or requirements might be of such a nature that require XML and configuration classes. Fortunately,
XML and Java configuration can be mixed in more than one way. For example, a configuration class can
import bean definitions from an XML file (or more) using @ImportResource, and the same bootstrapping
using AnnotationConfigApplicationContext will work in this case as well.

package com.apress.prospring5.ch3.mixed;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;

@ImportResource(locations = {"classpath:spring/app-context-xml.xml"})
@Configuration
public class HelloWorldConfiguration {

}

So, Spring allows you to be really creative when defining your beans; you'll learn more about this in
Chapter 4, which is focused solely on Spring application configuration.

Using Setter Injection

To configure setter injection by using XML configuration, you need to specify <property> tags under the
<bean> tag for each <property> into which you want to inject a dependency. For example, to assign the
message provider bean to the messageProvider property of the messageRenderer bean, you simply change
the <bean> tag for the renderer bean, as shown in the following code snippet:

<beans ...>
<bean id="renderer"
class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer">
<property name="messageProvider" ref="provider"/>
</bean>

<bean id="provider"
class="com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider"/>
</beans>

56

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

From this code, we can see that the provider bean is assigned to the messageProvider property. You
can use the ref attribute to assign a bean reference to a property (discussed in more detail shortly).

If you are using Spring 2.5 or newer and have the p namespace declared in your XML configuration file,
you can declare the injection as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="renderer"
class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
p:messageProvider-ref="provider"/>

<bean id="provider"
class="com.apress.prospring5.ch2.decoupled.HellolWorldMessageProvider"/>
</beans>

A The p namespace is not defined in an XSD file and exists only in Spring core; therefore, no XSD is
declared in the schemalocation attribute.

With annotations, it’s even simpler. You just need to add an @Autowired annotation to the setter
method, as shown in the following code snippet:

package com.apress.prospring5.ch3.annotation;
import org.springframework.beans.factory.annotation.Autowired;

@Service("renderer")
public class StandardOutMessageRenderer implements MessageRenderer {

@0verride

@Autowired

public void setMessageProvider(MessageProvider provider) {
this.messageProvider = provider;

}

Since we declared the <context:component-scan> tag in the XML configuration file, during the
initialization of Spring’s ApplicationContext, Spring will discover those @Autowired annotations and inject
the dependency as required.

57

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

A Instead of @Autowired, you can use @Resource(name="messageProvider") to achieve the same result.
@Resource is one of the annotations in the JSR-250 standard that defines a common set of Java annotations
for use on both JSE and JEE platforms. Different from @Autowired, the @Resource annotation supports the name
parameter for more fine-grained DI requirements. Additionally, Spring supports use of the @Inject annotation
introduced as part of JSR-299 (Contexts and Dependency Injection for the Java EE Platform). @Inject is
equivalent in behavior to Spring’s @Autowired annotation.

To verify the result, you can use DeclareSpringComponents that was presented earlier. As in the
previous section, you can swap the app-context-xml.xml file with app-context-annotation.xml in the
provided source code for this chapter, and you will find that both cases produce the same result: “Hello
World!” is printed.

Using Constructor Injection

In the previous example, the MessageProvider implementation, HelloWorldMessageProvider, returned the
same hard-coded message for each call of the getMessage () method. In the Spring configuration file, you
can easily create a configurable MessageProvider that allows the message to be defined externally, as shown
in the following code snippet:

package com.apress.prospring5.ch3.xml;
import com.apress.prosprings.ch2.decoupled.MessageProvider;

public class ConfigurableMessageProvider
implements MessageProvider {
private String message;

public ConfigurableMessageProvider(String message) {
this.message = message;
}

@verride

public String getMessage() {
return message;

}

As you can see, it is impossible to create an instance of ConfigurableMessageProvider without
providing a value for the message (unless you supply null). This is exactly what we want, and this class is
ideally suited for use with constructor injection. The following code snippet shows how you can redefine the
provider bean definition to create an instance of ConfigurableMessageProvider, injecting the message by
using constructor injection:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="messageProvider"
58

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider">
<constructor-arg value="I hope that someone gets my message in a bottle"/>
</bean>
</beans>

In this code, instead of using a <property> tag, we used a <constructor-arg> tag. Because we are not
passing in another bean this time, just a String literal, we use the value attribute instead of ref to specify
the value for the constructor argument. When you have more than one constructor argument or your class
has more than one constructor, you need to give each <constructor-arg> tag an index attribute to specify
the index of the argument, starting at 0, in the constructor signature. It is always best to use the index
attribute whenever you are dealing with constructors that have multiple arguments, to avoid confusion
between the parameters and ensure that Spring picks the correct constructor.

In addition to the p namespace, as of Spring 3.1, you can also use the c namespace, as shown here:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:c="http://www.springframework.org/schema/c"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="provider"
class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider"
c:message="I hope that someone gets my message in a bottle"/>
</beans>

A The c namespace is not defined in an XSD file either and exists only in Spring Core; therefore, no XSD is
declared in the schemalocation attribute.

To use an annotation for constructor injection, we also use the @Autowired annotation in the target
bean’s constructor method, which is an alternative option to the one using setter injection, as shown in the
following code snippet:

package com.apress.prospring5.ch3.annotated;
import com.apress.prosprings.ch2.decoupled.MessageProvider;
import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service("provider")
public class ConfigurableMessageProvider implements MessageProvider {

private String message;
@Autowired
public ConfigurableMessageProvider(

(@value("Configurable message") String message) {
this.message = message;
}

59

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

@0verride

public String getMessage() {
return this.message;

}

From the previous code, we can see that we use another annotation, @/alue, to define the value to be
injected into the constructor. This is the way in Spring we inject values into a bean. Besides simple strings,
we can use the powerful SpEL for dynamic value injection (more on this later in this chapter).

However, hard-coding the value in the code is not a good idea; to change it, we would need to
recompile the program. Even if you choose annotation-style DI, a good practice is to externalize those
values for injection. To externalize the message, let’s define the message as a Spring bean in the annotation
configuration file, as shown in the following code snippet:

<beans ...>
<context:component-scan
base-package="com.apress.prospring5.ch3.annotated"/>

<bean id="message" class="java.lang.String"
c:_0="I hope that someone gets my message in a bottle"/>
</beans>

Here we define a bean with an ID of message and type of java.lang.String. Notice that we also use the
¢ namespace for constructor injection to set the string value, and _0 indicates the index for the constructor
argument. Having the bean declared, we can take away the @Value annotation from the target bean, as
shown in the following code snippet:

package com.apress.prospring5.ch3.annotated;
import com.apress.prospring5.ch2.decoupled.MessageProvider;
import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service("provider")
public class ConfigurableMessageProvider implements MessageProvider {

private String message;
@Autowired

public ConfigurableMessageProvider(String message) {
this.message = message;
}

@verride

public String getMessage() {
return this.message;

}

60

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Since we declare that the message bean and its ID are the same as the name of the argument specified
in the constructor, Spring will detect the annotation and inject the value into the constructor method.
Now run the test by using the following code against both the XML (app-context.xml.xml) and annotation
configurations (app-context-annotation.xml), and the configured message will be displayed in both cases:

package com.apress.prosprings.ch3;

import com.apress.prospring5s.ch2.decoupled.MessageProvider;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DeclareSpringComponents {
public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.refresh();

MessageProvider messageProvider = ctx.getBean("provider",
MessageProvider.class);

System.out.println(messageProvider.getMessage());

In some cases, Spring finds it impossible to tell which constructor we want it to use for constructor
injection. This usually arises when we have two constructors with the same number of arguments and the
types used in the arguments are represented in the same way. Consider the following code:

package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;

public class ConstructorConfusion {
private String someValue;

public ConstructorConfusion(String someValue) {
System.out.println("ConstructorConfusion(String) called");
this.someValue = someValue;

}

public ConstructorConfusion(int someValue) {
System.out.println("ConstructorConfusion(int) called");
this.someValue = "Number: " + Integer.toString(someValue);

}

public String toString() {
return someValue;
}

public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

61

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

ConstructorConfusion cc = (ConstructorConfusion)
ctx.getBean("constructorConfusion");

System.out.println(cc);

ctx.close

This simply retrieves a bean of type ConstructorConfusion from ApplicationContext and writes the
value to console output. Now look at the following configuration code:

<beans ...>
<bean id="provider"
class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider"
c:message="I hope that someone gets my message in a bottle"/>

<bean id="constructorConfusion"
class="com.apress.prospring5.ch3.xml.ConstructorConfusion">
<constructor-arg>
<value>90</value>
</constructor-arg>
</bean>

</beans>

Which of the constructors is called in this case? Running the example yields the following output:

ConstructorConfusion(String) called

This shows that the constructor with the String argument is called. This is not the desired effect, since
we want to prefix any integer values passed in by using constructor injection with Number:, as shown in the
int constructor. To get around this, we need to make a small modification to the configuration, as shown in
the following code snippet:

<beans ...>
<bean id="provider"
class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider"
c:message="I hope that someone gets my message in a bottle"/>

<bean id="constructorConfusion"
class="com.apress.prospring5.ch3.xml.ConstructorConfusion">
<constructor-arg type="int">
<value>90</value>
</constructor-arg>
</bean>

</beans>

Notice now that the <constructor-arg> tag has an additional attribute, type, that specifies the type
of argument Spring should look for. Running the example again with the corrected configuration yields the
correct output.
ConstructorConfusion(int) called

Number: 90

62

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

For annotation-style construction injection, the confusion can be avoided by applying the annotation
directly to the target constructor method, as shown in the following code snippet:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Service;

@Service("constructorConfusion")
public class ConstructorConfusion {

private String someValue;

public ConstructorConfusion(String someValue) {
System.out.println("ConstructorConfusion(String) called");
this.someValue = someValue;

}
@Autowired

public ConstructorConfusion(@Value("90") int someValue) {
System.out.println("ConstructorConfusion(int) called");
this.someValue = "Number: " + Integer.toString(someValue);

}

public String toString() {
return someValue;
}

public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.refresh();

ConstructorConfusion cc = (ConstructorConfusion)
ctx.getBean("constructorConfusion");

System.out.println(cc);

ctx.close();

By applying the @Autowired annotation to the desired constructor method, Spring will use that method
to instantiate the bean and inject the value as specified. As before, we should externalize the value from the
configuration.

A The @Autowired annotation can be applied to only one of the constructor methods. If we apply the
annotation to more than one constructor method, Spring will complain while bootstrapping ApplicationContext.

63

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Using Field Injection

There is a third type of dependency injection supported in Spring called field injection. As the name says,
the dependency is injected directly in the field, with no constructor or setter needed. This is done by
annotating the class member with the Autowired annotation. This might seem practical, because when
the dependency is not needed outside of the object it is part of, it relieves the developer of writing some
code that is no longer used after the initial creation of the bean. In the following code snippet, the bean of
type Singer has a field of type Inspiration:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service("singer")
public class Singer {

@Autowired
private Inspiration inspirationBean;

public void sing() {
System.out.println("...
}

+ inspirationBean.getlyric());

The field is private, but the Spring IoC container does not really care about that; it uses reflection to
populate the required dependency. The Inspiration class code is shown here; it is a simple bean with a
String member:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component
public class Inspiration {

private String lyric =
"I can keep the door cracked open, to let light through";

public Inspiration(
@value("For all my running, I can understand") String lyric) {
this.lyric = lyric;

}

public String getlyric() {
return lyric;
}

public void setlyric(String lyric) {
this.lyric = lyric;
}

64

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

The following configuration uses component scanning to discover the bean definitions that will be
created by the Spring IoC container:

<beans ...>
<context:component-scan
base-package="com.apress.prospring5.ch3.annotated"/>
</beans>

Finding one bean of type Inspiration, the Spring IoC container will inject that bean in the
inspirationBean member of the singer bean. That is why when running the example depicted in the next
code snippet, “For all my running, I can understand” will be printed in the console.

package com.apress.prospring5.ch3.annotated;
import org.springframework.context.support.GenericXmlApplicationContext;
public class FieldInjection {

public static void main(String... args) {

GenericXmlApplicationContext ctx =

new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context.xml");
ctx.refresh();

Singer singerBean = ctx.getBean(Singer.class);
singerBean.sing();

ctx.close();

But there are drawbacks, and this is why using field injection is usually avoided.

e Although itis easy to add dependencies this way, we must be careful not to violate the
single responsibility principle. Having more dependencies means more responsibilities
for a class, which might lead to a difficulty of separating concerns at refactoring time.
The situation when a class becomes bloated is easier to see when dependencies are set
using constructors or setters but is quite well hidden when using field injection.

e The responsibility of injecting dependencies is passed to the container in Spring,
but the class should clearly communicate the type of dependencies needed using
a public interface, through methods or constructors. Using field injections, it can
become unclear what type of dependency is really needed and if the dependency is
mandatory or not.

e Field injection introduces a dependency of the Spring container, as the @Autowired
annotation is a Spring component; thus, the bean is no longer a POJO and cannot be
instantiated independently.

e Field injection cannot be used for final fields. This type of fields can only be initialized using
constructor injection.

e Field injection introduces difficulties when writing tests as the dependencies have to
be injected manually.

65

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Using Injection Parameters

In the three previous examples, you saw how to inject other components and values into a bean by using
both setter injection and constructor injection. Spring supports a myriad of options for injection parameters,
allowing you to inject not only other components and simple values but also Java collections, externally
defined properties, and even beans in another factory. You can use all of these injection parameter types for
both setter injection and constructor injection by using the corresponding tag under the <property> and
<constructor-args> tags, respectively.

Injecting Simple Values

Injecting simple values into your beans is easy. To do so, simply specify the value in the configuration tag,
wrapped inside a <value> tag. By default, not only can the <value> tag read String values, but it can also
convert these values to any primitive or primitive wrapper class. The following code snippet shows a simple
bean that has a variety of properties exposed for injection:

package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;
public class InjectSimple {

private String name;
private int age;

private float height;
private boolean programmer;
private Long ageInSeconds;

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

InjectSimple simple = (InjectSimple) ctx.getBean("injectSimple");
System.out.println(simple);
ctx.close();

}

public void setAgeInSeconds(Long ageInSeconds) {
this.ageInSeconds = ageInSeconds;
}

public void setProgrammer(boolean programmer) {
this.programmer = programmer;
}

public void setAge(int age) {
this.age = age;
}

66

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

public void setHeight(float height) {
this.height = height;
}

public void setName(String name) {
this.name = name;
}

public String toString() {
return "Name: " + name + "\n"

+ "Age: " + age + "\n"

+ "Age in Seconds: " + ageInSeconds + "\n"

+

+

"Height: " + height + "\n"

"Is Programmer?: " + programmer;

In addition to the properties, the InjectSimple class also defines the main() method that creates an
Application Context and then retrieves an InjectSimple bean from Spring. The property values of this
bean are then written to the console output. The configuration contained in app-context-xml.xml for this
bean is depicted in the following snippet:

<beans ...>

<bean id="injectSimpleConfig"
class="com.apress.prospring5.ch3.xml.InjectSimpleConfig"/>

<bean id="injectSimpleSpel"
class="com.apress.prospring5.ch3.xml.InjectSimpleSpel”
p:name="John Mayer"
p:age="39"
p:height="1.92"
p:programmer="false"
p:ageInSeconds="1241401112"/>
</beans>

You can see from the two previous code snippets that it is possible to define properties on your bean
that accept String values, primitive values, or primitive wrapper values and then inject values for these

properties by using the <value> tag. Here is the output created by running this example as expected:

Name: John Mayer

Age: 39
Age in Seconds: 1241401112
Height: 1.92

Is Programmer?: false

67

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

For annotation-style simple value injection, we can apply the @/alue annotation to the bean properties.
This time, instead of the setter method, we apply the annotation to the property declaration statement, as we
can see in the following code snippet (Spring supports the annotation either at the setter method or in the
properties):

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Service;

@Service("injectSimple")
public class InjectSimple {

@value("John Mayer")
private String name;
@value("39")

private int age;
@alue("1.92")

private float height;
@alue("false")

private boolean programmer;
@value("1241401112")
private Long agelnSeconds;

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.refresh();

InjectSimple simple = (InjectSimple) ctx.getBean("injectSimple");
System.out.println(simple);

ctx.close();

}

public String toString() {
return "Name: " + name + "\n"

+ "Age: " + age + "\n"

+ "Age in Seconds: " + ageInSeconds + "\n"

+ "Height: " + height + "\n"

+

"Is Programmer?: " + programmer;

This achieves the same result as the XML configuration.

68

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Injecting Values by Using SpEL

One powerful feature introduced in Spring 3 is the Spring Expression Language (SpEL). SpEL enables you to
evaluate an expression dynamically and then use it in Spring’s ApplicationContext. You can use the result
for injection into Spring beans. In this section, we take a look at how to use SpEL to inject properties from
other beans, by using the example in the preceding section.

Suppose now we want to externalize the values to be injected into a Spring bean in a configuration class,
as shown in the following code snippet:

package com.apress.prospring5.ch3.annotated;
import org.springframework.stereotype.Component;

@Component ("injectSimpleConfig")
public class InjectSimpleConfig {

private String name = "John Mayer";
private int age = 39;

private float height = 1.92f;

private boolean programmer = false;
private Long ageInSeconds = 1 241 401 112L;

public String getName() {
return name;
}

public int getAge() {
return age;
}

public float getHeight() {
return height;
}

public boolean isProgrammer() {
return programmer;
}

public Long getAgeInSeconds() {
return ageInSeconds;
}

We can then define the bean in the XML configuration and use SpEL to inject the bean’s properties into
the dependent bean, as shown in the following configuration snippet:

<beans ...>

<bean id="injectSimpleConfig"
class="com.apress.prospring5.ch3.xml.InjectSimpleConfig"/>

69

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

<bean id="injectSimpleSpel"

class="com.apress.prospring5.ch3.xml.InjectSimpleSpel"”
p:name="#{injectSimpleConfig.name}"
p:age="#{injectSimpleConfig.age + 1}"
p:height="#{injectSimpleConfig.height}"
p:programmer="#{injectSimpleConfig.programmer}"
p:ageInSeconds="#{injectSimpleConfig.ageInSeconds}"/>

</beans>

Notice that we use the SpEL #{injectSimpleConfig.name} in referencing the property of the other
bean. For the age, we add 1 to the value of the bean to indicate that we can use SpEL to manipulate the
property as we see fit and inject it into the dependent bean. Now we can test the configuration with the
program shown in the following code snippet:

package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;

public class InjectSimpleSpel {
private String name;
private int age;
private float height;
private boolean programmer;
private Long agelnSeconds;

public String getName() {
return this.name;
}

public void setName(String name) {
this.name = name;
}

public int getAge() {
return this.age;
}

public void setAge(int age) {
this.age = age;
}

public float getHeight() {
return this.height;
}

public void setHeight(float height) {
this.height = height;
}

public boolean isProgrammer() {
return this.programmer;
}

70

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

public void setProgrammer(boolean programmer) {
this.programmer = programmer;
}

public Long getAgeInSeconds() {
return this.ageInSeconds;
}

public void setAgeInSeconds(Long ageInSeconds) {
this.ageInSeconds = ageInSeconds;
}

public String toString() {
return "Name: " + name + "\n"
+ "Age: " + age + "\n"
"Age in Seconds: " + ageInSeconds + "\n"
"Height: " + height + "\n"

"Is Programmer?: " + programmer;

+ + +

}

public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

InjectSimpleSpel simple = (InjectSimpleSpel)ctx.getBean("injectSimpleSpel");
System.out.println(simple);

ctx.close();

The following is the output of the program:

Name: John Mayer

Age: 40
Age in Seconds: 1241401112
Height: 1.92

Is Programmer?: false

When using annotation-style value injection, we just need to substitute the value annotations with the
SpEL expressions (see the following code snippet):

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Service;
@Service("injectSimpleSpel™)

public class InjectSimpleSpel {

71

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

@value("#{injectSimpleConfig.name}")
private String name;

@alue("#{injectSimpleConfig.age + 1}")
private int age;

@value("#{injectSimpleConfig.height}")
private float height;

@Value("#{injectSimpleConfig.programmer}")
private boolean programmer;

@value("#{injectSimpleConfig.ageInSeconds}")
private Long ageInSeconds;

public String toString() {
return "Name: " + name + "\n"
+ "Age: " + age + "\n"
+ "Age in Seconds: " + ageInSeconds + "\n"
+ "Height: " + height + "\n"

+ "Is Programmer?: " + programmer;

public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.refresh();

InjectSimpleSpel simple = (InjectSimpleSpel)ctx.getBean("injectSimpleSpel");

System.out.println(simple);

ctx.close();

The version of InjectSimpleConfig is shown here:
package com.apress.prospring5.ch3.annotated;
import org.springframework.stereotype.Component;

@Component ("injectSimpleConfig")
public class InjectSimpleConfig {
private String name = "John Mayer";
private int age = 39;
private float height = 1.92f;
private boolean programmer = false;
private Long ageInSeconds = 1 241 401 112L;

// getters here ...

72

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

In the previous snippet, instead of the @Service annotation, @Component was used. Basically, using
@Component has the same effect as @Service. Both annotations are instructing Spring that the annotated class
is a candidate for autodetection using annotation-based configuration and classpath scanning. However, since
the InjectSimpleConfig class is storing the application configuration, rather than providing a business service,
using @Component makes more sense. Practically, @Service is a specialization of @omponent, which indicates
that the annotated class is providing a business service to other layers within the application.

Testing the program will produce the same result. Using SpEL, you can access any Spring-managed
beans and properties and manipulate them for application use by Spring’s support of sophisticated language
features and syntax.

