
Pro Spring 5
An In-Depth Guide to the Spring
Framework and Its Tools
—
Fifth Edition
—
Iuliana Cosmina
Rob Harrop
Chris Schaefer
Clarence Ho

Pro Spring 5
An In-Depth Guide to the Spring

Framework and Its Tools

Fifth Edition

Iuliana Cosmina
Rob Harrop
Chris Schaefer
Clarence Ho

Pro Spring 5: An In-Depth Guide to the Spring Framework and Its Tools

Iuliana Cosmina					 Rob Harrop
Sibiu, Sibiu, Romania				 Reddish, United Kingdom

Chris Schaefer					 Clarence Ho
Venice, Florida, USA				 Hong Kong, China

ISBN-13 (pbk): 978-1-4842-2807-4			 ISBN-13 (electronic): 978-1-4842-2808-1
DOI 10.1007/978-1-4842-2808-1

Library of Congress Control Number: 2017955423

Copyright © 2017 by Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook Bulk
Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484228074. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/
rights-permissions
www.apress.com/
rights-permissions
www.apress.com/bulk-sales
www.apress.com/9781484228074
www.apress.com/source-code

I dedicate this book to my friends, to my godson s ̗tefan, and to all the
musicians who have made working on this book easy with their music.

—Iuliana Cosmina

v

Contents at a Glance

About the Authors��xxiii

About the Technical Reviewer��xxv

Acknowledgments��xxvii

Introduction���xxix

■■Chapter 1: Introducing Spring�� 1

■■Chapter 2: Getting Started�� 19

■■Chapter 3: Introducing IoC and DI in Spring��� 37

■■Chapter 4: Spring Configuration in Detail and Spring Boot�������������������������������� 125

■■Chapter 5: Introducing Spring AOP��� 211

■■Chapter 6: Spring JDBC Support�� 297

■■Chapter 7: Using Hibernate in Spring��� 355

■■Chapter 8: Data Access in Spring with JPA2�� 393

■■Chapter 9: Transaction Management�� 467

■■Chapter 10: Validation with Type Conversion and Formatting��������������������������� 509

■■Chapter 11: Task Scheduling�� 537

■■Chapter 12: Using Spring Remoting��� 557

■■Chapter 13: Spring Testing��� 615

■■Chapter 14: Scripting Support in Spring�� 639

■■Chapter 15: Application Monitoring��� 655

■ Contents at a Glance

vi

■■Chapter 16: Web Applications�� 665

■■Chapter 17: WebSocket�� 751

■■Chapter 18: Spring Projects: Batch, Integration, XD, and More�������������������������� 773

■■Appendix A: Setting Up Your Development Environment������������������������������������ 829