Injecting Beans in the Same XML Unit

As you have already seen, it is possible to inject one bean into another by using the ref tag. The next code
snippet shows a class that exposes a setter to allow a bean to be injected:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;
import com.apress.prospring5.ch3.0racle;

public class InjectRef {
private Oracle oracle;

public void setOracle(Oracle oracle) {
this.oracle = oracle;
}

public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

InjectRef injectRef = (InjectRef) ctx.getBean("injectRef");
System.out.println(injectRef);

ctx.close();

}

public String toString() {
return oracle.defineMeaningOfLife();
}

To configure Spring to inject one bean into another, you first need to configure two beans: one to be
injected and one to be the target of the injection. Once this is done, you simply configure the injection by
using the <ref> tag on the target bean. The following code snippet shows an example of this configuration
(file app-context-xml.xml):

<beans ...>
<bean id="oracle" name="wiseworm"

class="com.apress.prospring5.ch3.BookwormOracle"/>

73

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

<bean id="injectRef"
class="com.apress.prospring5.ch3.xml.InjectRef">
<property name="oracle">
<ref bean="oracle"/>
</property>
</bean>
</beans>

Running the InjectRef class produces the following output:
Encyclopedias are a waste of money - go see the world instead

An important point to note is that the type being injected does not have to be the exact type defined on
the target; the types just need to be compatible. Compatible means that if the declared type on the target is
an interface, the injected type must implement this interface. If the declared type is a class, the injected type
must be either the same type or a subtype. In this example, the InjectRef class defines the setOracle()
method to receive an instance of Oracle, which is an interface, and the injected type is BookwormOracle, a
class that implements Oracle. This is a point that causes confusion for some developers, but it is really quite
simple. Injection is subject to the same typing rules as any Java code, so as long as you are familiar with how
Java typing works, understanding typing in injection is easy.

In the previous example, the ID of the bean to inject is specified by using the local attribute of the
<ref> tag. As you will see later, in the section “Understanding Bean Naming,” you can give a bean more than
one name so that you can refer to it using a variety of aliases. When you use the local attribute, it means
that the <ref> tag only looks at the bean’s ID and never at any of its aliases. Moreover, the bean definition
should exist in the same XML configuration file. To inject a bean by any name or import one from other
XML configuration files, use the bean attribute of the <ref> tag instead of the local attribute. The following
code snippet shows an alternative configuration for the previous example, using an alternative name for the
injected bean:

<beans ...>

<bean id="oracle" name="wiseworm"
class="com.apress.prosprings.ch3.BookwormOracle"/>

<bean id="injectRef"
class="com.apress.prospring5.ch3.xml.InjectRef">
<property name="oracle">
<ref bean="wiseworm"/>
</property>
</bean>
</beans>

In this example, the oracle bean is given an alias by using the name attribute, and then it is injected into
the injectRef bean by using this alias in conjunction with the bean attribute of the <ref> tag. Don’t worry
too much about the naming semantics at this point. We discuss this in much more detail later in the chapter.
Running the InjectRef class again produces the same result as the previous example.

74

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Injection and ApplicationContext Nesting

So far, the beans we have been injecting have been located in the same ApplicationContext (and hence the
same BeanFactory) as the beans they are injected into. However, Spring supports a hierarchical structure for
ApplicationContext so that one context (and hence the associating BeanFactory) is considered the parent
of another. By allowing ApplicationContexts to be nested, Spring allows you to split your configuration into
different files, which is a godsend on larger projects with lots of beans.

When nesting ApplicationContext instances, Spring allows beans in what is considered the child context
to reference beans in the parent context. ApplicationContext nesting using GenericXmlApplicationContext
is simple to understand. To nest one GenericXmlApplicationContext inside another, simply call the
setParent() method in the child ApplicationContext, as shown in the following code sample:

package com.apress.prospring5.ch3;
import org.springframework.context.support.GenericXmlApplicationContext;
public class HierarchicalAppContextUsage {

public static void main(String... args) {
GenericXmlApplicationContext parent = new GenericXmlApplicationContext();
parent.load("classpath:spring/parent-context.xml");
parent.refresh();

GenericXmlApplicationContext child = new GenericXmlApplicationContext();
child.load("classpath:spring/child-context.xml");
child.setParent(parent);

child.refresh();

Song songl = (Song) child.getBean("songl");
Song song2 = (Song) child.getBean("song2");
Song song3 = (Song) child.getBean("song3");

System.out.println("from parent ctx: " + songl.getTitle());
System.out.println("from child ctx: " + song2.getTitle());
System.out.println("from parent ctx: " + song3.getTitle());

child.close();
parent.close();

The Song class is quite simple, and it is shown here:
package com.apress.prosprings.ch3;

public class Song {
private String title;

public void setTitle(String title) {
this.title = title;
}

75

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

public String getTitle() {
return title;
}

Inside the configuration file for the child ApplicationContext, referencing a bean in the parent
ApplicationContext works exactly like referencing a bean in the child ApplicationContext, unless you
have a bean in the child ApplicationContext that shares the same name. In that case, you simply replace
the bean attribute of the ref element with parent, and you are on your way. The following configuration
snippet depicts the contents of the configuration file for the parent BeanFactory, named parent-context.xml:

<beans ...>
<bean id="childTitle" class="java.lang.String" c:_0="Daughters"/>

<bean id="parentTitle" class="java.lang.String" c: 0="Gravity"/>
</beans>

As you can see, this configuration simply defines two beans: childTitle and parentTitle. Both are
String objects with the values Daughters and Gravity. The following configuration snippet depicts the
configuration for the child ApplicationContext thatis contained in child-context.xml:

<beans ...>

<bean id="song1" class="com.apress.prospring5.ch3.Song"
p:title-ref="parentTitle"/>

<bean id="song2" class="com.apress.prosprings.ch3.Song"
p:title-ref="childTitle"/>

<bean id="song3" class="com.apress.prospring5.ch3.Song">
<property name="title">
<ref parent="childTitle"/>
</property>
</bean>

<bean id="childTitle" class="java.lang.String" c: 0="No Such Thing"/>
</beans>

Notice that we have defined four beans here. childTitle in this code is similar to childTitle in the
parent except that the String it represents has a different value, indicating that it is located in the child
ApplicationContext.

The song1l bean is using the bean ref attribute to reference the bean named parentTitle. Because this
bean exists only in the parent BeanFactory, song1 receives a reference to that bean. There are two points
of interest here. First, you can use the bean attribute to reference beans in both the child and the parent
ApplicationContexts. This makes it easy to reference the beans transparently, allowing you to move beans
between configuration files as your application grows. The second point of interest is that you can’t use
the local attribute to refer to beans in the parent ApplicationContext. The XML parser checks to see that
the value of the local attribute exists as a valid element in the same file, preventing it from being used to
reference beans in the parent context.

76

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

The song2 bean is using the bean ref attribute to reference childTitle. Because that bean is
defined in both ApplicationContexts, the song2 bean receives a reference to childTitle in its own
ApplicationContext.

The song3 bean is using the <ref> tag to reference childTitle directly in the parent
ApplicationContext. Because song3 is using the parent attribute of the <ref> tag, the childTitle instance
declared in the child ApplicationContext is ignored completely.

A You may have noticed that, unlike song1 and song2, the song3 bean is not using the p namespace.
While the p namespace provides handy shortcuts, it does not provide all the capabilities as when using
property tags, such as referencing a parent bean. While we show it as an example, it’s best to pick either the p
namespace or property tags to define your beans, rather than mixing styles (unless absolutely necessary).

Here is the output from running the HierarchicalAppContextUsage class:

from parent ctx: Gravity
from child ctx: No Such Thing
from parent ctx: Daughters

As expected, the song1 and song3 beans both get a reference to beans in the parent
ApplicationContext, whereas the song2 bean gets a reference to a bean in the child ApplicationContext.

Injecting Collections

Often your beans need access to collections of objects rather than just individual beans or values. Therefore,
it should come as no surprise that Spring allows you to inject a collection of objects into one of your beans.
Using the collection is simple: you choose either <1ist>, <map>, <set>, or <props> to represent a List, Map,
Set, or Properties instance, and then you pass in the individual items just as you would with any other
injection. The <props> tag allows for only Strings to be passed in as the value, because the Properties class
allows only for property values to be Strings. When using <1ist>, <map>, or <set>, you can use any tag you
want when injecting into a property, even another collection tag. This allows you to pass in a List of Maps, a
Map of Sets, or even a List of Maps of Sets of Lists! The following code snippet shows a class that can have all
four of the collection types injected into it:

package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;
import java.util.list;
import java.util.Map;
import java.util.Properties;
import java.util.Set;
public class CollectionInjection {
private Map<String, Object> map;
private Properties props;

private Set set;
private List list;

7

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

CollectionInjection instance =
(CollectionInjection) ctx.getBean("injectCollection");
instance.displayInfo();

ctx.close();

}

public void displayInfo() {
System.out.println("Map contents:\n");
map.entrySet().stream().forEach(e -> System.out.println(
"Key: " + e.getKey() + " - Value: " + e.getValue()));

System.out.println("\nProperties contents:\n");
props.entrySet().stream().forEach(e -> System.out.println(
"Key: " + e.getKey() + " - Value: " + e.getValue()));

System.out.println("\nSet contents:\n");
set.forEach(obj -> System.out.println("Value: " + obj));

System.out.println("\nList contents:\n");
list.forEach(obj -> System.out.println("Value: " + obj));

}

public void setList(List list) {
this.list = list;
}

public void setSet(Set set) {
this.set = set;
}

public void setMap(Map<String, Object> map) {
this.map = map;
}

public void setProps(Properties props) {
this.props = props;
}

That is quite a lot of code, but it actually does very little. The main() method retrieves a
CollectionInjection bean from Spring and then calls the displayInfo() method. This method just
outputs the contents of the Map, Properties, Set, and List instances that will be injected from Spring.
The configuration required to inject values for each of the properties in the CollectionInjection class is
depicted next, and the configuration file is named app-context-xml.xml.

78

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Also, notice the declaration of the Map<String,0bject> property. For JDK versions newer than 5, Spring
also supports the strongly typed Collection declaration and will perform the conversion from the XML
configuration to the corresponding type specified accordingly.

<beans ...>

<bean id="lyricHolder"
lass="com.apress.prospring5.ch3.xml.LyricHolder"/>

<bean id="injectCollection"
class="com.apress.prospring5.ch3.xml.CollectionInjection">
<property name="map">
<map>
<entry key="someValue">
<value>It's a Friday, we finally made it</value>
</entry>
<entry key="someBean">
<ref bean="lyricHolder"/>
</entry>
</map>
</property>
<property name="props">
<props>
<prop key="firstName">John</prop>
<prop key="secondName">Mayer</prop>
</props>
</property>
<property name="set">
<set>
<value>I can't believe I get to see your face</value>
<ref bean="lyricHolder"/>
</set>
</property>
<property name="list">
<list>
<value>You've been working and I've been waiting</value>
<ref bean="lyricHolder"/>
</list>
</property>
</bean>
</beans>

In this code, you can see that we have injected values into all four setters exposed on the
CollectionInjection class. For the map property, we have injected a Map instance by using the <map> tag.
Notice that each entry is specified using an <entry> tag, and each has a String key and then an entry value.
This entry value can be any value you can inject into a property separately; this example shows the use of the
<value> and <ref> tags to add a String value and a bean reference to the Map. The LyricHolder class, which
is the type of the lyricHolder bean injected in the map in the previous configuration, is depicted here:

79

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

package com.apress.prospring5.ch3.xml;
import com.apress.prosprings.ch3.ContentHolder;

public class LyricHolder implements ContentHolder{
private String value = "'You be the DJ, I'll be the driver'";

@verride public String toString() {
return "LyricHolder: { " + value + "}";
}

For the props property, we use the <props> tag to create an instance of java.util.Properties and
populate it using <prop> tags. Notice that although the <prop> tag is keyed in a similar manner to the
<entry> tag, we can specify only String values for each property that goes in the Properties instance.

Also, for the <map> element there is an alternative, more compact configuration using the value and
value-ref attributes, instead of the <value> and <ref> elements. The map declared here is equivalent with
the one in the previous configuration:

<property name="map">
<map>
<entry key="someValue" value="It's a Friday, we finally made it"/>
<entry key="someBean" value-ref="lyricHolder"/>
</map>
</property>

Both the <1ist> and <set> tags work in the same way: you specify each element by using any of the
individual value tags such as <value> and <ref> that are used to inject a single value into a property. In the
previous configuration, you can see that we have added a String value and a bean reference to both the
List and Set instances.

Here is the output generated by the main() method in the class CollectionInjection. As expected,
it simply lists the elements added to the collections in the configuration file.

Map contents:

Key: someValue - Value: It's a Friday, we finally made it
Key: someBean - Value: LyricHolder: { 'You be the DJ, I'll be the driver'}

Properties contents:

Key: secondName - Value: Mayer
Key: firstName - Value: John

Set contents:

Value: I can't believe I get to see your face
Value: LyricHolder: { 'You be the DJ, I'll be the driver'}

List contents:

Value: You've been working and I've been waiting
Value: LyricHolder: { 'You be the DJ, I'll be the driver'}

80

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Remember, with the <1ist>, <map>, and <set> elements, you can employ any of the tags used to set the
value of noncollection properties to specify the value of one of the entries in the collection. This is quite a
powerful concept because you are not limited just to injecting collections of primitive values; you can also
inject collections of beans or other collections.

Using this functionality, it is much easier to modularize your application and provide different, user-
selectable implementations of key pieces of application logic. Consider a system that allows corporate
staff to create, proofread, and order their personalized business stationery online. In this system, the
finished artwork for each order is sent to the appropriate printer when it is ready for production. The only
complication is that some printers want to receive the artwork via e-mail, some via FTP, and others using
Secure Copy Protocol (SCP). Using Spring’s collection injection, you can create a standard interface for this
functionality, as shown in the following code snippet:

package com.apress.prospring5.ch3;

public interface ArtworkSender {
void sendArtwork(String artworkPath, Recipient recipient);
String getFriendlyName();
String getShortName();

In the previous example, the Recipient class is an empty class. From this interface, you can create multiple
implementations, each of which is capable of describing itself to a human, such as the one shown here:

package com.apress.prospring5.ch3;

public class FtpArtworkSender
implements ArtworkSender {

@0verride

public void sendArtwork(String artworkPath, Recipient recipient) {
// ftp logic here...

}

@0verride
public String getFriendlyName() {
return "File Transfer Protocol”;

}

@0verride
public String getShortName() {
return "ftp";

}

Imagine that you then develop an ArtworkManager class that supports all available implementations
of the Artwork-Sender interface. With the implementations in place, you simply pass a List to your
ArtworkManager class, and you are on your way. Using the getFriendlyName() method, you can display a
list of delivery options for the system administrator to choose from when you are configuring each stationery
template. In addition, your application can remain fully decoupled from the individual implementations if
you just code to the ArtworkSender interface. We will leave the implementation of the ArtworkManager class
as an exercise for you.

81

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Besides the XML configuration, you can use annotations for collection injection. However, you
would also like to externalize the values of the collections into the configuration file for easy maintenance.
The following snippet is the configuration of four different Spring beans that mimic the same collection
properties of the previous sample (configuration file app-context-annotation.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

<context:component-scan
base-package="com.apress.prosprings.ch3.annotated"/>

<util:map id="map" map-class="java.util.HashMap">
<entry key="someValue" value="It's a Friday, we finally made it"/»>
<entry key="someBean" value-ref="lyricHolder"/>

</util:map>

<util:properties id="props">
<prop key="firstName">John</prop>
<prop key="secondName">Mayer</prop>
</util:properties>

<util:set id="set" set-class="java.util.HashSet">
<value>I can't believe I get to see your face</value>
<ref bean="lyricHolder"/>

</util:set>

<util:list id="list" list-class="java.util.ArraylList">
<value>You've been working and I've been waiting</value>
<ref bean="lyricHolder"/>
</util:list>
</beans>
Let’s also develop an annotation version of the LyricHolder class. The class content is depicted here:

package com.apress.prospring5.ch3.annotated;

import com.apress.prospring5.ch3.ContentHolder;
import org.springframework.stereotype.Service;

@Service("lyricHolder")
public class LyricHolder implements ContentHolder{

82

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

private String value = "'You be the DJ, I'll be the driver'";

@verride public String toString() {
return "LyricHolder: { " + value + "}";
}

In the configuration depicted previously, we make use of the util namespace provided by Spring
to declare your beans for storing collection properties: the util namespace. It greatly simplifies the
configuration, as compared to previous versions of Spring. In the class we use to test your configuration, we
inject the previous beans and use the JSR-250 @Resource annotation with the name specified as an argument
to properly identify the beans. The displayInfo() method is the same as before so is no longer shown here.

@Service("injectCollection")

public class CollectionInjection {
@Resource(name="map")
private Map<String, Object> map;

@Resource(name="props")
private Properties props;

@Resource(name="set")
private Set set;

@Resource(name="1ist")
private List list;

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.refresh();

CollectionInjection instance = (CollectionInjection)
ctx.getBean("injectCollection");

instance.displayInfo();

ctx.close();

Run the test program, and you will get the same result as the sample using XML configuration.

83

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

A You may wonder why the annotation @Resource is used instead of @Autowired. It’s because the
@Autowired annotation is semantically defined in a way that it always treats arrays, collections, and maps as
sets of corresponding beans, with the target bean type derived from the declared collection value type. So,

for example, if a class has an attribute of type List<ContentHolder> and has the @Autowired annotation
defined, Spring will try to inject all beans of type ContentHolder within the current ApplicationContext into
that attribute (instead of the <util:1list> declared in the configuration file), which will result in either the
unexpected dependencies being injected or Spring throwing an exception if no bean of type ContentHolder
was defined. So, for collection type injection, we have to explicitly instruct Spring to perform injection by
specifying the bean name, which the @Resource annotation supports.

A A combination of @Autowired and @Qualifier can be used to fulfill the same purpose, but it is always
preferable to use one annotation and not two. In the following code snippet, you can see the equivalent
configuration to inject a collection using its bean name by using @Autowired and @ualifier.

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
@Service("injectCollection")

public class CollectionInjection {

@Autowired
@ualifier("map")
private Map<String, Object> map;

Using Method Injection

Besides constructor and setter injection, another less frequently used DI feature that Spring provides is
Method Injection. Spring’s Method Injection capabilities come in two loosely related forms, lookup Method
Injection and Method Replacement. Lookup Method Injection provides another mechanism by which a
bean can obtain one of its dependencies. Method replacement allows you to replace the implementation of
any method on a bean arbitrarily, without having to change the original source code. To provide these two
features, Spring uses the dynamic bytecode enhancement capabilities of CGLIB.?

3cglib is a powerful, high-performance, and high-quality code generation library. It can extend Java classes and implement
interfaces at runtime. It is open source, and you can find the official repository at https://github.com/cglib.

84

https://github.com/cglib

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Lookup Method Injection

Lookup Method Injection was added to Spring in version 1.1 to overcome the problems encountered when
a bean depends on another bean with a different life cycle, specifically, when a singleton depends on a
nonsingleton. In this situation, both setter and constructor injection result in the singleton maintaining a
single instance of what should be a nonsingleton bean. In some cases, you will want to have the singleton
bean obtain a new instance of the nonsingleton every time it requires the bean in question.

Consider a scenario in which a LockOpener class provides the service of opening any locker. The
LockOpener class relies on a KeyHelper class for opening the locker, which was injected into LockOpener.
However, the design of the KeyHelper class involves some internal states that make it not suitable for reuse.
Every time the openLock () method is called, a new KeyHelper instance is required. In this case, LockOpener
will be a singleton. However, if we inject the KeyHelper class by using the normal mechanism, the same
instance of the KeyHelper class (which was instantiated when Spring performed the injection the first time)
will be reused. To make sure that a new instance of the KeyHelper instance is passed into the openLock()
method every time it is invoked, we need to use Lookup Method Injection.

Typically, you can achieve this by having the singleton bean implement the ApplicationContextAware
interface (we discuss this interface in the next chapter). Then, using the ApplicationContext instance, the
singleton bean can look up a new instance of the nonsingleton dependency every time it needs it. Lookup
Method Injection allows the singleton bean to declare that it requires a nonsingleton dependency and that it
will receive a new instance of the nonsingleton bean each time it needs to interact with it, without needing to
implement any Spring-specific interfaces.

Lookup Method Injection works by having your singleton declare a method, the lookup method,
which returns an instance of the nonsingleton bean. When you obtain a reference to the singleton in your
application, you are actually receiving a reference to a dynamically created subclass on which Spring has
implemented the lookup method. A typical implementation involves defining the lookup method, and thus
the bean class, as abstract. This prevents any strange errors from creeping in when you forget to configure the
Method Injection and you are working directly against the bean class with the empty method implementation
instead of the Spring-enhanced subclass. This topic is quite complex and is best shown by example.