Index�� 841

vii

Contents

About the Authors��xxiii

About the Technical Reviewer��xxv

Acknowledgments��xxvii

Introduction���xxix

■■Chapter 1: Introducing Spring�� 1

What Is Spring?��� 1

Evolution of the Spring Framework��� 2

Inverting Control or Injecting Dependencies?�� 8

Evolution of Dependency Injection�� 8

Beyond Dependency Injection��� 10

The Spring Project��� 15

Origins of Spring�� 15

The Spring Community�� 15

The Spring Tool Suite��� 16

The Spring Security Project��� 16

Spring Boot�� 16

Spring Batch and Integration��� 17

Many Other Projects�� 17

Alternatives to Spring�� 17

JBoss Seam Framework�� 17

Google Guice�� 17

PicoContainer�� 17

JEE 7 Container��� 18

Summary��� 18

■ Contents

viii

■■Chapter 2: Getting Started�� 19

Obtaining the Spring Framework�� 20

Getting Started Quickly�� 20

Checking Spring Out of GitHub�� 20

Using the Right JDK��� 21

Understanding Spring Packaging�� 21

Choosing Modules for Your Application��� 24

Accessing Spring Modules on the Maven Repository�� 24

Accessing Spring Modules Using Gradle��� 26

Using Spring Documentation��� 26

Putting a Spring into Hello World��� 27

Building the Sample Hello World Application��� 27

Refactoring with Spring��� 31

Summary��� 35

■■Chapter 3: Introducing IoC and DI in Spring��� 37

Inversion of Control and Dependency Injection��� 37

Types of Inversion of Control��� 38

Dependency Pull�� 38

Contextualized Dependency Lookup�� 39

Constructor Dependency Injection��� 40

Setter Dependency Injection�� 41

Injection vs. Lookup��� 41

Setter Injection vs. Constructor Injection�� 42

Inversion of Control in Spring�� 45

Dependency Injection in Spring��� 46

Beans and BeanFactory��� 46

BeanFactory Implementations��� 46

ApplicationContext��� 48

Configuring ApplicationContext��� 48

Setting Spring Configuration Options�� 49

Basic Configuration Overview��� 49

■ Contents

ix

Declaring Spring Components��� 50

Using Method Injection�� 84

Understanding Bean Naming��� 95

Understanding Bean Instantiation Mode��� 105

Resolving Dependencies��� 109

Autowiring Your Bean�� 112

When to Use Autowiring�� 121

Setting Bean Inheritance��� 122

Summary��� 124

■■Chapter 4: Spring Configuration in Detail and Spring Boot�������������������������������� 125