In this example, we create one nonsingleton bean and two singleton beans that both implement the
same interface. One of the singletons obtains an instance of the nonsingleton bean by using “traditional”
setter injection; the other uses Method Injection. The following code sample depicts the Singer class, which
in this example is the type of the nonsingleton bean:

package com.apress.prospring5.ch3;

public class Singer {
private String lyric = "I played a quick game of chess with the salt
and pepper shaker";

public void sing() {
//commented because it pollutes the output
//System.out.println(lyric);

This class is decidedly unexciting, but it serves the purposes of this example perfectly. Next, you can see
the DemoBean interface, which is implemented by both of the singleton bean classes.

package com.apress.prospring5.ch3;
public interface DemoBean {
Singer getMySinger();
void doSomething();

85

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

This bean has two methods: getMySinger () and doSomething(). The sample application uses the
getMySinger () method to get a reference to the Singer instance and, in the case of the method lookup bean,
to perform the actual method lookup. The doSomething()method is a simple method that depends on the
Singer class to do its processing. The following code snippet shows the StandardLookupDemoBean class,
which uses setter injection to obtain an instance of the Singer class:

package com.apress.prospring5.ch3;

public class StandardLookupDemoBean
implements DemoBean {

private Singer mySinger;

public void setMySinger(Singer mySinger) {
this.mySinger = mySinger;
}

@0verride

public Singer getMySinger() {
return this.mySinger;

}

@0verride

public void doSomething() {
mySinger.sing();

}

This code should all look familiar, but notice that the doSomething() method uses the stored instance of
Singer to complete its processing. In the following code snippet, you can see the AbstractLookupDemoBean
class, which uses Method Injection to obtain an instance of the Singer class.

package com.apress.prospring5.ch3;

public abstract class AbstractLookupDemoBean
implements DemoBean {
public abstract Singer getMySinger();

@0verride
public void doSomething() {
getMySinger().sing();

Notice that the getMySinger () method is declared as abstract and that this method is called by the
doSomething() method to obtain a Singer instance. The Spring XML configuration for this example is
contained in a file named app-context-xml.xml and is shown here:

<beans ...>

<bean id="singer" class="com.apress.prospring5.ch3.Singer"
scope="prototype"/>

86

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

<bean id="abstractLookupBean"
class="com.apress.prospring5.ch3.AbstractLookupDemoBean">
<lookup-method name="getMySinger" bean="singer"/>

</bean>

<bean id="standardLookupBean"
class="com.apress.prospring5.ch3.StandardLookupDemoBean">
<property name="mySinger" ref="singer"/»>
</bean>
</beans>

The configuration for the singer and standardLookupBean beans should look familiar to you by now.
For abstract-LookupBean, you need to configure the lookup method by using the <lookup-method> tag. The
name attribute of the <lookup-method> tag tells Spring the name of the method on the bean that it should
override. This method must not accept any arguments, and the return type should be that of the bean
you want to return from the method. In this case, the method should return a class of type Singer, or its
subclasses. The bean attribute tells Spring which bean the lookup method should return. The following code
snippet shows the final piece of code for this example, which is the class containing the main() method used
to run the example:

package com.apress.prosprings.ch3;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.util.StopWatch;

public class LookupDemo {
public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

DemoBean abstractBean = ctx.getBean("abstractLookupBean",
DemoBean.class);

DemoBean standardBean = ctx.getBean("standardLookupBean",
DemoBean.class);

displayInfo("abstractLookupBean", abstractBean);
displayInfo("standardLookupBean", standardBean);

ctx.close();

}

public static void displayInfo(String beanName, DemoBean bean) {
Singer singer1l = bean.getMySinger();
Singer singer2 = bean.getMySinger();

System.out.println("" + beanName +
+ (singer1 == singer2));

: Singer Instances the Same?

87

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

StopWatch stopWatch = new StopWatch();

stopWatch.start("lookupDemo");

for (int x = 0; x < 100000; x++) {
Singer singer = bean.getMySinger();
singer.sing();

}
stopWatch.stop();

System.out.println("100000 gets took "
+ stopWatch.getTotalTimeMillis() + " ms");

In this code, you can see that the abstractLookupBean and the standardLookupBean from the
GenericXmlApplicationContext are retrieved and each reference is passed to the displayInfo() method.
The instantiation of the abstract class is supported only when using Lookup Method Injection, in which
Spring will use CGLIB to generate a subclass of the AbstractLookupDemoBean class that overrides the
method dynamically. The first part of the displayInfo() method creates two local variables of Singer type
and assigns them each a value by calling getMySinger () on the bean passed to it. Using these two variables,
it writes a message to the console indicating whether the two references point to the same object.

For the abstractLookupBean bean, a new instance of Singer should be retrieved for each call to
getMySinger (), so the references should not be the same.

For standardLookupBean, a single instance of Singer is passed to the bean by setter injection, and this
instance is stored and returned for every call to getMySinger (), so the two references should be the same.

A The StopWatch class used in the previous example is a utility class available with Spring. You'll find
StopWatch very useful when you need to perform simple performance tests and when you are testing your
applications.

The final part of the displayInfo() method runs a simple performance test to see which bean is
faster. Clearly, standardLookupBean should be faster because it returns the same instance each time, but it
is interesting to see the difference. We can now run the LookupDemo class for testing. Here is the output we
received from this example:

[abstractLookupBean]: Singer Instances the Same? false
100000 gets took 431 ms

[standardLookupBean]: Singer Instances the Same? true
100000 gets took 1 ms

As you can see, the Singer instances are, as expected, the same when we use standardLookupBean and
different when we use abstractLookupBean. There is a noticeable performance difference when you use
standardLookupBean, but that is to be expected.

Of course, there is an equivalent way to configure the beans presented earlier using annotations. The
singer bean must have an extra annotation to specify the prototype scope.

package com.apress.prospring5.ch3.annotated;

88

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

import org.springframework.context.annotation.Scope;
import org.springframework.stereotype.Component;

@Component ("singer)
@Scope("prototype")
public class Singer {
private String lyric = "I played a quick game of chess
with the salt and pepper shaker";

public void sing() {
// commented to avoid console pollution
//System.out.println(lyric);

The AbstractLookupDemoBean class is no longer an abstract class, and the method getMySinger () has

an empty body and is annotated with @Lookup that receives as an argument the name of the Singer bean.
The method body will be overridden, in the dynamically generated subclass.

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Lookup;
import org.springframework.stereotype.Component;

@Component ("abstractLookupBean")
public class AbstractLookupDemoBean implements DemoBean {
@Lookup("singer")
public Singer getMySinger() {
return null; // overriden dynamically
}

@verride
public void doSomething() {
getMySinger().sing();

The StandardLookupDemoBean class only must be annotated with @Component, and setMySinger must
be annotated with @Autowired and @Qualifier to inject the singer bean.

package com.apress.prospring5.ch3.annotated;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.stereotype.Component;

@Component ("standardLookupBean")
public class StandardLookupDemoBean implements DemoBean {

private Singer mySinger;

89

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

@Autowired

@ualifier("singer")

public void setMySinger(Singer mySinger) {
this.mySinger = mySinger;

}

@0verride

public Singer getMySinger() {
return this.mySinger;

}

@0verride

public void doSomething() {
mySinger.sing();

}

The configuration file, named app-context-annotated.xml, only must enable component scanning for
the package containing the annotated classes.

<beans ...>

<context:component-scan
base-package="com.apress.prospring5.ch3.annotated"/>
</beans>

The class used to execute the code is identical to class LookupDemo; the only difference is the XML file
used as an argument to create the GenericXmlApplicationContext object.

If we want to get rid of XML files totally, this can be done using a configuration class to enable
component scanning on the com.apress.prospring5.ch3.annotated package. And this class can be
declared right where you need it, meaning in this case inside the class being run to test the beans,
as shown here:

package com.apress.prospring5.ch3.config;

import com.apress.prospring5.ch3.annotated.DemoBean;

import com.apress.prospring5.ch3.annotated.Singer;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.support.GenericApplicationContext;

import org.springframework.util.StopWatch;

import java.util.Arrays;
public class LookupConfigDemo {

@Configuration

@ComponentScan(basePackages = {"com.apress.prospring5.ch3.annotated"})
public static class LookupConfig {}

90

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

public static void main(String... args) {
GenericApplicationContext ctx =
new AnnotationConfigApplicationContext(LookupConfig.class);

DemoBean abstractBean = ctx.getBean("abstractLookupBean",
DemoBean.class);
DemoBean standardBean
DemoBean.class);

ctx.getBean("standardLookupBean",

displayInfo("abstractLookupBean", abstractBean);
displayInfo("standardLookupBean", standardBean);

ctx.close();

}

public static void displayInfo(String beanName, DemoBean bean) {
// same implementation as before

Alternative configurations using annotations and Java configuration are covered in more detail in
Chapter 4.

Considerations for Lookup Method Injection

Lookup Method Injection is intended for use when you want to work with two beans of different life cycles.
Avoid the temptation to use Lookup Method Injection when the beans share the same life cycle, especially
if they are singletons. The output of running the previous example shows a noticeable difference in
performance between using Method Injection to obtain new instances of a dependency and using standard
DI to obtain a single instance of a dependency. Also, make sure you don’t use Lookup Method Injection
needlessly, even when you have beans of different life cycles.

Consider a situation in which you have three singletons that share a dependency in common.

You want each singleton to have its own instance of the dependency, so you create the dependency

as a nonsingleton, but you are happy with each singleton using the same instance of the collaborator
throughout its life. In this case, setter injection is the ideal solution; Lookup Method Injection just adds
unnecessary overhead.

When you are using Lookup Method Injection, there are a few design guidelines that you should keep
in mind when building your classes. In the earlier examples, we declared the lookup method in an interface.
The only reason we did this was we did not have to duplicate the displayInfo() method twice for two
different bean types. As mentioned earlier, generally you do not need to pollute a business interface with
unnecessary definitions that are used solely for IoC purposes. Another point is that although you don’t have
to make your lookup method abstract, doing so prevents you from forgetting to configure the lookup method
and then using a blank implementation by accident. Of course, this works only with XML configuration.
Annotation-based configuration forces an empty implementation of the method; otherwise, your bean
won't be created.

91

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Method Replacement

Although the Spring documentation classifies method replacement as a form of injection, it is different from
what you have seen so far. So far, we have used injection purely to supply beans with their collaborators. Using
method replacement, you can replace the implementation of any method on any beans arbitrarily without
having to change the source of the bean you are modifying. For example, you have a third-party library that
you use in your Spring application, and you need to change the logic of a certain method. However, you are
not able to change the source code because it was provided by a third party, so one solution is to use method
replacement to just replace the logic for that method with your own implementation.

Internally, you achieve this by creating a subclass of the bean class dynamically. You use CGLIB and
redirect calls to the method you want to replace to another bean that implements the MethodReplacer
interface. In the following code sample, you can see a simple bean that declares two overloads of the
formatMessage () method:

package com.apress.prospring5.ch3;

public class ReplacementTarget {
public String formatMessage(String msg) {
return "<h1>" + msg + "</h1>";
}

public String formatMessage(Object msg) {
return "<h1>" + msg + "</h1>";
}

You can replace any of the methods on the ReplacementTarget class by using Spring’s method
replacement functionality. In this example, we show you how to replace the formatMessage(String)
method, and we also compare the performance of the replaced method with that of the original.

To replace a method, you first need to create an implementation of the MethodReplacer interface; this is
shown in the following code sample:

package com.apress.prospring5.ch3;
import org.springframework.beans.factory.support.MethodReplacer;

import java.lang.reflect.Method;

public class FormatMessageReplacer
implements MethodReplacer {

@0verride
public Object reimplement(Object argo, Method method, Object... args)
throws Throwable {
if (isFormatMessageMethod(method)) {
String msg = (String) argso;
return "<h2>" + msg + "</h2>";
} else {
throw new IllegalArgumentException("Unable to reimplement method "
+ method.getName());

92

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

private boolean isFormatMessageMethod(Method method) {
if (method.getParameterTypes().length != 1) {
return false;
}

if (!("formatMessage".equals(method.getName()))) {
return false;
}

if (method.getReturnType() != String.class) {
return false;
}

if (method.getParameterTypes()[0] != String.class) {
return false;
}

return true;

The MethodReplacer interface has a single method, reimplement (), that you must implement.
Three arguments are passed to reimplement(): the bean on which the original method was invoked, a
Method instance that represents the method that is being overridden, and the array of arguments passed
to the method. The reimplement () method should return the result of your reimplemented logic, and,
obviously, the type of the return value should be compatible with the return type of the method you are
replacing. In the previous code sample, FormatMessageReplacer first checks to see whether the method
that is being overridden is the formatMessage(String) method; if so, it executes the replacement logic
(in this case, surrounding the message with <h2> and </h2>) and returns the formatted message to the
caller. It is not necessary to check whether the message is correct, but this can be useful if you are using a
few MethodReplacers with similar arguments. Using a check helps prevent a situation in which a different
MethodReplacer with compatible arguments and return types is used accidentally.

In the configuration sample listed next, you can see an ApplicationContext instance that defines two
beans of type ReplacementTarget; one has the formatMessage(String) method replaced, and the other
does not (the file is named app-context-xml.xml):

<beans ...>

<bean id="methodReplacer"
class="com.apress.prospring5.ch3.FormatMessageReplacer"/>

<bean id="replacementTarget"
class="com.apress.prospring5.ch3.ReplacementTarget">
<replaced-method name="formatMessage" replacer="methodReplacer">
<arg-type>String</arg-type>
</replaced-method>
</bean>

<bean id="standardTarget"

class="com.apress.prospring5.ch3.ReplacementTarget"/>
</beans>

93

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Asyou can see, the MethodReplacer implementation is declared as a bean in ApplicationContext.
You then use the <replaced-method> tag to replace the formatMessage(String) method on
replacementTargetBean. The name attribute of the <replaced-method> tag specifies the name of the
method to replace, and the replacer attribute is used to specify the name of the MethodReplacer bean that
we want to replace the method implementation. In cases where there are overloaded methods such as in the
ReplacementTarget class, you can use the <arg-type> tag to specify the method signature to match. The
<arg-type> tag supports pattern matching, so String is matched to java.lang.String and also to java.
lang.StringBuffer

The following code snippet shows a simple demo application that retrieves both the standardTarget
and replacement-Target beans from ApplicationContext, executes their formatMessage(String)
methods, and then runs a simple performance test to see which is faster.

package com.apress.prospring5.ch3;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.util.StopWatch;

public class MethodReplacementDemo {
public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

ReplacementTarget replacementTarget = (ReplacementTarget) ctx
.getBean("replacementTarget");

ReplacementTarget standardTarget = (ReplacementTarget) ctx
.getBean("standardTarget");

displayInfo(replacementTarget);
displayInfo(standardTarget);

ctx.close();

}

private static void displayInfo(ReplacementTarget target) {
System.out.println(target.formatMessage("Thanks for playing, try again!"));

StopWatch stopWatch = new StopWatch();
stopWatch.start("perfTest");

for (int x = 0; x < 1000000; x++) {
String out = target.formatMessage("No filter in my head");
//commented to not pollute the console
//System.out.println(out);

}
stopWatch.stop();

System.out.println("1000000 invocations took:
+ stopWatch.getTotalTimeMillis() + " ms");

94

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

You should be familiar with this code by now, so we won’t go into detail. On our machine, running this
example yields the following output:

<h2>Thanks for playing, try again!</h2>
1000000 invocations took: 188 ms

<h1>Thanks for playing, try again!</h1>
1000000 invocations took: 24 ms

As expected, the output from the replacementTarget bean reflects the overridden implementation
that the Method-Replacer provides. Interestingly, though, the dynamically replaced method is many times
slower than the statically defined method. Removing the check for a valid method in MethodReplacer made
a negligible difference across a number of executions, so we can conclude that most of the overhead is in the
CGLIB subclass.

When to Use Method Replacement

Method replacement can prove quite useful in a variety of circumstances, especially when you want to
override only a particular method for a single bean rather than all beans of the same type. With that said,
we still prefer using standard Java mechanisms for overriding methods rather than depending on runtime
bytecode enhancement.

If you are going to use method replacement as part of your application, we recommend you use
one Method-Replacer per method or group of overloaded methods. Avoid the temptation to use a single
MethodReplacer for lots of unrelated methods; this results in extra unnecessary String comparisons while
your code works out which method it should reimplement. We have found that performing simple checks
to ensure that MethodReplacer is working with the correct method is useful and doesn’t add too much
overhead to your code. If you are really concerned about performance, you can simply add a Boolean
property to your MethodReplacer, which allows you to turn the check on and off using dependency injection.

Understanding Bean Naming

Spring supports quite a complex bean-naming structure that allows you the flexibility to handle

many situations. Every bean must have at least one name that is unique within the containing
ApplicationContext. Spring follows a simple resolution process to determine what name is used for the
bean. If you give the <bean> tag an id attribute, the value of that attribute is used as the name. If no id
attribute is specified, Spring looks for a name attribute, and if one is defined, it uses the first name defined
in the name attribute. (We say the first name because it is possible to define multiple names within the name
attribute; this is covered in more detail shortly.) If neither the id nor the name attribute is specified, Spring
uses the bean’s class name as the name, provided, of course, that no other bean is using the same class
name. If multiple beans of the same type without an ID or name are declared, Spring will throw an exception
(of type org. springframework.beans.factory.NoSuchBeanDefinitionException) on injection during
ApplicationContext initialization. The following configuration sample configuration depicts all three
naming schemes (app-context-01.xml):

<beans ...>
<bean id="string1" class="java.lang.String"/>
<bean name="string2" class="java.lang.String"/>
<bean class="java.lang.String"/>

</beans>

95

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Each of these approaches is equally valid from a technical point of view, but which is the best choice
for your application? To start with, avoid using the automatic name by class behavior. This doesn’t allow you
much flexibility to define multiple beans of the same type, and it is much better to define your own names.
That way, if Spring changes the default behavior in the future, your application continues to work. If you
want to see how Spring is naming the beans, using the previous configuration, run the following example:

package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;
public class BeanNamingTest {
public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-01.xml");

ctx.refresh();

Map<String,String> beans = ctx.getBeansOfType(String.class);

beans.entrySet().stream().forEach(b -> System.out.println(b.getKey()));

ctx.close();

ctx.getBeansOfType(String.class) is used to obtain a map with all beans of type String and their
IDs that exist within ApplicationContext. The keys of the map are the bean IDs that are printed using the
lambda expression in the previous code. With the mentioned configuration, this is the output:

stringl
string2
java.lang.String#0

The last line in the previous output sample is the ID that Spring gave to the bean of type String that
was not named explicitly in the configuration. If the configuration were modified to add another String
unnamed bean, it would look like this:

<beans ...>
<bean id="string1" class="java.lang.String"/>
<bean name="string2" class="java.lang.String"/>
<bean class="java.lang.String"/>
<bean class="java.lang.String"/>

</beans>

The output would change to the following:
stringl
string2

java.lang.Stringi#0
java.lang.String#1

96

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Prior to Spring 3.1, the id attribute is the same as the XML identity (that is, xsd: ID), which places a
restriction in the characters you can use. As of Spring 3.1, Spring uses xsd: String for the id attribute, so the
previous restriction on the characters that you can use is gone. However, Spring will continue to ensure that
the id is unique across the entire ApplicationContext. As a general practice, you should give your bean
a name by using the id attribute and then associate the bean with other names by using name aliasing, as
discussed in the next section.

Bean Name Aliasing

Spring allows a bean to have more than one name. You can achieve this by specifying a space-, comma-, or
semicolon-separated list of names in the name attribute of the bean’s <bean> tag. You can do this in place
of, or in conjunction with, the id attribute. Besides using the name attribute, you can use the <alias> tag
for defining aliases for Spring bean names. The following configuration sample shows a simple <bean>
configuration that defines multiple names for a single bean (app-context-02.xml):

<beans ...>
<bean id="john" name="john johnny,jonathan;jim" class="java.lang.String"/>
<alias name="john" alias="ion"/>

</beans>

As you can see, we have defined six names: one using the id attribute and the other four as a list using
all allowed bean name delimiters in the name attribute (this is just for demonstration purposes and is not
recommended for real-life development). In real-life development, it’s recommended you standardize on
the delimiter to use for separating bean names’ declarations within your application. One more alias was
defined using the <alias> tag. The following code sample depicts a Java routine that grabs the same bean
from the ApplicationContext instance six times using different names and verifies that they are the same
bean. Also, it makes use of the previously introduced ctx.getBeansOfType(..) method to make sure there
is only one String bean in the context.

package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;
import java.util.Map;
public class BeanNameAliasing {
public static void main(String... args) {

GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-02.xml");

ctx.refresh();

String s1 = (String) ctx.getBean("john");
String s2 = (String) ctx.getBean("jon");
String s3 = (String) ctx.getBean("johnny");
String s4 = (String) ctx.getBean("jonathan");
String s5 = (String) ctx.getBean("jim");
String s6 = (String) ctx.getBean("ion");

System.out.println((s1 == s2));
System.out.println((s2 == s3));
System.out.println((s3 == s4));

97

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

System.out.println((s4 == s5));
System.out.println((s5 == s6));

Map<String,String> beans = ctx.getBeansOfType(String.class);

if(beans.size() == 1) {
System.out.println("There is only one String bean.");
}

ctx.close();

Executing the previous code will print true five times and the “There is only one String bean” text,
verifying that the beans accessed using different names are, in fact, the same bean.

You can retrieve a list of the bean aliases by calling ApplicationContext.getAliases(String) and
passing in any of the beans’ names or IDs. The list of aliases, other than the one you specified, will then be
returned as a String array.

It was mentioned before that prior to Spring 3.1 the id attribute is the same as the XML identity (that
is, xsd: ID), which means bean IDs could not contain special characters like space-, comma-, or semicolon.
Starting with Spring 3.1, xsd: String is used for the id attribute, so the previous restriction on the characters
that you can use is gone. However, this does not mean you can use the following:

<bean name="jon johnny,jonathan;jim" class="java.lang.String"/>

instead of this:
<bean id="jon johnny,jonathan;jim" class="java.lang.String"/>

The name and id attribute values are treated differently by the Spring IoC. You can retrieve a list of the
bean aliases by calling ApplicationContext.getAliases(String) and passing in any one of the beans’
names or IDs. The list of aliases, other than the one you specified, will then be returned as a String array.
This means, in the first case, jon will become the id, and the rest of values will become aliases.

In the second case, when the same string is used as a value for the id attribute, the full string becomes a
unique identifier for the bean. This can be easily tested with a configuration like the one shown here (found

in file app-context-03.xml):

<beans ...>
<bean name="jon johnny,jonathan;jim" class="java.lang.String"/>

<bean id="jon johnny,jonathan;jim" class="java.lang.String"/>
</beans>

and a main class like the one shown in the following code sample:
package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.Arrays;
import java.util.Map;

98

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

public class BeanCrazyNaming {
public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-03.xml");
ctx.refresh();

Map<String,String> beans = ctx.getBeansOfType(String.class);
beans.entrySet().stream().forEach(b ->

System.out.println("id: " + b.getKey() +

"\n aliases: " + Arrays.toString(ctx.getAliases(b.getKey())) +"\n");
D;
ctx.close();
}
}
When run, this will produce the following output:
id: jon

aliases: jonathan, jim, johnny

id: jon johnny,jonathan;jim
aliases:

As you can see, the map with String beans contains two beans, one with the jon unique identifier and
three aliases and one with the jon johnny, jonathan;jimunique identifier and no aliases.

Bean name aliasing is a strange beast because it is not something you tend to use when you are building
a new application. If you are going to have many other beans inject another bean, they may as well use the
same name to access that bean. However, as your application goes into production and maintenance work
gets carried out, modifications are made, and so on, bean name aliasing becomes more useful.

Consider the following scenario: you have an application in which 50 beans, configured using
Spring, all require an implementation of the Foo interface. Twenty-five of the beans use the StandardFoo
implementation with the bean name standardFoo, and the other 25 use the SuperFoo implementation with
the superFoo bean name. Six months after you put the application into production, you decide to move the
first 25 beans to the SuperFoo implementation. To do this, you have three options.

e The firstis to change the implementation class of the standardFoo bean to SuperFoo.
The drawback of this approach is that you have two instances of the SuperFoo class
lying around when you really need only one. In addition, you now have two beans to
make changes to when the configuration changes.

e The second option is to update the injection configuration for the 25 beans that are
changing, which changes the beans’ names from standardFoo to superFoo. This
approach is not the most elegant way to proceed. You could perform a find and
replace, but then rolling back your changes when management isn’t happy means
retrieving an old version of your configuration from your version control system.

e The third, and most ideal, approach is to remove (or comment out) the definition
for the standardFoo bean and make standardFoo an alias to superFoo. This change
requires minimal effort, and restoring the system to its previous configuration is just
as simple.

99

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Bean Naming with Annotation Configurations

When bean definitions are declared using annotations, bean naming is a little different than XML, and
there are more interesting things you can do. Let’s start with the basics, though: declaring bean definitions
using stereotype annotations (@Component and all its specializations such as Service, Repository, and
Controller).

Consider the following Singer class:

package com.apress.prospring5.ch3.annotated;
import org.springframework.stereotype.Component;

@Component
public class Singer {

private String lyric = "We found a message in a bottle we were drinking";

public void sing() {
System.out.println(lyric);
}

This class contains the declaration of a singleton bean of type Singer written using the @Component
annotation. The @Component annotation does not have any arguments, so the Spring IoC container decides
a unique identifier for the bean. The convention followed in this case is to name the bean, as the class itself,
but downcasing the first letter. This means that the bean will be named singer. This convention is respected
by other stereotype annotations as well. To test this, the following class can be used:

package com.apress.prospring5.ch3.annotated;
import org.springframework.context.support.GenericXmlApplicationContext;
import java.util.Arrays;
import java.util.Map;
public class AnnotatedBeanNaming {
public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotated.xml");

ctx.refresh();

Map<String,Singer> beans =
ctx.getBeansOfType(Singer.class);

beans.entrySet().stream().forEach(b ->

System.out.println("id: " + b.getKey()));
ctx.close();

100

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

The app-context-annotated.xml configuration file contains only a component scanning declaration
for com.apress.prospring5.ch3.annotated so it won’t be shown again. When the previous class is run, the
following output is printed in the console:

id: singer

Thus, using @Component ("singer") is equivalent to annotating the Singer class with @omponent. If you
want to name the bean differently, the @Component annotation must receive the bean name as an argument.

package com.apress.prospring5.ch3.annotated;
import org.springframework.stereotype.Component;

@Component (" johnMayer™)
public class Singer {

private String lyric = "Down there below us, under the clouds";

public void sing() {
System.out.println(lyric);
}

As expected, if AnnotatedBeanNaming is run, the following output is produced:
id: johnMayer

But, what about aliases? As the argument for the @Component annotation becomes the unique
identifier for the bean, bean aliasing is not possible when declaring the bean in this way. This is where Java
configuration comes to the rescue. Let’s consider the following class, which contains a static configuration
class defined within it (yes, Spring allows this, and we are being practical here, keeping all the logic in the
same file):

package com.apress.prospring5.ch3.config;

import com.apress.prospring5.ch3.annotated.Singer;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.support.GenericApplicationContext;

import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.Arrays;
import java.util.Map;

public class AliasConfigDemo {

@Configuration

public static class AliasBeanConfig {
@Bean
public Singer singer(){

101

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

return new Singer();

}

public static void main(String... args) {
GenericApplicationContext ctx =
new AnnotationConfigApplicationContext(AliasBeanConfig.class);

Map<String,Singer> beans = ctx.getBeansOfType(Singer.class);
beans.entrySet().stream().forEach(b ->
System.out.println("id: " + b.getKey()
+ "\n aliases: "
+ Arrays.toString(ctx.getAliases(b.getKey())) + "\n")

)5

ctx.close();

This class contains a bean definition for a bean of type Singer declared by annotating the singer ()
method with the @Bean annotation. When no argument is provided for this annotation, the bean unique
identifier, its id, becomes the method name. Thus, when the previous class is run, we get the following
output:

id: singer
aliases:

To declare aliases, we make use of the name attribute of the @Bean annotation. This attribute is the
default one for this annotation, which means in this case declaring the bean by annotating the singer()
method with @Bean, @Bean("singer"), or @Bean(name="singer") will lead to the same result. The Spring IoC
container will create a bean of type Singer and with the singer ID.

If the value for this attribute is a string containing an alias-specific separator (space, comma,
semicolon), the string will become the ID of the bean. But, if the value for it is an array of strings, the first one
becomes the id and the others become aliases. Modify the bean configuration as shown here:

@Configuration

public static class AliasBeanConfig {

@Bean(name={"johnMayer","john","jonathan","johnny"})
public Singer singer(){

return new Singer();
}

}

When running the AliasConfigDemo class, the output will change to the following:

id: johnMayer
aliases: jonathan, johnny, john

102

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

When it comes to aliases, in Spring 4.2 the @AliasFor annotation was introduced. This annotation is
used to declare aliases for annotation attributes, and most Spring annotations make use of it. For example,
the @Bean annotation has two attributes, name and value, which are declared as aliases for each other. Using
this annotation, they are explicit aliases. The following code snippet is a snapshot of the @Bean annotation
code and is taken from the official Spring GitHub repository. The code and documentation that are not
relevant at the moment were skipped:*

package org.springframework.context.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.springframework.core.annotation.AliasFor;

@Target({ElementType.METHOD, ElementType.ANNOTATION TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Bean {
@AliasFor("name")
String value() default {};

@AliasFor("value")
String name() default {};

Here’s an example. Declare an annotation called @Award that can be used on Singer instances, of
course.

package com.apress.prospring5.ch3.annotated;
import org.springframework.core.annotation.AliasFor;
public @interface Award {

@AliasFor("prize")
String value() default {};

@AliasFor("value")
String prize() default {};

*You can look at the full implementation here: https://github.com/spring-projects/spring-framework/blob/
master/spring-core/src/main/java/org/springframework/core/annotation/AliasFor.java.

103

https://github.com/spring-projects/spring-framework/blob/master/spring-core/src/main/java/org/springframework/core/annotation/AliasFor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-core/src/main/java/org/springframework/core/annotation/AliasFor.java

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Using this annotation, you can modify the Singer class like this:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Component;

@Component (" johnMayer")

@Award(prize = {"grammy", "platinum disk"})
public class Singer {

private String lyric = "We found a message in a bottle we were drinking";

public void sing() {
System.out.println(lyric);
}

The previous annotation is equivalent to @ward(value={"grammy", "platinum disk"}) and to
@Award({"grammy", "platinum disk"}).

But something more interesting can be done with the @A1iasFor annotation: aliases for meta-annotation
attributes can be declared. In the following code snippet, we declare a specialization for the @Award
annotation that declares an attribute named name, which is an alias for the value attribute of the @Award
annotation. And we do this because we want to make it obvious that the argument is a unique bean identifier.

package com.apress.prospring5.ch3.annotated;
import org.springframework.core.annotation.AliasFor;

@Award
public @interface Trophy {

@AliasFor(annotation = Award.class, attribute = "value")
String name() default {};
Thus, instead of writing the Singer class like this:
package com.apress.prospring5.ch3.annotated;
import org.springframework.stereotype.Component;
@Component (" johnMayer")

@Award(value={"grammy", "platinum disk"})
public class Singer {

private String lyric = "We found a message in a bottle we were drinking";

public void sing() {
System.out.println(lyric);
}

104

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

we can write it like this:
package com.apress.prospring5.ch3.annotated;

@Component ("johnMayer")
@Trophy(name={"grammy", "platinum disk"})
public class Singer {

private String lyric = "We found a message in a bottle we were drinking";

public void sing() {
System.out.println(lyric);
}

A Creating aliases for attributes of annotations using yet another annotation @A1iasFor does have
limitations. @AliasFor cannot be used on any stereotype annotations (@Component and its specializations).

The reason is that the special handling of these value attributes was in place years before @AliasFor was
invented. Consequently, because of backward compatibility issues, it is simply not possible to use @AliasFor
with such value attributes. When writing code to do just so (aliasing value attributes in stereotype annotations),
no compile errors will be shown to you, and the code might even run, but any argument provided for the alias
will be ignored. The same goes for the

@ualifier annotation as well.

Understanding Bean Instantiation Mode

By default, all beans in Spring are singletons. This means Spring maintains a single instance of the bean, all
dependent objects use the same instance, and all calls to ApplicationContext.getBean() return the same
instance. We demonstrated this in the previous section, where we were able to use identity comparison (==)
rather than the equals () comparison to check whether the beans were the same.

The term singleton is used interchangeably in Java to refer to two distinct concepts: an object that has
a single instance within the application and the Singleton design pattern. We refer to the first concept as
a singleton and to the Singleton pattern as Singleton. The Singleton design pattern was popularized in the
seminal Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et al. (Addison-Wesley,
1994). The problem arises when people confuse the need for singleton instances with the need to apply the
Singleton pattern. The following code snippet shows a typical implementation of the Singleton pattern in Java:

package com.apress.prospring5.ch3;

public class Singleton {
private static Singleton instance;

static {
instance = new Singleton();
}

public static Singleton getInstance() {
return instance;
}

105

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

This pattern achieves its goal of allowing you to maintain and access a single instance of a class
throughout your application, but it does so at the expense of increased coupling. Your application code must
always have explicit knowledge of the Singleton class in order to obtain the instance—completely removing
the ability to code to interfaces.

In reality, the Singleton pattern is actually two patterns in one. The first, and desired, pattern involves
maintenance of a single instance of an object. The second, and less desirable, is a pattern for object lookup
that completely removes the possibility of using interfaces. Using the Singleton pattern also makes it difficult
to swap out implementations arbitrarily because most objects that require the Singleton instance access
the Singleton object directly. This can cause all kinds of headaches when you are trying to unit test your
application because you are unable to replace the Singleton with a mock for testing purposes.

Fortunately, with Spring you can take advantage of the singleton instantiation model without having to
work around the Singleton design pattern. All beans in Spring are, by default, created as Singleton instances,
and Spring uses the same instances to fulfill all requests for that bean. Of course, Spring is not just limited
to the use of the Singleton instance; it can still create a new instance of the bean to satisfy every dependency
and every call to getBean(). It does all of this without any impact on your application code, and for this
reason, we like to refer to Spring as being instantiation mode agnostic. This is a powerful concept. If you start
off with an object that is a singleton but then discover it is not really suited to multithread access, you can
change it to a nonsingleton (prototype) without affecting any of your application code.

A Although changing the instantiation mode of your bean won't affect your application code, it does cause
some problems if you rely on Spring’s life-cycle interfaces. We cover this in more detail in Chapter 4.

Changing the instantiation mode from singleton to nonsingleton is simple. The following configuration
snippets present how this is done in XML and using annotations:

<!-- app-context-xml.xml -->
<beans ...>
<bean id="nonSingleton" class="com.apress.prospring5.ch3.annotated.Singer"
scope="prototype" c:_0="John Mayer"/>
</beans>

\\Singer.java
package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Scope;
import org.springframework.stereotype.Component;

@Component("nonSingleton")
@Scope("prototype")
public class Singer {

private String name = "unknown";

public Singer(@Value("John Mayer") String name) {
this.name = name;
}

106

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

In the XML configuration, the Singer class can be used as a type for a bean declared in XML.
If component scanning is not enabled, the annotations in the class will simply be ignored.

Asyou can see, the only difference between this bean declaration and any of the declarations you have
seen so far is that we add the scope attribute and set the value to prototype. Spring defaults the scope to the
value singleton. The prototype scope instructs Spring to instantiate a new instance of the bean every time a
bean instance is requested by the application. The following code snippet shows the effect this setting has on
your application:

package com.apress.prospring5.ch3;

import com.apress.prosprings.ch3.annotated.Singer;
import org.springframework.context.support.GenericXmlApplicationContext;
public class NonSingletonDemo {
public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

Singer singerl = ctx.getBean("nonSingleton", Singer.class);
Singer singer2 = ctx.getBean("nonSingleton", Singer.class);

System.out.println("Identity Equal?: " + (singerl ==singer2));
System.out.println("Value Equal:? " + singeri.equals(singer2));
System.out.println(singer1);
System.out.println(singer2);

ctx.close();

Running this example gives you the following output:

Identity Equal?: false
Value Equal:? false
John Mayer

John Mayer

You can see from this that although the values of the two String objects are clearly equal, the identities
are not, even though both instances were retrieved using the same bean name.

Choosing an Instantiation Mode

In most scenarios, it is quite easy to see which instantiation mode is suitable. Typically, you will find
that singleton is the default mode for your beans. In general, singletons should be used in the following
scenarios:

e Shared object with no state: You have an object that maintains no state and has many
dependent objects. Because you do not need synchronization if there is no state, you
do not need to create a new instance of the bean each time a dependent object needs
to use it for some processing.

107

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

e Shared object with read-only state: This is similar to the previous point, but you have
some read-only state. In this case, you still do not need synchronization, so creating
an instance to satisfy each request for the bean is just adding overhead.

e Shared object with shared state: If you have a bean that has state that must be shared,
singleton is the ideal choice. In this case, ensure that your synchronization for state
writes is as granular as possible.

e High-throughput objects with writable state: If you have a bean that is used a great
deal in your application, you may find that keeping a singleton and synchronizing
all write access to the bean state allows for better performance than constantly
creating hundreds of instances of the bean. When using this approach, try to
keep the synchronization as granular as possible without sacrificing consistency.
You will find that this approach is particularly useful when your application creates
a large number of instances over a long period of time, when your shared object
has only a small amount of writable state, or when the instantiation of a new instance
is expensive.

You should consider using nonsingletons in the following scenarios:

e Objects with writable state: If you have a bean that has a lot of writable state, you
may find that the cost of synchronization is greater than the cost of creating a new
instance to handle each request from a dependent object.

e Objects with private state: Some dependent objects need a bean that has private
state so that they can conduct their processing separately from other objects that
depend on that bean. In this case, singleton is clearly not suitable, and you should
use nonsingleton.

The main positive you gain from Spring’s instantiation management is that your applications can
immediately benefit from the lower memory usage associated with singletons, with very little effort on your
part. Then, if you find that singleton mode does not meet the needs of your application, it is a trivial task to
modify your configuration to use non-singleton mode.

Implementing Bean Scopes

In addition to the singleton and prototype scopes, other scopes exist when defining a Spring bean for
more specific purposes. You can also implement your own custom scope and register it in Spring’s
ApplicationContext. The following bean scopes are supported as of version 4:

e Singleton: The default singleton scope. Only one object will be created per Spring IoC
container.

e Prototype: A new instance will be created by Spring when requested by the
application.

e Request: For web application use. When using Spring MVC for web applications,
beans with request scope will be instantiated for every HTTP request and then
destroyed when the request is completed.

e Session: For web application use. When using Spring MVC for web applications,
beans with session scope will be instantiated for every HTTP session and then
destroyed when the session is over.

e Global session: For portlet-based web applications. The global session scope beans can
be shared among all portlets within the same Spring MVC-powered portal application.

108

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

e Thread: A new bean instance will be created by Spring when requested by a new
thread, while for the same thread, the same bean instance will be returned. Note that
this scope is not registered by default.

e Custom: Custom bean scope that can be created by implementing the interface
org.springframework.beans.factory.config.Scope and registering the custom
scope in Spring’s configuration (for XML, use the class org. springframework.
beans.factory.config.CustomScopeConfigurer).

Resolving Dependencies

During normal operation, Spring is able to resolve dependencies by simply looking at your configuration
file or annotations in your classes. In this way, Spring can ensure that each bean is configured in the correct
order so that each bean has its dependencies correctly configured. If Spring did not perform this and just
created the beans and configured them in any order, a bean could be created and configured before its
dependencies. This is obviously not what you want and would cause all sorts of problems within your
application.

Unfortunately, Spring is not aware of any dependencies that exist between beans in your code that are
not specified in the configuration. For instance, take one bean, called johnMayer, of type Singer, which
obtains an instance of another bean, called gopher, of type Guitar using ctx.getBean() and uses it when
the johnMayer.sing() method is called. In this method, you get an instance of type Guitar by calling
ctx.getBean("gopher"), without asking Spring to inject the dependency for you. In this case, Spring is
unaware that johnMayer depends on gopher, and, as a result, it may instantiate johnMayer before gopher.
You can provide Spring with additional information about your bean dependencies using the depends-on
attribute of the <bean> tag. The following configuration snippet (contained in a file named app-context-01.xml)
shows how the scenario for johnMayer and gopher would be configured:
<beans ...">

<bean id="johnMayer" class="com.apress.prospring5.ch3.xml.Singer"

depends-on="gopher"/>

<bean id="gopher" class="com.apress.prospring5.ch3.xml.Guitar"/>

</beans>

In this configuration, we are asserting that bean johnMayer depends on bean gopher. Spring should take
this into consideration when instantiating the beans and ensure that gopher is created before johnMayer.
To do this, though, johnMayer needs to access ApplicationContext. Thus, we also have to tell Spring to
inject this reference, so when the johnMayer.sing() method will be called, it can be used to procure the
gopher bean. This is done by making the Singer bean implement the ApplicationContextAware interface.
This is a Spring-specific interface that forces an implementation of a setter for an ApplicationContext
object. It is automatically detected by the Spring IoC container, and the ApplicationContext that the bean
is created in is injected into it. This is done after the constructor of the bean is called, so obviously using
ApplicationContext in the constructor will lead to a Nul1PointerException. You can see the code of the
Singer class here:

package com.apress.prospring5.ch3.xml;
import org.springframework.beans.BeansException;

import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;

109

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

public class Singer implements ApplicationContextAware {
ApplicationContext ctx;
@0verride
public void setApplicationContext(

ApplicationContext applicationContext) throws BeansException {
this.ctx = applicationContext;

}
private Guitar guitar;

public Singer(){

public void sing() {
guitar = ctx.getBean("gopher", Guitar.class);
guitar.sing();

The Guitar class is quite simple; it contains only the sing method and is shown here:
package com.apress.prospring5.ch3.xml;

public class Guitar {

public void sing(){
System.out.println("Cm Eb Fm Ab Bb");
}

To test this example, you can use the following class:
package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;
public class DependsOnDemo {
public static void main(String... args) {
GenericXmlApplicationContext
ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-01.xml");

ctx.refresh();

Singer johnMayer = ctx.getBean("johnMayer", Singer.class);
johnMayer.sing();

ctx.close();

110

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

Of course, there is an annotation configuration equivalent to the previous XML configuration. Singer
and Guitar must be declared as beans using one of the stereotype annotations (in this case @Component will
be used). The novelty here is the @ependsOn annotation, which is placed on the Singer class. This is the
equivalent of the depends-on attribute from the XML configuration.

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.BeansException;

import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.DependsOn;
import org.springframework.stereotype.Component;

@Component ("johnMayer™")
@DependsOn("gopher")
public class Singer implements ApplicationContextAware{

ApplicationContext applicationContext;

@0verride public void setApplicationContext(ApplicationContext
applicationContext) throws BeansException {
this.applicationContext = applicationContext;

}
private Guitar guitar;

public Singer(){
}

public void sing() {
guitar = applicationContext.getBean("gopher", Guitar.class);
guitar.sing();

All you have to do now is enable component scanning and then use, in the DependsOnDemo class,
application- context-02.xml, to create ApplicationContext.

<!-- application-context-02.xml -->
<beans...>
<context:component-scan
base-package="com.apress.prospring5.ch3.annotated"/>
</beans>

The example will run, and the output will be “Cm Eb Fm Ab Bb”

When developing your applications, avoid designing them to use this feature; instead, define your
dependencies by means of setter and constructor injection contracts. However, if you are integrating Spring
with legacy code, you may find that the dependencies defined in the code require you to provide extra
information to the Spring Framework.