Spring’s Impact on Application Portability�� 126

Bean Life-Cycle Management��� 127

Hooking into Bean Creation��� 128

Executing a Method When a Bean Is Created�� 128

Implementing the InitializingBean Interface�� 132

Using the JSR-250 @PostConstruct Annotation�� 134

Declaring an Initialization Method Using @Bean�� 137

Understanding Order of Resolution��� 138

Hooking into Bean Destruction�� 139

Executing a Method When a Bean Is Destroyed�� 139

Implementing the DisposableBean Interface��� 141

Using the JSR-250 @PreDestroy Annotation��� 143

Declaring a Destroy Method Using @Bean��� 144

Understanding Order of Resolution��� 146

Using a Shutdown Hook�� 146

Making Your Beans “Spring Aware”�� 146

Using the BeanNameAware Interface�� 147

Using the ApplicationContextAware Interface��� 148

Use of FactoryBeans��� 151

FactoryBean Example: The MessageDigestFactoryBean��� 151

■ Contents

x

Accessing a FactoryBean Directly��� 156

Using the factory-bean and factory-method Attributes��� 157

JavaBeans PropertyEditors��� 158

Using the Built-in PropertyEditors��� 159

Creating a Custom PropertyEditor��� 164

More Spring ApplicationContext Configuration��� 167

Internationalization with the MessageSource��� 168

Using MessageSource in Stand-Alone Applications�� 171

Application Events��� 171

Accessing Resources�� 174

Configuration Using Java Classes��� 175

ApplicationContext Configuration in Java�� 175

Spring Mixed Configuration��� 185

Java or XML Configuration?��� 187

Profiles�� 187

An Example of Using the Spring Profiles Feature�� 187

Spring Profiles Using Java Configuration�� 190

Considerations for Using Profiles�� 193

Environment and PropertySource Abstraction�� 193

Configuration Using JSR-330 Annotations�� 198

Configuration Using Groovy��� 201

Spring Boot�� 204

Summary��� 210

■■Chapter 5: Introducing Spring AOP��� 211

AOP Concepts�� 212

Types of AOP�� 213

Using Static AOP�� 213

Using Dynamic AOP��� 213

Choosing an AOP Type��� 213

■ Contents

xi

AOP in Spring�� 214

The AOP Alliance�� 214

Hello World in AOP��� 214

Spring AOP Architecture�� 216

Joinpoints in Spring��� 216

Aspects in Spring��� 217

About the ProxyFactory Class�� 217

Creating Advice in Spring�� 217

Interfaces for Advice�� 219

Creating Before Advice�� 219

Securing Method Access by Using Before Advice��� 220

Creating After-Returning Advice�� 224

Creating Around Advice��� 227

Creating Throws Advice��� 230

Choosing an Advice Type��� 232

Advisors and Pointcuts in Spring�� 233

The Pointcut Interface��� 233

Available Pointcut Implementations�� 235

Using DefaultPointcutAdvisor�� 236

Creating a Static Pointcut by Using StaticMethodMatcherPointcut��� 236

Creating a Dynamic Pointcut by Using DyanmicMethodMatcherPointcut��� 239

Using Simple Name Matching��� 242

Creating Pointcuts with Regular Expressions�� 244

Creating Pointcuts with AspectJ Pointcut Expression��� 246

Creating Annotation Matching Pointcuts��� 247

Convenience Advisor Implementations�� 248

Understanding Proxies�� 249

Using JDK Dynamic Proxies��� 250

Using CGLIB Proxies�� 250

Comparing Proxy Performance�� 251

Choosing a Proxy to Use�� 256

■ Contents

xii

Advanced Use of Pointcuts�� 256

Using Control Flow Pointcuts��� 256

Using a Composable Pointcut�� 259

Composition and the Pointcut Interface�� 262

Pointcut Summary��� 262

Getting Started with Introductions�� 263

Introduction Basics�� 263

Object Modification Detection with Introductions��� 265

Introduction Summary��� 270

Framework Services for AOP��� 271

Configuring AOP Declaratively��� 271

Using ProxyFactoryBean�� 271

Using the aop Namespace��� 277

Using @AspectJ-Style Annotations��� 284

Considerations for Declarative Spring AOP Configuration��� 291

AspectJ Integration��� 291

About AspectJ�� 291

Using Singleton Aspects�� 292

Summary��� 295

■■Chapter 6: Spring JDBC Support�� 297

Introducing Lambda Expressions�� 298

Sample Data Model for Example Code�� 298

Exploring the JDBC Infrastructure��� 304

Spring JDBC Infrastructure��� 309

Overview and Used Packages��� 309

Database Connections and DataSources�� 310

Embedded Database Support�� 315

Using DataSources in DAO Classes��� 317

Exception Handling�� 319

■ Contents

xiii

The JdbcTemplate Class��� 321

Initializing JdbcTemplate in a DAO Class��� 321

Using Named Parameters with NamedParameterJdbcTemplate��� 323

Retrieving Domain Objects with RowMapper<T>��� 325

Retrieving Nested Domain Objects with ResultSetExtractor��� 327

Spring Classes That Model JDBC Operations�� 330

Querying Data by Using MappingSqlQuery<T>��� 333

Updating Data by Using SqlUpdate�� 337

Inserting Data and Retrieving the Generated Key��� 340

Batching Operations with BatchSqlUpdate��� 342

Calling Stored Functions by Using SqlFunction��� 347

Spring Data Project: JDBC Extensions��� 349

Considerations for Using JDBC�� 349

Spring Boot JDBC�� 350

Summary��� 353

■■Chapter 7: Using Hibernate in Spring��� 355

Sample Data Model for Example Code�� 356

Configuring Hibernate’s SessionFactory��� 358

ORM Mapping Using Hibernate Annotations��� 362

Simple Mappings��� 363

One-to-Many Mappings��� 367

Many-to-Many Mappings�� 369

The Hibernate Session Interface��� 371

Querying Data by Using the Hibernate Query Language��� 372

Simple Querying with Lazy Fetching��� 372

Querying with Associations Fetching�� 375

Inserting Data�� 378

Updating Data�� 382

Deleting Data��� 384

■ Contents

xiv

Configuring Hibernate to Generate Tables from Entities��� 386

Annotating Methods or Fields?��� 389

Considerations When Using Hibernate�� 391

Summary��� 392

■■Chapter 8: Data Access in Spring with JPA2�� 393

Introducing JPA 2.1��� 394

Sample Data Model for Example Code�� 394

Configuring JPA’s EntityManagerFactory��� 395

Using JPA Annotations for ORM Mapping�� 398

Performing Database Operations with JPA��� 400

Using the Java Persistence Query Language to Query Data��� 400

Querying with Untyped Results��� 410

Querying for a Custom Result Type with a Constructor Expression������������������������������ 412