111

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Autowiring Your Bean

Spring supports five modes for autowiring.

e byName: When using byName autowiring, Spring attempts to wire each property to a
bean of the same name. So, if the target bean has a property named foo and a foo
bean is defined in ApplicationContext, the foo bean is assigned to the foo property
of the target.

e byType: When using byType autowiring, Spring attempts to wire each of the
properties on the target bean by automatically using a bean of the same type in
ApplicationContext.

e constructor: This functions just like by Type wiring, except that it uses constructors
rather than setters to perform the injection. Spring attempts to match the
greatest numbers of arguments it can in the constructor. So, if your bean has two
constructors, one that accepts a String and one that accepts String and an Integer,
and you have both a String and an Integer bean in your ApplicationContext,
Spring uses the two-argument constructor.

e default: Spring will choose between the constructor and byType modes
automatically. If your bean has a default (no-arguments) constructor, Spring uses
byType; otherwise, it uses constructor.

e no: This is the default.

So, if you have a property of type String on the target bean and a bean of type String in
ApplicationContext, then Spring wires the String bean to the target bean’s String property. If you have
more than one bean of the same type, in this case String, in the same ApplicationContext instance,
then Spring is unable to decide which one to use for the autowiring and throws an exception (of type org.
springframework.beans.factory.NoSuchBeanDefinitionException).

The following configuration snippet shows a simple configuration that autowires three beans of the
same type by using each of the modes (app-context-03.xml):

<beans ...>

<bean id="fooOne" class="com.apress.prospring5.ch3.xml.Foo"/>
<bean id="barOne" class="com.apress.prospring5.ch3.xml.Bar"/>

<bean id="targetByName" autowire="byName"
class="com.apress.prospring5.ch3.xml.Target" lazy-init="true"/>

<bean id="targetByType" autowire="byType"
class="com.apress.prospring5.ch3.xml.Target" lazy-init="true"/>

<bean id="targetConstructor" autowire="constructor"
class="com.apress.prospring5.ch3.xml.Target" lazy-init="true"/>

</beans>

This configuration should look familiar to you now. Foo and Bar are empty classes. Notice that each of
the Target beans has a different value for the autowire attribute. Moreover, the lazy-init attribute is set to
true to inform Spring to instantiate the bean only when it is first requested, rather than at startup, so that
we can output the result in the correct place in the testing program. The following code sample shows a
simple Java application that retrieves each of the Target beans from ApplicationContext:

112

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;

public class Target {
private Foo fooOne;
private Foo fooTwo;
private Bar bar;

public Target() {
}

public Target(Foo foo) {
System.out.println("Target(Foo) called");
}

public Target(Foo foo, Bar bar) {
System.out.println("Target(Foo, Bar) called");
}

public void setFooOne(Foo fooOne) {
this.fooOne = fooOne;
System.out.println("Property fooOne set");
}

public void setFooTwo(Foo foo) {
this.fooTwo = foo;
System.out.println("Property fooTwo set");

}

public void setBar(Bar bar) {
this.bar = bar;
System.out.println("Property bar set");
}

public static void main(String... args) {
GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-03.xml");
ctx.refresh();

Target t = null;

System.out.println("Using byName:\n");
t = (Target) ctx.getBean("targetByName");

System.out.println("\nUsing byType:\n");
t = (Target) ctx.getBean("targetByType");

System.out.println("\nUsing constructor:\n");
t = (Target) ctx.getBean("targetConstructor");

ctx.close();

113

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

In this code, you can see that the Target class has three constructors: a no-argument constructor, a
constructor that accepts a Foo instance, and a constructor that accepts a Foo and a Bar instance. In addition
to these constructors, the Target bean has three properties: two of type Foo and one of type Bar. Each of
these properties and constructors writes a message to console output when it is called. The main() method
simply retrieves each of the Target beans declared in ApplicationContext, triggering the autowire process.
Here is the output from running this example:

Using byName:
Property fooOne set
Using byType:

Property bar set
Property fooOne set
Property fooTwo set

Using constructor:
Target(Foo, Bar) called

From the output, you can see that when Spring uses byName, the only property that is set is foo because
this is the only property with a corresponding bean entry in the configuration file. When using byType,
Spring sets the value of all three properties. The fooOne and fooTwo properties are set by the fooOne bean,
and the bar property is set by the barOne bean. When using a constructor, Spring uses the two-argument
constructor, because Spring can provide beans for both arguments and does not need to fall back to another
constructor.

When autowiring by type, things gets complicated when bean types are related, and exceptions are
thrown when you have more classes that implement the same interface and the property requiring to be
autowired specifies the interface as the type, because Spring does not know which bean to inject. To create
such a scenario, we'll transform Foo into an interface and declare two bean type implementing it, each with
its bean declaration. Let’s keep the default configuration as well, no extra naming.

package com.apress.prospring5.ch3.xml.complicated;
public interface Foo {

// empty interface, used as a marker interface
}

public class FooImplOne implements Foo {

}

public class FooImplOne implements Foo {

}

If we were to add a new configuration file, named app-context-04.xml, it would contain the following
configuration:

<beans ...>

<bean id="fooOne"
class="com.apress.prospring5.ch3.xml.complicated.FooImplOne"/>

114

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

<bean id="fooTwo"
class="com.apress.prospring5.ch3.xml.complicated.FooImplOne"/>

<bean id="bar" class="com.apress.prospring5.ch3.xml.Bar"/>

<bean id="targetByType" autowire="byType"
class="com.apress.prospring5.ch3.xml.complicated.CTarget"
lazy-init="true"/>

</beans>

For this more simple example, we also introduce the CTarget class. This is identical with the recently
introduced Target class; only the main() method differs. The code snippet is depicted here:

package com.apress.prospring5.ch3.xml.complicated;

import com.apress.prosprings.ch3.xml.*;
import org.springframework.context.support.GenericXmlApplicationContext;

public class CTarget {

public static void main(String... args) {

GenericXmlApplicationContext
ctx = new GenericXmlApplicationContext();

ctx.load("classpath:spring/app-context-04.xml");
ctx.refresh();
System.out.println("\nUsing byType:\n");
(Target t = (CTarget) ctx.getBean("targetByType");
ctx.close();

}

Running the previous class produces the following output:
Using byType:

Exception in thread "main"
org.springframework.beans.factory.UnsatisfiedDependencyException:
Error creating bean with name 'targetByType' defined in class path

resource spring/app-context-04.xml:

Unsatisfied dependency expressed through bean property 'foo';

nested exception is

org.springframework.beans.factory.NoUniqueBeanDefinitionException:
No qualifying bean of type

'com.apress.prospring5.ch3.xml.complicated.Foo' available:

expected single matching bean but found 2: fooOne,fooTwo

115

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

The console output is way bigger, but the first lines in the previous output reveal the problem
in quite a readable manner. When Spring does not know what bean to autowire, it throws an
UnsatisfiedDependencyException with an explicit message. It tells you what beans were found but that it
cannot choose which to use where. There are two ways to fix this problem. The first way is to use the primary
attribute in the bean definition that you want Spring to consider first for autowiring and set true as its value.

<beans ...>

<bean id="fooOne"
class="com.apress.prospring5.ch3.xml.complicated.FooImpl1"
primary="true"/>

<bean id="fooTwo"
class="com.apress.prospring5.ch3.xml.complicated.FooImpl2"/>

<bean id="bar" class="com.apress.prospring5.ch3.xml.Bar"/>

<bean id="targetByType" autowire="byType"
class="com.apress.prospring5.ch3.xml.complicated.CTarget"
lazy-init="true"/>

</beans>

So, if the configuration is modified as presented before, when running the example, the following
output will be printed:

Using byType:

Property bar set
Property fooOne set
Property fooTwo set

So, it’s all back to normal. But still, the primary attribute is a solution only when there are just two
bean-related types. If there are more, using it will not get rid of the UnsatisfiedDependencyException.
What will do the job is the second way, which will give you full control over which bean gets injected where,
and this is to name your beans and configure them where to be injected via XML. The previous example
is quite a complex and dirty implementation and was conceived just to prove how each of the autowiring
types can be configured in XML. When switching to annotation, things change a bit. There is an annotation
equivalent to the lazy-init attribute; the @Lazy annotation is used at the class level to declare beans that
will be instantiated the first time they are accessed. Using stereotype annotations, we can create only one
configuration for a bean, so it seems pretty logical that the name of the beans does not really matter, as there
will be only one bean of each type. Thus, the default autowiring when using configuration via annotation is
byType. When there are bean-related types, it is useful to be able to specify that autowiring should be done
by name. This is done using the @Qualifier annotation, together with the @Autowired annotation, and
providing the name of the bean being injected as an argument for it.

Consider the following code:

package com.apress.prospring5.ch3.sandbox;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Qualifier;

import org.springframework.context.annotation.Llazy;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Component;

116

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

@Component

@Lazy
public class TrickyTarget {

Foo fooOne;

Foo fooTwo;

Bar bar;

public TrickyTarget() {
System.out.println("Target.constructor()");

}

public TrickyTarget(Foo fooOne) {
System.out.println("Target(Foo) called");
}

public TrickyTarget(Foo fooOne, Bar bar) {
System.out.println("Target(Foo, Bar) called");
}

@Autowired
public void setFooOne(Foo fooOne) {
this.fooOne = fooOne;
System.out.println("Property fooOne set");
}

@Autowired

public void setFooTwo(Foo foo) {
this.fooTwo = foo;
System.out.println("Property fooTwo set");

}

@Autowired

public void setBar(Bar bar) {
this.bar = bar;
System.out.println("Property bar set");

}
public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-04.xml");
ctx.refresh();

TrickyTarget t = ctx.getBean(TrickyTarget.class);

ctx.close();

117

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

If Foo is a class as depicted here:
package com.apress.prospring5.ch3.sandbox;

@Component
public class Foo {

}

then when the TrickyTarget class is run, the following output is produced:

Property fooOne set
Property fooTwo set
Property bar set

The Bar class is just as simple.
package com.apress.prospring5.ch3.sandbox;
import org.springframework.stereotype.Component;

@Component
public class Bar {

}

If we were to modify the TrickyTarget class and give a name to the bean, as shown here:

@Component("gigi")
@Lazy
public class TrickyTarget {

then when running the class, the same output will be produced, as there is only one bean of type
Target, and when requested from the context using ctx.getBean(TrickyTarget.class), the context
returns the only bean of this type, regardless of its name. Also, if we were to provide a name for the bean of

type Bar:
package com.apress.prospring5.ch3.sandbox;
import org.springframework.stereotype.Component;

@Component ("kitchen")
public class Bar {

}

then when running the example again, we would see the same output. This means that the default
autowiring type is by Type.

118

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

As mentioned, things get complicated when bean types are related. Let’s transform Foo into an interface
and declare two bean types implementing it, each one with its bean declaration. Let’s keep the default
configuration as well, with no extra naming.

package com.apress.prospring5.ch3.sandbox;

//Foo.java
public interface Foo {

// empty interface, used as a marker interface
}

//FooImplOne.java
@Component
public class FooImplOne implements Foo {

}

//FooImplTwo.java
@Component
public class FooImplTwo implements Foo{

}

The TrickyTarget class remains unchanged, and when it’s run, we’ll see that the output changes to
something that looks probably a lot like this:

Property bar set

Exception in thread "main"
org.springframework.beans.factory.UnsatisfiedDependencyException:

Error creating bean with name 'gigi':
Unsatisfied dependency expressed through method 'setFoo' parameter 0;

nested exception is
org.springframework.beans.factory.NoUniqueBeanDefinitionException:

No qualifying bean of type 'com.apress.prospring5.ch3.sandbox.Foo' available:

expected single matching bean but found 2: fooImplOne,fooImplTwo

There is a lot more output, but those are the first lines, and as you can see, Spring is really explicit.
It tells you that it does not know which bean to autowire through the method setFoo, and it also tells
you which selection of beans it has. The names of the beans are decided by Spring based on the class name,
by downcasing the first letter of the class name. Using this information, TrickyTarget can be fixed. There are
two ways to do this. The first way is to use the @Primary annotation (which is the equivalent of the primary
attribute introduced before) on the class defining a bean, which will tell Spring to prioritize this bean when
autowiring by type. We will annotate FooImplOne.

package com.apress.prosprings.ch3.sandbox;

import org.springframework.context.annotation.Primary;
import org.springframework.stereotype.Component;

@Component
@Primary
public class FooImplOne implements Foo {

}

119

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

The @Primary annotation is a marker interface; it has no attributes. Its presence on a bean configuration
marks the bean as having priority when a bean of this type is needed to be autowired using byType. If you
run the TrickyTarget class, the expected output will be printed again.

Property fooOne set
Property fooTwo set
Property bar set

As in the case of the primary attribute, the @Primary annotation is useful only when you have exactly
two related bean types. For handling more related bean types, the Qualifier annotation is more suitable.
This is placed next to the @Autowired on the setters that are ambiguous: setFooOne() and setFooTwo().
(The code left unchanged is not shown anymore.)

@Component("gigi")
@Lazy
public class TrickyTarget {

@Autowired

@ualifier("fooImplOne")

public void setFoo(Foo foo) {
this.foo = foo;
System.out.println("Property fooOne set");

}

@Autowired

@oualifier("fooImplTwo")

public void setFooTwo(Foo fooTwo) {
this.fooTwo = fooTwo;
System.out.println("Property fooTeo set");

Now, if you run the example, the expected output will be printed again.

Property fooOne set
Property fooTwo set
Property bar set

When using Java configuration, the only thing that changes is the way the beans are defined. Because
instead of @Component on bean classes, @Bean annotations will be used on bean declaration methods in the
configuration class. Such an example is shown here:

package com.apress.prospring5.ch3.config;

import com.apress.prosprings.ch3.sandbox.*;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.support.GenericApplicationContext;

120

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

public class TargetDemo {

@Configuration
static class TargetConfig {

@®Bean

public Foo fooImplOne() {
return new FooImplOne();
}

@®Bean

public Foo fooImplTwo() {
return new FooImplTwo();
}

@Bean

public Bar bar() {
return new Bar();

}

@Bean

public TrickyTarget trickyTarget() {
return new TrickyTarget();

}

}

public static void main(String args) {
GenericApplicationContext ctx =
new AnnotationConfigApplicationContext(TargetConfig.class);
TrickyTarget t = ctx.getBean(TrickyTarget.class);
ctx.close();

The existing classes from the com.apress.prospring5.ch3.sandbox package were reused here too,
to avoid code duplication, because as component scanning is not enabled, any bean declaration using
stereotype annotation will be ignored. If you run the previous class, you will notice that the same output
from the previous example is printed. If you remember, as mentioned earlier, the convention when
using bean declarations with @Bean is that the name of the method becomes the name of the bean, so
TrickyTarget configured with the @ualifier annotation will still work as expected.

When to Use Autowiring

In most cases, the answer to the question of whether you should use autowiring is definitely no! Autowiring
can save you time in small applications, but in many cases, it leads to bad practices and is inflexible in

large applications. Using byName seems like a good idea, but it may lead you to give your classes artificial
property names so that you can take advantage of the autowiring functionality. The whole idea behind
Spring is that you can create your classes as you like and have Spring work for you, not the other way around.
You may be tempted to use byType until you realize that you can have only one bean for each type in your
ApplicationContext—a restriction that is problematic when you need to maintain beans with different
configurations of the same type. The same argument applies to the use of constructor autowiring.

121

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

In some cases, autowiring can save you time, but it does not really take that much extra effort to define
your wiring explicitly, and you benefit from explicit semantics and full flexibility on property naming and on
how many instances of the same type you manage. For any nontrivial application, steer clear of autowiring at
all costs.

Setting Bean Inheritance

In some cases, you many need multiple definitions of beans that are the same type or implement a shared
interface. This can become problematic if you want these beans to share some configuration settings but not
others. The process of keeping the shared configuration settings in sync is quite error-prone, and on large
projects, doing so can be quite time-consuming. To get around this, Spring allows you to provide a <bean>
definition that inherits its property settings from another bean in the same ApplicationContext instance. You
can override the values of any properties on the child bean as required, which allows you to have full control,
but the parent bean can provide each of your beans with a base configuration. The following code sample
shows a simple configuration with two beans, one of which is the child of the other (app-context-xml.xml):

<beans ...>

<bean id="parent" class="com.apress.prospring5.ch3.xml.Singer"
p:name="John Mayer" p:age="39"/>

<bean id="child" class="com.apress.prospring5.ch3.xml.Singer"
parent="parent" p:age="0"/>
</beans>

In this code, you can see that the <bean> tag for the child bean has an extra attribute, parent, which
indicates that Spring should consider the parent bean the parent of the bean and inherit its configuration.
In case you don’t want a parent bean definition to become available for lookup from ApplicationContext,
you can add the attribute abstract="true" in the <bean> tag when declaring the parent bean. Because the
child bean has its own value for the age property, Spring passes this value to the bean. However, child has
no value for the name property, so Spring uses the value given to the inheritParent bean.

The Singer bean is quite simple.

package com.apress.prospring5.ch3.xml;

public class Singer {
private String name;
private int age;

public void setName(String name) {
this.name = name;
}

public void setAge(int age) {
this.age = age;
}

122

CHAPTER 3 * INTRODUCING IOC AND DI IN SPRING

public String toString() {
return "\tName: "
}

+ name + "\n\t" + "Age: " + age;

To test it, you could write a simple class like this:
package com.apress.prospring5.ch3.xml;
import org.springframework.context.support.GenericXmlApplicationContext;
public class InheritanceDemo {

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

Singer parent = (Singer) ctx.getBean("parent");
Singer child = (Singer) ctx.getBean("child");

System.out.println("Parent:\n" + parent);
System.out.println("Child:\n" + child);

Asyou can see, the main() method of the Singer class grabs both the child and parent beans from
ApplicationContext and writes the contents of their properties to stdout. Here is the output from this
example:

Parent:
Name: John Mayer
Age: 39

Child:
Name: John Mayer
Age: 0

As expected, the inheritChild bean inherited the value for its name property from the inheritParent
bean but was able to provide its own value for the age property.

Child beans inherit both constructor arguments and property values from the parent beans, so you can
use both styles of injection with bean inheritance. This level of flexibility makes bean inheritance a powerful
tool for building applications with more than a handful of bean definitions. If you are declaring a lot of beans
of the same value with shared property values, avoid the temptation to use copy and paste to share the
values; instead, set up an inheritance hierarchy in your configuration.

When you are using inheritance, remember that bean inheritance does not have to match a Java
inheritance hierarchy. It is perfectly acceptable to use bean inheritance on five beans of the same type.
Think of bean inheritance as more like a templating feature than an inheritance feature. Be aware, however,
that if you are changing the type of the child bean, that type must extend the parent bean type.

123

CHAPTER 3 * INTRODUCING 10C AND DI IN SPRING

Summary

In this chapter, we covered a lot of ground with both Spring Core and IoC in general. We showed you
examples of the types of IoC and presented the pros and cons of using each mechanism in your applications.
We looked at which IoC mechanisms Spring provides and when (and when not) to use each within your
applications. While exploring IoC, we introduced the Spring BeanFactory, which is the core component
for Spring’s IoC capabilities, and then ApplicationContext, which extends BeanFactory and provides
additional functionalities. For ApplicationContext, we focused on GenericXmlApplicationContext,
which allows external configuration of Spring by using XML. Another method to declare DI requirements
for ApplicationContext, that is, using Java annotations, was also discussed. Some examples with
AnnotationConfigApplicationContext and Java configuration were also included, just to slowly introduce
this way of configuring beans.

This chapter also introduced you to the basics of Spring’s IoC feature set including setter
injection, constructor injection, Method Injection, autowiring, and bean inheritance. In the
discussion of configuration, we demonstrated how you can configure your bean properties with a
wide variety of values, including other beans, using both XML and annotation type configurations and
GenericXmlApplicationContext.

This chapter only scratched the surface of Spring and Spring’s IoC container. In the next chapter,
you'll look at some IoC-related features specific to Spring, and you'll take a more detailed look at other
functionality available in Spring Core.

124

CHAPTER 4

Spring Configuration in Detail
and Spring Boot

In the previous chapter, we presented a detailed look at the concept of inversion of control (IoC) and how it
fits into the Spring Framework. However, we have really only scratched the surface of what Spring Core can

do. Spring provides a wide array of services that supplement and extend its basic IoC capabilities. In this
chapter, you are going to explore these in detail. Specifically, you will be looking at the following:

e Managing the bean life cycle: So far, all the beans you have seen have been fairly
simple and completely decoupled from the Spring container. In this chapter, we
present some strategies you can employ to enable your beans to receive notifications
from the Spring container at various points throughout their life cycles. You can
do this either by implementing specific interfaces laid out by Spring, by specifying
methods that Spring can call via reflection, or by using JSR-250 JavaBeans life-cycle
annotations.

e Making your beans “Spring aware”: In some cases, you want a bean to be able to
interact with the ApplicationContext instance that configured it. For this reason,
Spring offers two interfaces, BeanNameAware and ApplicationContextAware
(introduced at the end of Chapter 3), that allow your bean to obtain its assigned
name and reference its ApplicationContext, respectively. This section of
the chapter covers implementing these interfaces and gives some practical
considerations for using them in your application.

e Using FactoryBeans: As its name implies, the FactoryBean interface is meant to be
implemented by any bean that acts as a factory for other beans. The FactoryBean
interface provides a mechanism by which you can easily integrate your own factories
with the Spring BeanFactory interface.

e Working with JavaBeans PropertyEditors: The PropertyEditor interface is a
standard interface provided in the java.beans package. PropertyEditors are
used to convert property values to and from String representations. Spring uses
PropertyEditors extensively, mainly to read values specified in the BeanFactory
configuration and convert them into the correct types. In this chapter, we discuss the
set of PropertyEditors supplied with Spring and how you can use them within your
application. We also take a look at implementing custom PropertyEditors.

© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_4

125

https://doi.org/10.1007/978-1-4842-2808-1_4
http://dx.doi.org/10.1007/978-1-4842-2808-1_3

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

e Learning more about the Spring ApplicationContext: As we know,
ApplicationContext is an extension of BeanFactory intended for use in full
applications. The ApplicationContext interface provides a useful set of additional
functionality, including internationalized message support, resource loading,
and event publishing. In this chapter, we present a detailed look at the features in
addition to IoC that ApplicationContext offers. We also jump ahead of ourselves a
little to show you how ApplicationContext simplifies the use of Spring when you are
building web applications.

e Using Java classes for configuration: Prior to 3.0, Spring supported only the XML
base configuration with annotations for beans and dependency configuration.
Starting with 3.0, Spring offers another option for developers to configure the Spring
ApplicationContext interface using Java classes. We take a look at this new option
in Spring application configuration.

e Using Spring Boot: Spring application configuration is made even more practical
by using Spring Boot. This Spring project makes it easy to create stand-alone,
production-grade, Spring-based applications that you can “just run.”

e Using configuration enhancements: We present features that make application
configuration easier, such as profile management, environment and property source
abstraction, and so on. In this section, we cover those features and show how to use
them to address specific configuration needs.

e Using Groovy for configuration: New to Spring 4.0 is the ability to configure
bean definitions in the Groovy language, which can be used as an alternative or
supplement to the existing XML and Java configuration methods.

Spring’s Impact on Application Portability

Most of the features discussed in this chapter are specific to Spring and, in many cases, are not available

in other IoC containers. Although many IoC containers offer life-cycle management functionality, they
probably do so through a different set of interfaces than Spring. If the portability of your application between
different IoC containers is truly important, you might want to avoid using some of the features that couple
your application to Spring.

Remember, however, that by setting a constraint—meaning that your application is portable between
IoC containers—you are losing out on the wealth of functionality Spring offers. Because you are likely to be
making a strategic choice to use Spring, it makes sense that you use it to the best of its ability.

Be careful not to create a requirement for portability out of thin air. In many cases, the end users of
your application do not care whether the application can run on three different IoC containers; they just
want it to run. In our experience, it is often a mistake to try to build an application on the lowest common
denominator of features available in your chosen technology. Doing so often sets your application at a
disadvantage right from the get-go. However, if your application requires IoC container portability, do not
see this as a drawback—it is a true requirement and, therefore, one your application should fulfill. In Expert
One-on-One: J2EE Development without EJB (Wrox, 2004), Rod Johnson and Jirgen Holler describe these
types of requirements as phantom requirements and provide a much more detailed discussion of them and
how they can affect your project.

Although using these features may couple your application to the Spring Framework, in reality you
are increasing the portability of your application in the wider scope. Consider that you are using a freely
available, open source framework that has no particular vendor affiliation. An application built using
Spring’s IoC container runs anywhere Java runs. For Java enterprise applications, Spring opens up new
possibilities for portability. Spring provides many of the same capabilities as JEE and also provides classes to

126

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

abstract and simplify many other aspects of JEE. In many cases, it is possible to build a web application using
Spring that runs in a simple servlet container but with the same level of sophistication as an application
targeted at a full-blown JEE application server. By coupling to Spring, you can increase your application’s
portability by replacing many features that either are vendor-specific or rely on vendor-specific configuration
with equivalent features in Spring.

Bean Life-Cycle Management

An important part of any IoC container, Spring included, is that beans can be constructed in such a way that
they receive notifications at certain points in their life cycle. This enables your beans to perform relevant
processing at certain points throughout their life. In general, two life-cycle events are particularly relevant to
a bean: post-initialization and pre-destruction.

In the context of Spring, the post-initialization event is raised as soon as Spring finishes setting all the
property values on the bean and finishes any dependency checks that you configured it to perform. The pre-
destruction event is fired just before Spring destroys the bean instance. However, for beans with prototype
scope, the pre-destruction event will not be fired by Spring. The design of Spring is that the initialization
life-cycle callback methods will be called on objects regardless of bean scope, while for beans with prototype
scope, the destruction life-cycle callback methods will not be called. Spring provides three mechanisms a
bean can use to hook into each of these events and perform some additional processing: interface-based,
method-based, and annotation-based mechanisms.

Using the interface-based mechanism, your bean implements an interface specific to the type of
notification it wants to receive, and Spring notifies the bean via a callback method defined in the interface.
For the method-based mechanism, Spring allows you to specify, in your ApplicationContext configuration,
the name of a method to call when the bean is initialized and the name of a method to call when the bean
is destroyed. For the annotation mechanism, you can use JSR-250 annotations to specify the method that
Spring should call after construction or before destruction.

In the case of both events, the mechanisms achieve exactly the same goal. The interface mechanism
is used extensively throughout Spring so that you don’t have to remember to specify the initialization or
destruction each time you use one of Spring’s components. However, in your own beans, you may be better
served using the method-based or annotation mechanism because your beans do not need to implement
any Spring-specific interfaces. Although we stated that portability often isn’t as important a requirement as
many books lead you to believe, this does not mean you should sacrifice portability when a perfectly good
alternative exists. That said, if you are coupling your application to Spring in other ways, using the interface
method allows you to specify the callback once and then forget about it. If you are defining a lot of beans of
the same type that need to take advantage of the life-cycle notifications, then using the interface mechanism
can avoid the need for specifying the life-cycle callback methods for every bean in the XML configuration
file. Using JSR-250 annotations is also another viable option, since it’s a standard defined by the JCP and you
are also not coupled to Spring’s specific annotations. Just make sure that the IoC container you are running
your application on supports the JSR-250 standard.

Overall, the choice of which mechanism you use for receiving life-cycle notifications depends on your
application requirements. If you are concerned about portability or you are just defining one or two beans
of a particular type that need the callbacks, use the method-based mechanism. If you use annotation-type
configuration and are certain that you are using an IoC container that supports JSR-250, use the annotation
mechanism. If you are not too concerned about portability or you are defining many beans of the same
type that need the life-cycle notifications, using the interface-based mechanism is the best way to ensure
that your beans always receive the notifications they are expecting. If you plan to use a bean across many
different Spring projects, you almost certainly want the functionality of that bean to be as self-contained as
possible, so you should definitely use the interface-based mechanism.

127

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Figure 4-1 shows a high-level overview of how Spring manages the life cycle of the beans within its
container.

8 - DI

Scan for bean definitions from
XML files / Annotated classes
I Java configuration classes

|

Create Bean Instances

Inject Bean Dependencies

(calling setters, set values for ——
autowired fields)

Check for Spring Awareness Bean Creation Life-Cycle Callback Bean Destruction Life-Cycle Callback

If bean type implements
BeanNameAware,
call
setBeanName()

|

If bean type implements
BeanClassLoaderAware,
call
setBeanClassLoader()

|

If bean type implements
ApplicationContextiAware,
call
setApplicationContext()

—

If @PostConstruct annotation
is present call method
annotated with it

1

If bean type implements
InitializingBean,
call
afterPropertiesSet()

1

If bean deifnition contains
init-method or
@8ean(initMethod="..")
call the init method

If @reDestroy annotation is
present call method annotated
with it

|

If bean type implements
DisposableBean,
call destroy()

|

If bean deifnition contains
destroy-method or
@Bean(destroyMethod="..")
call the destroy method

Figure 4-1. Spring beans life cycle

Hooking into Bean Creation

By being aware of when it is initialized, a bean can check whether all its required dependencies are satisfied.
Although Spring can check dependencies for you, it is pretty much an all-or-nothing approach, and it
doesn’t offer any opportunities for applying additional logic to the dependency resolution procedure.
Consider a bean that has four dependencies declared as setters, two of which are required and one of which
has a suitable default in the event that no dependency is provided. Using an initialization callback, your
bean can check for the dependencies it requires, throwing an exception or providing a default as needed.

A bean cannot perform these checks in its constructor because at this point, Spring has not had an
opportunity to provide values for the dependencies it can satisfy. The initialization callback in Spring is
called after Spring finishes providing the dependencies that it can and performs any dependency checks that
you ask of it.

You are not limited to using the initialization callback just to check dependencies; you can do
anything you want in the callback, but it is most useful for the purpose we have described. In many cases,
the initialization callback is also the place to trigger any actions that your bean must take automatically
in response to its configuration. For instance, if you build a bean to run scheduled tasks, the initialization
callback provides the ideal place to start the scheduler—after all, the configuration data is set on the bean.

A You will not have to write a bean to run scheduled tasks because this is something Spring can do
automatically through its built-in scheduling feature or via integration with the Quartz scheduler. We cover this
in more detail in Chapter 11.

Executing a Method When a Bean Is Created

As we mentioned previously, one way to receive the initialization callback is to designate a method on your
bean as an initialization method and tell Spring to use this method as an initialization method. As discussed,
this callback mechanism is useful when you have only a few beans of the same type or when you want to
keep your application decoupled from Spring. Another reason for using this mechanism is to enable your

128

http://dx.doi.org/10.1007/978-1-4842-2808-1_11

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Spring application to work with beans that were built previously or were provided by third-party vendors.
Specifying a callback method is simply a case of specifying the name in the init-method attribute of a bean’s
<bean> tag. The following code sample shows a basic bean with two dependencies:

package com.apress.prospring5.ch4;

import org.springframework.beans.factory.BeanCreationException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class Singer {
private static final String DEFAULT NAME = "Eric Clapton";

private String name;
private int age = Integer.MIN_VALUE;

public void setName(String name) {
this.name = name;
}

public void setAge(int age) {
this.age = age;
}

public void init() {
System.out.println("Initializing bean");

if (name == null) {
System.out.println("Using default name");
name = DEFAULT_NAME;

}

if (age == Integer.MIN VALUE) {
throw new IllegalArgumentException(
"You must set the age property of any beans of type

+ Singer.class);
}
}

public String toString() {
return "\tName: "
}

+ name + "\n\tAge: " + age;

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

getBean("singerOne", ctx);

getBean("singerTwo", ctx);
getBean("singerThree", ctx);

129

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

ctx.close();

}

public static Singer getBean(String beanName,

ApplicationContext ctx) {

try {
Singer bean = (Singer) ctx.getBean(beanName);
System.out.println(bean);
return bean;

} catch (BeanCreationException ex) {
System.out.println("An error occured in bean configuration:

+ ex.getMessage());

return null;

Notice that we have defined a method, init(), to act as the initialization callback. The init() method
checks whether the name property has been set, and if it has not, it uses the default value stored in the
DEFAULT_NAME constant. The init() method also checks whether the age property is set and throws
IllegalArgumentException ifit is not.

The main() method of the SimpleBean class attempts to obtain three beans from
GenericXmlApplicationContext, all of type Singer, using its own getBean() method. Notice that in the
getBean() method, if the bean is obtained successfully, its details are written to console output. If an
exception is thrown in the init() method, as will occur in this case if the age property is not set, then Spring
wraps that exception in BeanCreationException. The getBean() method catches these exceptions and
writes a message to the console output informing us of the error, as well as returns a null value.

The following configuration snippet shows an ApplicationContext configuration that defines the
beans used in the previous code snippet (app-context-xml.xml):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd"
default-lazy-init="true">

<bean id="singerOne"
class="com.apress.prospring5.ch4.Singer"
init-method="init" p:name="John Mayer" p:age="39"/>

<bean id="singerTwo"
class="com.apress.prospring5.ch4.Singer"
init-method="init" p:age="72"/>

<bean id="singerThree"
class="com.apress.prospring5.ch4.Singer"
init-method="init" p:name="John Butler"/>
</beans>

130

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

As you can see, the <bean> tag for each of the three beans has an init-method attribute that tells Spring
that it should invoke the init() method as soon as it finishes configuring the bean. The singerOne bean
has values for both the name and age properties, so it passes through the init() method with absolutely no
changes. The singerTwo bean has no value for the name property, meaning that in the init() method, the
name property is given the default value. Finally, the singerThree bean has no value for the age property.
The logic defined in the init() method treats this as an error, so I1legalArgumentException is thrown.
Also note that in the <beans> tag, we added the attribute default-lazy-init="true" to instruct Spring
to instantiate the beans defined in the configuration file only when the bean was requested from the
application. If we do not specify it, Spring will try to initialize all the beans during the bootstrapping of
ApplicationContext, and it will fail during the initialization of singerThree

When all the beans in a configuration file have the same init-method configuration, the file can
be simplified, by setting the default-init-method attribute on the <beans> element. The beans can be
of different types; the only condition for them is to have a method named as the default-init-method
attribute value. So, the previous configuration can be written like this as well:

<beans ...
default-lazy-init="true" default-init-method="init">

<bean id="singerOne"
class="com.apress.prospring5.ch4.Singer"
p:name="John Mayer" p:age="39"/>

<bean id="singerTwo"
class="com.apress.prospring5.ch4.Singer"
p:age="72"/>

<bean id="singerThree"
class="com.apress.prospring5.ch4.Singer"
p:name="John Butler"/>
</beans>

Running the previous example yields the following output:

Initializing bean
Name: John Mayer
Age: 39
Initializing bean
Using default name
Name: Eric Clapton
Age: 72
Initializing bean
An error occured in bean configuration: Error creating bean
with name 'singerThree' defined in class path
resource spring/app-context-xml.xml: Invocation of init method failed;
nested exception is java.lang.IllegalArgumentException:
You must set the age property of any beans of type class
com.apress.prospring5s.ch4.Singer

From this output, you can see that singerOne was configured correctly with the values that we specified
in the configuration file. For singerTwo, the default value for the name property was used because no value
was specified in the configuration. Finally, for singerThree, no bean instance was created because the
init() method raised an error because of the lack of a value for the age property.

131

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Asyou can see, using the initialization method is an ideal way to ensure that your beans are configured
correctly. By using this mechanism, you can take full advantage of the benefits of IoC without losing any of
the control you get from manually defining dependencies. The only constraint on your initialization method
is that it cannot accept any arguments. You can define any return type, although it is ignored by Spring, and
you can even use a static method, but the method must accept no arguments.

The benefits of this mechanism are negated when using a static initialization method, because you
cannot access any of the bean’s state to validate it. If your bean is using static state as a mechanism for saving
memory and you are using a static initialization method to validate this state, then you should consider
moving the static state to instance state and using a nonstatic initialization method. If you use Spring’s
singleton management capabilities, the end effect is the same, but you have a bean that is much simpler to
test, and you also have the increased effect of being able to create multiple instances of the bean with their
own state when necessary. Of course, in some instances, you need to use static state shared across multiple
instances of a bean, in which case you can always use a static initialization method.

Implementing the InitializingBean Interface

The InitializingBean interface defined in Spring allows you to define inside your bean code that you
want the bean to receive notification that Spring has finished configuring it. In the same way as when you
are using an initialization method, this gives you the opportunity to check the bean configuration to ensure
that it is valid, providing any default values along the way. The InitializingBean interface defines a single
method, afterPropertiesSet(), that serves the same purpose as the init() method introduced in the
previous section. The following code snippet shows a reimplementation of the previous example using the
InitializingBean interface in place of the initialization method:

package com.apress.prospring5.ch4;

import org.springframework.beans.factory.BeanCreationException;

import org.springframework.beans.factory.InitializingBean;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.GenericXmlApplicationContext;

public class SingerWithInterface implements InitializingBean {
private static final String DEFAULT_NAME = "Eric Clapton";

private String name;
private int age = Integer.MIN_VALUE;

public void setName(String name) {
this.name = name;
}

public void setAge(int age) {
this.age = age;
}

public void afterPropertiesSet() throws Exception {
System.out.println("Initializing bean");
if (name == null) {

System.out.println("Using default name");
name = DEFAULT_NAME;

132

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

if (age == Integer.MIN VALUE) {
throw new IllegalArgumentException(
"You must set the age property of any beans of type
+ SingerWithInterface.class);

}

public String toString() {
return "\tName: " + name + "\n\tAge: " + age;
}

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

getBean("singerOne", ctx);
getBean("singerTwo", ctx);
getBean("singerThree", ctx);

ctx.close();

}

private static SingerWithInterface getBean(String beanName,

ApplicationContext ctx) {

try {
SingerWithInterface bean =

(SingerWithInterface) ctx.getBean(beanName);

System.out.println(bean);
return bean;

} catch (BeanCreationException ex) {
System.out.println("An error occured in bean configuration:

+ ex.getMessage());

return null;

Asyou can see, not much in this example has changed. Aside from the obvious class name change, the
only differences are that this class implements InitializingBean and that the initialization logic has moved
into the afterPropertiesSet() method. In the following snippet, you can see the configuration for this
example (app-context- xml.xml):

<beans ... default-lazy-init="true">

<bean id="singerOne"
class="com.apress.prosprings.ch4.SingerWithInterface"
p:name="John Mayer" p:age="39"/>

<bean id="singerTwo"
class="com.apress.prospring5.ch4.SingerWithInterface"
p:age="72"/>

133

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

<bean id="singerThree"
class="com.apress.prosprings.ch4.SingerWithInterface"
p:name="John Butler"/>
</beans>

Again, there’s not much difference between the configuration code introduced here and the
configuration code in the previous section. The noticeable difference is the omission of the init-method
attribute. Because the SimpleBeanWithInterface class implements the InitializingBean interface,
Spring knows which method to call as the initialization callback, thus removing the need for any additional
configuration. The output from this example is shown here:

Initializing bean
Name: John Mayer
Age: 39
Initializing bean
Using default name
Name: Eric Clapton
Age: 72
Initializing bean
An error occured in bean configuration: Error creating bean with name 'singerThree'
defined in class path resource spring/app-context-xml.xml: Invocation of
init method failed; nested exception is java.lang.IllegalArgumentException:
You must set the age property of any beans of type class
com.apress.prospring5.ch4.SingerWithInterface

Using the JSR-250 @PostConstruct Annotation

Another method that can achieve the same purpose is to use the JSR-250 life-cycle annotation,
@PostConstruct. Starting from Spring 2.5, JSR-250 annotations are also supported to specify the method
that Spring should call if the corresponding annotation relating to the bean’s life cycle exists in the class.
The following code sample shows the program with the @PostConstruct annotation applied:

package com.apress.prospring5.ch4;

import javax.annotation.PostConstruct;

import org.springframework.beans.factory.BeanCreationException;

import org.springframework.context.ApplicationContext;

import org.springframework.context.support.GenericXmlApplicationContext;

public class SingerWithJSR250 {
private static final String DEFAULT NAME = "Eric Clapton";

private String name;
private int age = Integer.MIN_VALUE;

public void setName(String name) {
this.name = name;

}

public void setAge(int age) {
this.age = age;

}
134

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

@PostConstruct
public void init() throws Exception {
System.out.println("Initializing bean");

if (name == null) {
System.out.println("Using default name");
name = DEFAULT_NAME;

}

if (age == Integer.MIN_VALUE) {
throw new IllegalArgumentException(
"You must set the age property of any beans of type " +
SingerWithJSR250.class);

}

public String toString() {
return "\tName: "
}

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.refresh();

+ name + "\n\tAge: " + age;

getBean("singerOne", ctx);
getBean("singerTwo", ctx);
getBean("singerThree", ctx);

ctx.close();

}

public static SingerWithJSR250 getBean(String beanName,
ApplicationContext ctx) {
try {
SingerWithJSR250 bean =
(SingerWithJSR250) ctx.getBean(beanName);
System.out.println(bean);
return bean;
} catch (BeanCreationException ex) {
System.out.println("An error occured in bean configuration:
+ ex.getMessage());
return null;

The program is the same as using the init-method approach; just apply the @PostConstruct annotation

before the init() method. Note that you can assign any name to the method. In terms of configuration,
since we are using annotations, we need to add the <context:annotation-driven> tag from the context
namespace into the configuration file.

135

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd"
default-lazy-init="true">

<context:annotation-config/>

<bean id="singerOne"
class="com.apress.prospring5.ch4.SingerWithJSR250"
p:name="John Mayer" p:age="39"/>

<bean id="singerTwo"
class="com.apress.prosprings5.ch4.SingerWithJSR250"
p:age="72"/>

<bean id="singerThree"
class="com.apress.prospring5.ch4.SingerWithJSR250"
p:name="John Butler"/>
</beans>

Run the program and you will see the same output as other mechanisms.

Initializing bean
Name: John Mayer
Age: 39
Initializing bean
Using default name
Name: Eric Clapton
Age: 72
Initializing bean
An error occurred in bean configuration: Error creating bean with name 'singerThree':
Invocation of init method failed; nested exception is
java.lang.IllegalArgumentException: You must set the age property of any beans
of type class com.apress.prospring5.ch4.SingerWithJSR250

All three approaches have their benefits and drawbacks. Using an initialization method, you have the
benefit of keeping your application decoupled from Spring, but you have to remember to configure the
initialization method for every bean that needs it. Using the InitializingBean interface, you have the
benefit of being able to specify the initialization callback once for all instances of your bean class, but you
have to couple your application to do so. Using annotations, you need to apply the annotation to the method
and make sure that the IoC container supports JSR-250. In the end, you should let the requirements of your
application drive the decision about which approach to use. If portability is an issue, use the initialization or
annotation method; otherwise, use the InitializingBean interface to reduce the amount of configuration
your application needs and the chance of errors creeping into your application because of misconfiguration.

136

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

A When configuring initialization with init-method or @PostConstruct, there is the advantage of
declaring the initialization method with a different access right. Initialization methods should be called only
once by the Spring loC, at bean creation time. Subsequent calls will lead to unexpected results or even failures.
External additional calls can be prohibited by making the initialization method private. The Spring loC will be
able to call it via reflection, but any additional calls in the code won’t be permitted.

Declaring an Initialization Method Using @Bean

Another way to declare the initialization method for a bean is to specify the initMethod attribute for the
@®Bean annotation and set the initialization method name as its value. This annotation is used to declare
beans in Java configuration classes. Although Java configuration is covered a bit later in this chapter,

the bean initialization part belongs here. For this example, the initial Singer class is used because the
configuration is external, just like using the init-method attribute. We'll just write a configuration class and a
new main() method to test it. Also, default-lazy-init="true" will be replaced by the @Lazy annotation on
each bean declaration.

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.Singer;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.annotation.Llazy;

import org.springframework.context.support.GenericApplicationContext;

import static com.apress.prospring5.ch4.Singer.getBean;
public class SingerConfigDemo {

@Configuration
static class SingerConfig{

@Lazy

@Bean(initMethod = "init")

Singer singerOne() {
Singer singerOne = new Singer();
singerOne.setName("John Mayer");
singerOne.setAge(39);
return singerOne;

}

@Lazy

@Bean(initMethod = "init")

Singer singerTwo() {
Singer singerTwo = new Singer();
singerTwo.setAge(72);
return singerTwo;

137

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

@Lazy

@Bean(initMethod = "init")

Singer singerThree() {
Singer singerThree = new Singer();
singerThree.setName("John Butler");
return singerThree;

}

public static void main(String args) {
GenericApplicationContext ctx =
new AnnotationConfigApplicationContext(SingerConfig.class);

getBean("singerOne", ctx);
getBean("singerTwo", ctx);
getBean("singerThree", ctx);

ctx.close();

Running this code will produce the same result observed so far, shown here:

Initializing bean
Name: John Mayer
Age: 39
Initializing bean
Using default name
Name: Eric Clapton
Age: 72
Initializing bean
An error occurred in bean configuration: Error creating bean with name 'singerThree'
defined in com.apress.prospring5.ch4.config.SingerConfigDemo$SingerConfig:
Invocation of init method failed; nested exception is
java.lang.IllegalArgumentException: You must set the age property of any beans
of type class com.apress.prospring5.ch4.Singer

Understanding Order of Resolution

All initialization mechanisms can be used on the same bean instance. In this case, Spring invokes the
method annotated with @PostConstruct first and then afterPropertiesSet(), followed by the initialization
method specified in the configuration file. There is a technical reason for this order, and by following the
path in Figure 4-1, we can notice the following steps in the bean creation process:

1. The constructor is called first to create the bean.
2. The dependencies are injected (setters are called).

3. Now that the beans exist and the dependencies were provided, the pre-
initialization BeanPostProcessor infrastructure beans are consulted
to see whether they want to call anything from this bean. These are
Spring-specific infrastructure beans that perform bean modifications
after they are created. The @PostConstruct annotation is registered by

138

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

CommonAnnotationBeanPostProcessor, so this bean will call the method found
annotated with @PostConstruct. This method is executed right after the bean
has been constructed and before the class is put into service,' before the actual
initialization of the bean (before afterPropertiesSet and init-method).

4. TheInitializingBean’s afterPropertiesSet is executed right after the
dependencies are injected. The afterPropertiesSet() method is invoked by
a BeanFactory after it has set all the bean properties supplied and has satisfied
BeanFactoryAware and ApplicationContextAware.

5. The init-method attribute is executed last because this is the actual initialization
method of the bean.

Understanding the order of different types of bean initialization can be useful if you have an existing
bean that performs some initialization in a specific method but you need to add some more initialization
code when you use Spring.

Hooking into Bean Destruction

When using an ApplicationContext implementation that wraps the DefaultListableBeanFactory interface
(such as GenericXmlApplicationContext, via the getDefaultListableBeanFactory() method), you can
signal to BeanFactory that you want to destroy all singleton instances with a call to ConfigurableBeanFactory.
destroySingletons(). Typically, you do this when your application shuts down, and it allows you to clean up
any resources that your beans might be holding open, thus allowing your application to shut down gracefully.
This callback also provides the perfect place to flush any data you are storing in memory to persistent storage
and to allow your beans to end any long-running processes they may have started.

To allow your beans to receive notification that destroySingletons() has been called, you have three
options, all similar to the mechanisms available for receiving an initialization callback. The destruction
callback is often used in conjunction with the initialization callback. In many cases, you create and configure
aresource in the initialization callback and then release the resource in the destruction callback.

Executing a Method When a Bean Is Destroyed

To designate a method to be called when a bean is destroyed, you simply specify the name of the method
in the destroy-method attribute of the bean’s <bean> tag. Spring calls it just before it destroys the singleton
instance of the bean (Spring will not call this method for those beans with prototype scope). The following
code snippet provides an example of using a destroy-method callback:

package com.apress.prosprings.ch4;

import java.io.File;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBean implements InitializingBean {
private File file;
private String filePath;

public void afterPropertiesSet() throws Exception {
System.out.println("Initializing Bean");

'Check out this snippet from JEE official Javadoc: http://docs.oracle.com/javaee/7/api/javax/annotation/
PostConstruct.html.

139

http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

if (filePath == null) {
throw new IllegalArgumentException(
"You must specify the filePath property of"
+ DestructiveBean.class);

}

this.file = new File(filePath);
this.file.createNewFile();

System.out.println("File exists: " + file.exists());

}

public void destroy() {
System.out.println("Destroying Bean");

if(!file.delete()) {
System.err.println("ERROR: failed to delete file.");
}

System.out.println("File exists: " + file.exists());

}

public void setFilePath(String filePath) {
this.filePath = filePath;
}

public static void main(String... args) throws Exception {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

DestructiveBean bean = (DestructiveBean) ctx.getBean("destructiveBean");

System.out.println("Calling destroy()");

ctx.destroy();
System.out.println("Called destroy()");

This code defines a destroy() method, in which the file that was created gets deleted. The main() method
retrieves a bean of type DestructiveBean from GenericXmlApplicationContext and then invokes its destroy()
method (which will, in turn, invoke the ConfigurableBeanFactory.destroySingletons() that was wrapped by
the ApplicationContext), instructing Spring to destroy all the singletons managed by it. Both the initialization
and destruction callbacks write a message to console output informing us that they have been called. In the
following snippet, you can see the configuration for the destructiveBean bean (app-context-xml.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"

140

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="destructiveBean"
class="com.apress.prospring5.ch4.DestructiveBean"
destroy-method="destroy"
p:filePath=
"#{systemProperties'java.io.tmpdir' }#{systemProperties'file.separator'}test.txt"/>
</beans>

Notice that we have specified the destroy() method as the destruction callback by using the destroy-
method attribute. The filePath attribute value is built by using an SpEL expression, concatenating the system
properties java.io.tmpdir and file.separator before the file name test.txt to ensure cross-platform
compatibility. Running this example yields the following output:

Initializing Bean
File exists: true
Calling destroy()
Destroying Bean
File exists: false
Called destroy()

Asyou can see, Spring first invokes the initialization callback, and the DestructiveBean instance creates
the File instance and stores it. Next, during the call to destroy(), Spring iterates over the set of singletons it
is managing, in this case just one, and invokes any destruction callbacks that are specified. This is where the
DestructiveBean instance deletes the created file and logs messages to the screen indicating it no longer exists.

Implementing the DisposableBean Interface

As with initialization callbacks, Spring provides an interface, in this case DisposableBean, that can be
implemented by your beans as a mechanism for receiving destruction callbacks. The DisposableBean
interface defines a single method, destroy(), which is called just before the bean is destroyed. Using this
mechanism is orthogonal to using the InitializingBean interface to receive initialization callbacks. The
following code snippet shows a modified implementation of the DestructiveBean class that implements the
DisposableBean interface:

package com.apress.prospring5.ch4;

import java.io.File;

import org.springframework.beans.factory.DisposableBean;

import org.springframework.beans.factory.InitializingBean;

import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBeanWithInterface implements InitializingBean, DisposableBean {
private File file;
private String filePath;

@0verride

public void afterPropertiesSet() throws Exception {
System.out.println("Initializing Bean");

141

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

if (filePath == null) {
throw new IllegalArgumentException(
"You must specify the filePath property of " +
DestructiveBeanWithInterface.class);

}

this.file = new File(filePath);
this.file.createNewFile();

System.out.println("File exists: " + file.exists());

}

@0verride
public void destroy() {
System.out.println("Destroying Bean");

if(!file.delete()) {
System.err.println("ERROR: failed to delete file.");
}

System.out.println("File exists: " + file.exists());
}
public void setFilePath(String filePath) {
this.filePath = filePath;

}

public static void main(String... args) throws Exception {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

DestructiveBeanWithInterface bean =
(DestructiveBeanWithInterface) ctx.getBean("destructiveBean");

System.out.println("Calling destroy()");
ctx.destroy();
System.out.println("Called destroy()");

There is not much difference between the code that uses the callback method mechanism and the
code that uses the callback interface mechanism. In this case, we even used the same method names.
The configuration for this example is depicted here (app-context-xml.xml):

<beans ...>

<bean id="destructiveBean"
class="com.apress.prospring5.ch4.DestructiveBeanWithInterface"
p:filePath=
"#{systemProperties'java.io.tmpdir' }#{systemProperties'file.separator'}test.txt"/>
</beans>

142

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Aside from the different class name, the only difference is the omission of the destroy-method attribute.
Running this example yields the following output:

Initializing Bean
File exists: true
Calling destroy()
Destroying Bean
File exists: false
Called destroy()

Using the JSR-250 @PreDestroy Annotation

The third way to define a method to be called before a bean is destroyed is to use the JSR-250 life-cycle
@PreDestroy annotation, which is the inverse of the @PostConstruct annotation. The following code snippet
is a version of DestructiveBean that uses both @PostConstruct and @PreDestroy in the same class to
perform program initialization and destroy actions:

package com.apress.prospring5.ch4;

import java.io.File;

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBeanWithJSR250 {
private File file;
private String filePath;

@PostConstruct
public void afterPropertiesSet() throws Exception {
System.out.println("Initializing Bean");

if (filePath == null) {
throw new IllegalArgumentException(
"You must specify the filePath property of " +
DestructiveBeanWithJSR250.class);

}

this.file = new File(filePath);
this.file.createNewFile();

System.out.println("File exists: " + file.exists());

}

@PreDestroy
public void destroy() {

System.out.println("Destroying Bean");

if(!file.delete()) {
System.err.println("ERROR: failed to delete file.");
}

143

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

System.out.println("File exists: " + file.exists());

}

public void setFilePath(String filePath) {
this.filePath = filePath;
}

public static void main(String... args) throws Exception {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.refresh();
DestructiveBeanWithJSR250 bean =
(DestructiveBeanWithJSR250) ctx.getBean("destructiveBean");

System.out.println("Calling destroy()");
ctx.destroy();
System.out.println("Called destroy()");

In the following snippet, you can see the configuration file for this bean, which makes use of the
<context:annotation-config> tag (app-context-annotation.xml).

<beans ...>
<context:annotation-config/>

<bean id="destructiveBean"
class="com.apress.prospring5.ch4.DestructiveBeanWithJSR250"
p:filePath=
"#{systemProperties'java.io.tmpdir' }#{systemProperties’'file.separator' }test.txt"/>
</beans>

Declaring a Destroy Method Using @Bean

Another way to declare the destroy method for a bean is to specify the destroyMethod attribute for the
@®Bean annotation and set the destroy method name as its value. This annotation is used to declare beans
in Java configuration classes. Although Java configuration is covered a bit later in this chapter, the bean
destruction part belongs here. For this example, the initial DestructiveBeanWithJSR250 class is used, as
the configuration is external, just like using the destroy-method attribute. We’ll just write a configuration
class and a new main() method to test it. Also, default-lazy-init="true" will be replaced by the @Lazy
annotation on each bean declaration.

package com.apress.prospring5.ch4.config;
import com.apress.prospring5.ch4.DestructiveBeanWithJSR250;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;

144

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Llazy;
import org.springframework.context.support.GenericApplicationContext;

/x*¥
* Created by iuliana.cosmina on 2/27/17.
*/

public class DestructiveBeanConfigDemo {

@Configuration
static class DestructiveBeanConfig {

@Lazy
@Bean(initMethod = "afterPropertiesSet", destroyMethod = "destroy")
DestructiveBeanWithJSR250 destructiveBean() {
DestructiveBeanWithJSR250 destructiveBean =
new DestructiveBeanWithJSR250();
destructiveBean.setFilePath(System.getProperty("java.io.tmpdir") +
System.getProperty("file.separator") + "test.txt");
return destructiveBean;

}
}

public static void main(String... args) {
GenericApplicationContext ctx =
new AnnotationConfigApplicationContext(DestructiveBeanConfig.class);

ctx.getBean(DestructiveBeanWithJSR250.class);
System.out.println("Calling destroy()");
ctx.destroy();

System.out.println("Called destroy()");

The @PostConstruct annotation is used as well in the bean configuration; thus, running this code will
produce the same result observed so far.

Initializing Bean
File exists: true
Calling destroy()
Destroying Bean
File exists: false
Called destroy()

The destruction callback is an ideal mechanism for ensuring that your applications shut down
gracefully and do not leave resources open or in an inconsistent state. However, you still have to decide
whether to use the destruction method callback, the DisposableBean interface, the @PreDestroy annotation,
the XML destroy-attribute attribute, or the destroyMethod. Again, let the requirements of your
application drive your decision in this respect; use the method callback where portability is an issue, and use
the DisposableBean interface or a JSR-250 annotation to reduce the amount of configuration required.

145

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Understanding Order of Resolution

As with the case of bean creation, you can use all mechanisms on the same bean instance for bean
destruction. In this case, Spring invokes the method annotated with @PreDestroy first and then
DisposableBean.destroy(), followed by your destroy method configured in your XML definition.

Using a Shutdown Hook

The only drawback of the destruction callbacks in Spring is that they are not fired automatically; you need
to remember to call AbstractApplicationContext.destroy() before your application is closed. When
your application runs as a servlet, you can simply call destroy() in the servlet’s destroy() method.
However, in a stand-alone application, things are not quite so simple, especially if you have multiple
exit points out of your application. Fortunately, there is a solution. Java allows you to create a shutdown
hook, which is a thread that is executed just before the application shuts down. This is the perfect way to
invoke the destroy() method of your AbstractApplicationContext (which was being extended by all
concrete ApplicationContext implementations). The easiest way to take advantage of this mechanism
is to use AbstractApplicationContext’s registerShutdownHook () method. The method automatically
instructs Spring to register a shutdown hook of the underlying JVM runtime. The bean declaration and
configuration stay the same as before; the only thing that changes is the main method: the call of ctx.
registerShutdownHook is added, and calls to ctx.destroy() or close() will be removed.

public class DestructiveBeanWithHook {

public static void main(String... args) {
GenericApplicationContext ctx =
new AnnotationConfigApplicationContext(
DestructiveBeanConfig.class);

ctx.getBean(DestructiveBeanWithJSR250.class);
ctx.registerShutdownHook();

Running this code will produce the same result observed so far.

Initializing Bean
File exists: true
Destroying Bean

File exists: false

Asyou can see, the destroy() method is invoked, even though we didn’t write any code to invoke it
explicitly as the application was shutting down.

Making Your Beans “Spring Aware”

One of the biggest selling points of dependency injection over dependency lookup as a mechanism for
achieving inversion of control is that your beans do not need to be aware of the implementation of the
container that is managing them. To a bean that uses constructor or setter injection, the Spring container is
the same as the container provided by Google Guice or PicoContainer. However, in certain circumstances,

146

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

you may need a bean that is using dependency injection to obtain its dependencies so it can interact with
the container for some other reason. An example of this may be a bean that automatically configures a
shutdown hook for you, and thus it needs access to ApplicationContext. In other cases, a bean may want to
know what its name is (that is, the bean name that was assigned within the current ApplicationContext) so
it can perform some additional processing based on this name.

That said, this feature is really intended for internal Spring use. Giving the bean name some kind of
business meaning is generally a bad idea and can lead to configuration problems as bean names have to
be artificially manipulated to support their business meaning. However, we have found that being able to
have a bean find out its name at runtime is really useful for logging. Say you have many beans of the same
type running under different configurations. The bean name can be included in log messages to help you
differentiate between the one that is generating errors and the ones that are working fine when something
goes wrong.

Using the BeanNameAware Interface

The BeanNameAware interface, which can be implemented by a bean that wants to obtain its own name,
has a single method: setBeanName(String). Spring calls the setBeanName() method after it has finished
configuring your bean but before any life-cycle callbacks (initialization or destroy) are called (refer to
Figure 4-1). In most cases, the implementation of the setBeanName() interface is just a single line that
stores the value passed in by the container in a field for use later. The following code snippet shows a
simple bean that obtains its name by using BeanNameAware and then later uses this bean name to print
to the console:

package com.apress.prospring5.ch4;
import org.springframework.beans.factory.BeanNameAware;

public class NamedSinger implements BeanNameAware {
private String name;

/** @Implements {@link BeanNameAwarettsetBeanName(String)} */
public void setBeanName(String beanName) {

this.name = beanName;
}

public void sing() {
System.out.println("Singer " + name + " - sing()");
}

This implementation is fairly trivial. Remember that BeanNameAware. setBeanName() is called before
the first instance of the bean is returned to your application via a call to ApplicationContext.getBean(),
so there is no need to check whether the bean name is available in the sing() method. Here you can see the
configuration contained in the app-context-xml.xml file used in this example:

<beans ...>
<bean id="johnMayer"
class="com.apress.prospring5.ch4.NamedSinger"/>
</beans>

147

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

As you can see, no special configuration is required to take advantage of the BeanNameAware interface.
In the following code snippet, you can see a simple example application that retrieves the Singer instance
from ApplicationContext and then calls the sing() method:

package com.apress.prospring5.ch4;
import org.springframework.context.support.GenericXmlApplicationContext;

public class NamedSingerDemo {
public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

NamedSinger bean = (NamedSinger) ctx.getBean("johnMayer");
bean.sing();

ctx.close();

This example generates the following log output; notice the inclusion of the bean name in the log
message for the call to sing():

Singer johnMayer - sing()

Using the BeanNameAware interface is really quite simple, and it is put to good use when you are
improving the quality of your log messages. Avoid being tempted to give your bean names business meaning
just because you can access them; by doing so, you are coupling your classes to Spring for a feature that
brings negligible benefit. If your beans need some kind of name internally, have them implement an
interface such as Nameable (which is specific to your application) with a method setName () and then
give each bean a name by using dependency injection. This way, you can keep the names you use for
configuration concise, and you won’t need to manipulate your configuration unnecessarily to give your
beans names with business meaning.

Using the ApplicationContextAware Interface

ApplicationContextAware was introduced at the end of Chapter 3 to show how Spring can be used to deal
with beans that require other beans to function that are not injected using constructors or setters in the
configuration (the depends-on example).

Using the ApplicationContextAware interface, it is possible for your beans to get a reference to the
ApplicationContext instance that configured them. The main reason this interface was created is to allow a
bean to access Spring’s ApplicationContext in your application, for example, to acquire other Spring beans
programmatically, using getBean (). You should, however, avoid this practice and use dependency injection
to provide your beans with their collaborators. If you use the lookup-based getBean() approach to obtain
dependencies when you can use dependency injection, you are adding unnecessary complexity to your
beans and coupling them to the Spring Framework without good reason.

148

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Of course, ApplicationContext isn’t used just to look up beans; it performs a great many other
tasks. As you saw previously, one of these tasks is to destroy all singletons, notifying each of them in
turn before doing so. In the previous section, you saw how to create a shutdown hook to ensure that
ApplicationContext is instructed to destroy all singletons before the application shuts down. By using the
ApplicationContextAware interface, you can build a bean that can be configured in ApplicationContext to
create and configure a shutdown hook bean automatically. The following configuration shows the code for
this bean:

package com.apress.prospring5.ch4;

import org.springframework.beans.BeansException;

import org.springframework.context.ApplicationContext;

import org.springframework.context.ApplicationContextAware;

import org.springframework.context.support.GenericApplicationContext;

public class ShutdownHookBean implements ApplicationContextAware {
private ApplicationContext ctx;

/*¥* @Implements {@link ApplicationContextAwaret#s
etApplicationContext(ApplicationContext)} }*/
public void setApplicationContext(ApplicationContext ctx)
throws BeansException {

if (ctx instanceof GenericApplicationContext) {
((GenericApplicationContext) ctx).registerShutdownHook();
}

Most of this code should seem familiar to you by now. The ApplicationContextAware interface
defines a single method, setApplicationContext(ApplicationContext), that Spring calls to pass
your bean a reference to its ApplicationContext. In the previous code snippet, the ShutdownHookBean
class checks whether ApplicationContext is of type GenericApplicationContext, meaning
it supports the registerShutdownHook () method; if it does, it will register a shutdown hook to
ApplicationContext. The following configuration snippet shows how to configure this bean to work with
the DestructiveBeanWithInterface bean (app-context-annotation.xml):

<beans ...">
<context:annotation-config/>

<bean id="destructiveBean"
class="com.apress.prospring5.ch4.DestructiveBeanWithInterface"
p:filePath=
"#{systemProperties'java.io.tmpdir' }##{systemProperties'file.separator’' }test.txt"/>

<bean id="shutdownHook"

class="com.apress.prospring5.ch4.ShutdownHookBean"/>
</beans>

149

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Notice that no special configuration is required. The following code snippet shows a simple example
application that uses ShutdownHookBean to manage the destruction of singleton beans:

package com.apress.prospring5.ch4;

import javax.annotation.PostConstruct;

import javax.annotation.PreDestroy;

import java.io.File;

import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBeanWithInterface {
private File file;
private String filePath;

@PostConstruct
public void afterPropertiesSet() throws Exception {
System.out.println("Initializing Bean");

if (filePath == null) {
throw new IllegalArgumentException(
"You must specify the filePath property of " +
DestructiveBeanWithInterface.class);

}

this.file = new File(filePath);
this.file.createNewFile();

System.out.println("File exists: " + file.exists());

}

@PreDestroy
public void destroy() {
System.out.println("Destroying Bean");

if(!file.delete()) {
System.err.println("ERROR: failed to delete file.");

System.out.println("File exists: " + file.exists());

}

public void setFilePath(String filePath) {
this.filePath = filePath;
}

public static void main(String... args) throws Exception {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-annotation.xml");
ctx.registerShutdownHook();
ctx.refresh();

150

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

ctx.getBean("destructiveBean",
DestructiveBeanWithInterface.class);

This code should seem quite familiar to you. When Spring bootstraps ApplicationContext and
destructiveBean is defined in the configuration, Spring passes the reference of ApplicationContext to the
shutdownHook bean for registering the shutdown hook. Running this example yields the following output, as
expected:

Initializing Bean
File exists: true
Destroying Bean

File exists: false

Asyou can see, even though no calls to destroy() are in the main application, ShutdownHookBean is
registered as a shutdown hook, and it calls destroy() just before the application shuts down.

Use of FactoryBeans

One of the problems that you will face when using Spring is how to create and then inject dependencies

that cannot be created simply by using the new operator. To overcome this problem, Spring provides the
FactoryBean interface that acts as an adapter for objects that cannot be created and managed using the
standard Spring semantics. Typically, you use FactoryBeans to create beans that you cannot create by using
the new operator, such as those you access through static factory methods, although this is not always the
case. Simply put, a FactoryBean is a bean that acts as a factory for other beans. FactoryBeans are configured
within your ApplicationContext like any normal bean, but when Spring uses the FactoryBean interface to
satisfy a dependency or lookup request, it does not return FactoryBean; instead, it invokes the FactoryBean.
getObject() method and returns the result of that invocation.

FactoryBeans are used to great effect in Spring; the most noticeable uses are the creation of
transactional proxies, which we cover in Chapter 9, and the automatic retrieval of resources from a JNDI
context. However, FactoryBeans are useful not just for building the internals of Spring; you'll find them really
useful when you build your own applications because they allow you to manage many more resources by
using IoC than would otherwise be available.

FactoryBean Example: The MessageDigestFactoryBean

Often the projects that we work on require some kind of cryptographic processing; typically, this

involves generating a message digest or hash of a user’s password to be stored in a database. In Java, the
MessageDigest class provides functionality for creating a digest of any arbitrary data. MessageDigest itself is
abstract, and you obtain concrete implementations by calling MessageDigest.getInstance() and passing
in the name of the digest algorithm you want to use. For instance, if we want to use the MD5 algorithm to
create a digest, we use the following code to create the MessageDigest instance:

MessageDigest md5 = MessageDigest.getInstance("MD5");

151

http://dx.doi.org/10.1007/978-1-4842-2808-1_9

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

If we want to use Spring to manage the creation of the MessageDigest object, the best we can do
without a FactoryBean is have a property, algorithmName, on your bean and then use an initialization
callback to call MessageDigest.getInstance(). Using a FactoryBean, we can encapsulate this logic inside a
bean. Then any beans that require a MessageDigest instance can simply declare a property, messageDigest,
and use the FactoryBean to obtain the instance. The following code snippet shows an implementation of
FactoryBean that does just this:

package com.apress.prospring5.ch4;

import java.security.MessageDigest;
import org.springframework.beans.factory.FactoryBean;
import org.springframework.beans.factory.InitializingBean;

public class MessageDigestFactoryBean implements
FactoryBean<MessageDigest>, InitializingBean {
private String algorithmName = "MD5";

private MessageDigest messageDigest = null;

public MessageDigest getObject() throws Exception {
return messageDigest;
}

public Class<MessageDigest> getObjectType() {
return MessageDigest.class;
}

public boolean isSingleton() {
return true;
}

public void afterPropertiesSet() throws Exception {
messageDigest = MessageDigest.getInstance(algorithmName);
}

public void setAlgorithmName(String algorithmName) {
this.algorithmName = algorithmName;
}

Spring calls the getObject() method to retrieve the object created by the FactoryBean. This is the actual
object that is passed to other beans that use the FactoryBean as a collaborator. In the code snippet, you can
see that MessageDigestFactoryBean passes a clone of the stored MessageDigest instance that is created in
the InitializingBean.afterPropertiesSet() callback.

The getObjectType() method allows you to tell Spring what type of object your FactoryBean will
return. This can be null if the return type is unknown in advance (for example, the FactoryBean creates
different types of objects depending on the configuration, which will be determined only after the
FactoryBean is initialized), but if you specify a type, Spring can use it for autowiring purposes. We return
MessageDigest as our type (in this case, a class, but try to return an interface type and have the FactoryBean
instantiate the concrete implementation class, unless necessary). The reason is that we do not know what
concrete type will be returned (not that it matters, because all beans will define their dependencies by using
MessageDigest anyway).

152

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

The isSingleton() property allows you to inform Spring whether the FactoryBean is managing a
singleton instance. Remember that by setting the singleton attribute of the FactoryBean’s <bean> tag, you
tell Spring about the singleton status of the FactoryBean itself, not the objects it is returning. Now let’s see
how the FactoryBean is employed in an application. In the following code snippet, you can see a simple
bean that maintains two MessageDigest instances and then displays the digests of a message passed to its
digest() method:

package com.apress.prospring5.ch4;

import java.security.MessageDigest;

public class MessageDigester {
private MessageDigest digest1;
private MessageDigest digest2;

public void setDigesti(MessageDigest digest1) {
this.digest1 = digest1;
}

public void setDigest2(MessageDigest digest2) {
this.digest2 = digest2;
}

public void digest(String msg) {
System.out.println("Using digest1i");
digest(msg, digest1);

System.out.println("Using digest2");
digest(msg, digest2);
}

private void digest(String msg, MessageDigest digest) {
System.out.println("Using alogrithm: " + digest.getAlgorithm());
digest.reset();
byte[] bytes = msg.getBytes();
byte[] out = digest.digest(bytes);
System.out.println(out);

The following configuration snippet shows an example configuration for two
MessageDigestFactoryBean classes, one for the SHA1 algorithm and the other using the default (MD5)
algorithm (app-context-xml.xml):

<beans ...>
<bean id="shaDigest"
class="com.apress.prospring5.ch4.MessageDigestFactoryBean"
p:algorithmName="SHA1"/>
<bean id="defaultDigest"

class="com.apress.prospring5.ch4.MessageDigestFactoryBean"/>

153

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

<bean id="digester"
class="com.apress.prospring5.ch4.MessageDigester"
p:digesti-ref="shaDigest"
p:digest2-ref="defaultDigest"/>
</beans>

As you can see, not only we have configured the two MessageDigestFactoryBean classes, but we have
also configured a MessageDigester, using the two MessageDigestFactoryBean classes, to provide values for
the digest1 and digest2 properties. For the defaultDigest bean, since the algorithmName property was
not specified, no injection will happen, and the default algorithm (MD5) that was coded in the class will be
used. In the following code sample, you see a basic example class that retrieves the MessageDigester bean
from the BeanFactory and creates the digest of a simple message:

package com.apress.prospring5.ch4;
import org.springframework.context.support.GenericXmlApplicationContext;

public class MessageDigestDemo {
public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

MessageDigester digester = ctx.getBean("digester"”,
MessageDigester.class);
digester.digest("Hello World!");

ctx.close();

Running this example gives the following output:

Using digest1

Using alogrithm: SHA1
[B@1301889

Using digest2

Using alogrithm: MD5
[B@1188e820

Asyou can see, the MessageDigest bean is provided with two MessageDigest implementations, SHA1
and MD5, even though no MessageDigest beans are configured in the BeanFactory. This is the FactoryBean
at work.

FactoryBeans are the perfect solution when you are working with classes that cannot be created by
using the new operator. If you work with objects that are created by using a factory method and you want to
use these classes in a Spring application, create a FactoryBean to act as an adapter, allowing your classes to
take full advantage of Spring’s IoC capabilities.

154

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Using FactoryBeans is different when configuration via Java configuration is used, because in this
case there is a restriction from the compiler to set the property with the proper type; thus, the getObject ()
method must be called explicitly. In the following code snippet, you can see an example of configuring the
same beans as in the previous example, but using Java configuration:

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.MessageDigestFactoryBean;

import com.apress.prospring5.ch4.MessageDigester;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.context.support.GenericApplicationContext;

public class MessageDigesterConfigDemo {
@Configuration
static class MessageDigesterConfig {

@Bean
public MessageDigestFactoryBean shaDigest() {
MessageDigestFactoryBean factoryOne =
new MessageDigestFactoryBean();
factoryOne.setAlgorithmName("SHA1");
return factoryOne;

}

@Bean

public MessageDigestFactoryBean defaultDigest() {
return new MessageDigestFactoryBean();

}

@Bean

MessageDigester digester() throws Exception {
MessageDigester messageDigester = new MessageDigester();
messageDigester.setDigest1(shaDigest().getObject());
messageDigester.setDigest2(defaultDigest().getObject());
return messageDigester;

}
public static void main(String... args) {
GenericApplicationContext ctx =
new AnnotationConfigApplicationContext(MessageDigesterConfig.class);
MessageDigester digester = (MessageDigester) ctx.getBean("digester");

digester.digest("Hello World!");
ctx.close();

If you run this class, the same output as before is printed.

155

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Accessing a FactoryBean Directly

Given that Spring automatically satisfies any references to a FactoryBean by the objects produced
by that FactoryBean, you may be wondering whether you can actually access the FactoryBean directly.
The answer is yes.

Accessing FactoryBean is simple: you prefix the bean name with an ampersand in the call to getBean(),
as shown in the following code sample:

package com.apress.prospring5.ch4;

import org.springframework.context.support.GenericXmlApplicationContext;
import java.security.MessageDigest;

public class AccessingFactoryBeans {

public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();
ctx.getBean("shaDigest", MessageDigest.class);

MessageDigestFactoryBean factoryBean =
(MessageDigestFactoryBean) ctx.getBean("&shaDigest");
try {
MessageDigest shaDigest = factoryBean.getObject();
System.out.println(shaDigest.digest("Hello world".getBytes()));
} catch (Exception ex) {
ex.printStackTrace();

}
ctx.close();
}
}
Running this program generates the following output:
[B@130889

This feature is used in a few places in the Spring code, but your application should really have no reason
to use it. The intention of FactoryBean is to be used as a piece of supporting infrastructure to allow you to
use more of your application’s classes in an IoC setting. Avoid accessing FactoryBean directly and invoking
its getObject () manually, and let Spring do it for you; if you do this manually, you are making extra work for
yourself and are unnecessarily coupling your application to a specific implementation detail that could quite
easily change in the future.

156

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Using the factory-bean and factory-method Attributes

Sometimes you need to instantiate JavaBeans that were provided by a non-Spring-powered third-party
application. You don’t know how to instantiate that class, but you know that the third-party application
provides a class that can be used to get an instance of the JavaBean that your Spring application needs.
In this case, Spring bean’s factory-bean and factory-method attributes in the <bean> tag can be used.
To take a look at how it works, the following code snippet shows another version of the
MessageDigestFactory that provides a method to return a MessageDigest bean:

package com.apress.prosprings.ch4;
import java.security.MessageDigest;

public class MessageDigestFactory {
private String algorithmName = "MD5";

public MessageDigest createInstance() throws Exception {
return MessageDigest.getInstance(algorithmName);

}

public void setAlgorithmName(String algorithmName) {
this.algorithmName = algorithmName;
}

The following configuration snippet shows how to configure the factory method for getting the
corresponding MessageDigest bean instance (app-context-xml.xml):

<beans...>

<bean id="shaDigestFactory"
class="com.apress.prospring5.ch4.MessageDigestFactory"
p:algorithmName="SHA1"/>

<bean id="defaultDigestFactory"
class="com.apress.prospring5.ch4.MessageDigestFactory"/>

<bean id="shaDigest"
factory-bean="shaDigestFactory"
factory-method="createInstance">
</bean>

<bean id="defaultDigest"
factory-bean="defaultDigestFactory"
factory-method="createInstance"/>

<bean id="digester"
class="com.apress.prospring5.ch4.MessageDigester"
p:digesti-ref="shaDigest"
p:digest2-ref="defaultDigest"/>
</beans>

157

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Notice that two digest factory beans were defined, one using SHA1 and the other using the default
algorithm. Then for the beans shaDigest and defaultDigest, we instructed Spring to instantiate the beans
by using the corresponding message digest factory bean via the factory-bean attribute, and we specified
the method to use to obtain the bean instance via the factory-method attribute. The following code snippet
depicts the testing class:

package com.apress.prospring5.ché4;
import org.springframework.context.support.GenericXmlApplicationContext;

public class MessageDigestFactoryDemo {
public static void main(String... args) {
GenericXmlApplicationContext ctx =
new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-xml.xml");
ctx.refresh();

MessageDigester digester = ctx.getBean("digester",
MessageDigester.class);
digester.digest("Hello World!");

ctx.close();

Running the program generates the following output:

Using digest1

Using alogrithm: SHA1
[B@77a57272

Using digest2

Using alogrithm: MD5
[B@7181ae3f

JavaBeans PropertyEditors

If you are not entirely familiar with JavaBeans concepts, a PropertyEditor is an interface that converts a
property’s value to and from its native type representation into a String. Originally, this was conceived as a
way to allow property values to be entered, as String values, into an editor and have them transformed into
the correct type. However, because PropertyEditors are inherently lightweight classes, they have found
uses in many settings, including Spring.

Because a good portion of property values in a Spring-based application start life in the BeanFactory
configuration file, they are essentially Strings. However, the property that these values are set on may not
be String-typed. So, to save you from having to create a load of String-typed properties artificially, Spring
allows you to define PropertyEditors to manage the conversion of String-based property values into the
correct types. Figure 4-2 shows the full list of PropertyEditors that are part of the spring-beans package;
you can see this list with any smart Java editor.

158

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

v spring-beans-5.0.0.M4.jar library root

A META-INF
j org.springframework.beans
jannotation

- [y factory
€, = ByteArrayPropertyEditor
€, = CharacterEditor
€, = CharArrayPropertyEditor
€, = CharsetEditor
€, & ClassArrayEditor
€, = ClassEditor
€; = CurrencyEditor
€ = CustomBooleanEditor
€, = CustomCollectionEditor
€, = CustomDateEditor
€, = CustomMapEditor
€, = CustomNumberEditor
€, = FileEditor
€ = InputSourceEditor
€, = InputStreamEditor
€, = LocaleEditor
€, = PathEditor
€, = PatternEditor
€, = PropertiesEditor
€, = ReaderEditor
€, = ResourceBundleEditor
€, = StringArrayPropertyEditor
€, = StringTrimmerEditor
€, = TimeZoneEditor
€, = URIEditor
€, = URLEditor
€, = UUIDEditor
€, = ZoneldEditor

Figure 4-2. Spring PropertyEditors

They all extend java.beans.PropertyEditorSupport and can be used for implicit conversion of String
literals into property values to be injected in beans; thus, they are preregistered with BeanFactory.

Using the Built-in PropertyEditors

The following code snippet shows a simple bean that declares 14 properties, one for each of the types
supported by the built-in PropertyEditor implementations:

package com.apress.prospring5.ch4;

import java.io.File;

import java.io.InputStream;

import java.net.URL; import java.util.Date; import java.util.List; import java.util.locale;
import java.util.Properties; import java.util.regex.Pattern; import java.text.
SimpleDateFormat;

import org.springframework.beans.PropertyEditorRegistrar;

import org.springframework.beans.PropertyEditorRegistry;

159

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

import org.springframework.beans.propertyeditors.CustomDateEditor;
import org.springframework.beans.propertyeditors.StringTrimmerEditor;

import org.springframework.context.support.GenericXmlApplicationContext;

public class PropertyEditorBean {

)

160

private byte[] bytes; // ByteArrayPropertyEditor
private Character character; //Characterkditor

private Class cls; // ClassEditor

private Boolean trueOrFalse; // CustomBooleanEditor
private List<String> stringlist; // CustomCollectionEditor
private Date date; // CustomDateEditor
private Float floatValue; // CustomNumberEditor
private File file; // FileEditor

private InputStream stream; // InputStreamEditor
private Locale locale; // LocaleEditor

private Pattern pattern; // PatternEditor

private Properties properties; // PropertiesEditor
private String trimString; // StringTrimmerEditor
private URL url; // URLEditor

public void setCharacter(Character character) {
System.out.println("Setting character: " + character);
this.character = character;

}

public void setCls(Class cls) {
System.out.println("Setting class:
this.cls = cls;

+ cls.getName());

}

public void setFile(File file) {
System.out.println("Setting file: " + file.getName());
this.file = file;

}

public void setlLocale(Locale locale) {
System.out.println("Setting locale:
this.locale = locale;

+ locale.getDisplayName());

}

public void setProperties(Properties properties) {
System.out.println("Loaded " + properties.size() +
this.properties = properties;

" properties");

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

public void setUrl(URL url) {
System.out.println("Setting URL: " + url.toExternalForm());
this.url = url;

}

public void setBytes(byte... bytes) {
System.out.println("Setting bytes:
this.bytes = bytes;

+ Arrays.toString(bytes));

}

public void setTrueOrFalse(Boolean trueOrFalse) {
System.out.println("Setting Boolean: " + trueOrFalse);
this.trueOrFalse = trueOrFalse;

}

public void setStringlList(List<String> stringlist) {
System.out.println("Setting string list with size:
+ stringlist.size());

this.stringlist = stringlist;

for (String string: stringlist) {
System.out.println("String member: " + string);
}

}

public void setDate(Date date) {
System.out.println("Setting date: " + date);
this.date = date;

}

public void setFloatValue(Float floatValue) {
System.out.println("Setting float value: " + floatValue);
this.floatValue = floatValue;

}

public void setStream(InputStream stream) {
System.out.println("Setting stream: " + stream);
this.stream = stream;

}

public void setPattern(Pattern pattern) {
System.out.println("Setting pattern:
this.pattern = pattern;

+ pattern);

}

public void setTrimString(String trimString) {
System.out.println("Setting trim string: "
this.trimString = trimString;

+ trimString);

161

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

public static class CustomPropertyEditorRegistrar
implements PropertyEditorRegistrar {
@verride
public void registerCustomEditors(PropertyEditorRegistry registry) {
SimpleDateFormat dateFormatter = new SimpleDateFormat("MM/dd/yyyy");
registry.registerCustomEditor(Date.class,
new CustomDateEditor(dateFormatter, true));

registry.registerCustomEditor(String.class, new StringTrimmerEditor(true));

}

public static void main(String... args) throws Exception {
File file = File.createTempFile("test", "txt");
file.deleteOnExit();

GenericXmlApplicationContext ctx =

new GenericXmlApplicationContext();
ctx.load("classpath:spring/app-context-01.xml");
ctx.refresh();

PropertyEditorBean bean =
(PropertyEditorBean) ctx.getBean("builtInSample");

ctx.close();

In the following configuration sample, you can see the configuration used to declare a bean of type
PropertyEditorBean with values being specified for all the previous properties (app-config-01.xml):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:util="http://www.springframework.org/schema/util"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

<bean id="customEditorConfigurer"
class="org.springframework.beans.factory.config.CustomEditorConfigurer"
p:propertyEditorRegistrars-ref="propertykditorRegistrarsList"/>

<util:list id="propertyEditorRegistrarsList">
<bean class="com.apress.prospring5.ch4.PropertyEditorBean$
CustomPropertyEditorRegistrar"/>
</util:list>

162

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

<bean id="builtInSample"

class="com.apress.prospring5.ch4.PropertyEditorBean"

:character="A"

:bytes="John Mayer"

:cls="java.lang.String"

:trueOrFalse="true"

:stringlist-ref="stringlist"

:stream="test.txt"

:floatValue="123.45678"

:date="05/03/13"

p:file="#{systemProperties'java.io.tmpdir"'}
#{systemProperties'file.separator'}test.txt"

:locale="en_US"

:pattern="a*b"

:properties="name=Chris age=32"

strimString=" String need trimming

rurl="https://spring.io/"

T T T T T T T T

T T T T T

/>

<util:list id="stringlist">
<value>String member 1</value>
<value>String member 2</value>
</util:list>
</beans>

As you can see, although all the properties on the PropertyEditorBean are not Strings, the values
for the properties are specified as simple Strings. Also note that we registered the CustomDateEditor
and StringTrimmerEditor, since those two editors were not registered by default in Spring. Running this
example yields the following output:

Setting bytes: [74, 111, 104, 110, 32, 77, 97, 121, 101, 114]
Setting character: A

Setting class: java.lang.String

Setting date: Wed May 03 00:00:00 EET 13

Setting file: test.txt

Setting float value: 123.45678

Setting locale: English (United States)

Setting pattern: a*b

Loaded 1 properties

Setting stream: java.io.BufferedInputStream@42e25bob
Setting string list with size: 2

String member: String member 1

String member: String member 2

Setting trim string: String need trimming

Setting Boolean: true

Setting URL: https://spring.io/

As you can see, Spring has, using the built-in PropertyEditors, converted the String representations

of the various properties to the correct types. Table 4-1 lists the most important built-in PropertyEditors
available in Spring.

163

CHAPTER 4 © SPRING CONFIGURATION IN DETAIL AND SPRING BOOT

Table 4-1. Spring PropertyEditors

PropertyEditor

Description

ByteArrayPropertyEditor
CharacterEditor
ClassEditor

CustomBooleanEditor

CustomCollectionEditor

CustomDateEditor

FileEditor

InputStreamEditor

LocaleEditor
Patternkditor
PropertieskEditor
StringTrimmerEditor

URLEditor

Converts String values to their corresponding byte representations.
Populates a property of type Character or char from a String value.

Converts from a fully qualified class name into a Class instance.
When using this PropertyEditor, be careful not to include

any extraneous spaces on either side of the class name when
using GenericXmlApplicationContext because this results in a
ClassNotFoundException.

Converts a string into a Ja