Inserting Data�� 415

Updating Data�� 417

Deleting data��� 419

Using a Native Query��� 420

Using a Simple Native Query��� 421

Native Querying with SQL ResultSet Mapping�� 421

Using the JPA 2 Criteria API for a Criteria Query��� 422

Introducing Spring Data JPA��� 429

Adding Spring Data JPA Library Dependencies��� 429

Using Spring Data JPA Repository Abstraction for Database Operations�� 430

Using JpaRepository��� 436

Spring Data JPA with Custom Queries�� 437

Keeping Track of Changes on the Entity Class��� 440

Keeping Entity Versions by Using Hibernate Envers�� 451

Adding Tables for Entity Versioning��� 452

Configuring EntityManagerFactory for Entity Versioning��� 453

■ Contents

xv

Enabling Entity Versioning and History Retrieval��� 456

Testing Entity Versioning��� 457

Spring Boot JPA��� 459

Considerations When Using JPA�� 465

Summary��� 466

■■Chapter 9: Transaction Management�� 467

Exploring the Spring Transaction Abstraction Layer�� 468

Transaction Types�� 468

Implementations of the PlatformTransactionManager�� 469

Analyzing Transaction Properties�� 470

The TransactionDefinition Interface��� 471

The TransactionStatus Interface�� 472

Sample Data Model and Infrastructure for Example Code�� 473

Creating a Simple Spring JPA Project with Dependencies�� 473

Sample Data Model and Common Classes�� 475

Using AOP Configuration for Transaction Management��� 486

Using Programmatic Transactions��� 488

Considerations on Transaction Management��� 490

Global Transactions with Spring�� 490

Infrastructure for Implementing the JTA Sample��� 491

Implementing Global Transactions with JTA�� 491

Spring Boot JTA��� 501

Considerations on Using JTA Transaction Manager��� 507

Summary��� 507

■■Chapter 10: Validation with Type Conversion and Formatting��������������������������� 509

Dependencies�� 510

Spring Type Conversion System�� 510

Conversion from a String Using PropertyEditors��� 511

■ Contents

xvi

Introducing Spring Type Conversion�� 514

Implementing a Custom Converter�� 514

Configuring ConversionService��� 515

Converting Between Arbitrary Types�� 517

Field Formatting in Spring��� 521

Implementing a Custom Formatter�� 521

Configuring ConversionServiceFactoryBean��� 523

Validation in Spring��� 524

Using the Spring Validator Interface�� 525

Using JSR-349 Bean Validation��� 527

Configuring Bean Validation Support in Spring�� 528

Creating a Custom Validator�� 531

Using AssertTrue for Custom Validation�� 534

Considerations for Custom Validation��� 535

Deciding Which Validation API to Use�� 535

Summary��� 535

■■Chapter 11: Task Scheduling�� 537

Dependencies for the Task Scheduling Samples�� 537

Task Scheduling in Spring��� 538

Introducing the Spring TaskScheduler Abstraction�� 539

Exploring a Sample Task�� 540

Using Annotations for Task Scheduling��� 547

Asynchronous Task Execution in Spring�� 551

Task Execution in Spring��� 554

Summary��� 556

■■Chapter 12: Using Spring Remoting��� 557

Using a Data Model for Samples��� 558

Adding Required Dependencies for the JPA Back End�� 560

■ Contents

xvii

Implementing and Configuring SingerService��� 562

Implementing SingerService��� 562

Configuring SingerService��� 564

Exposing the Service��� 567

Invoking the Service�� 568

Using JMS in Spring�� 570

Implementing a JMS Listener in Spring�� 573

Sending JMS Messages in Spring��� 574

Spring Boot Artemis Starter�� 576

Using RESTful-WS in Spring�� 579

Introducing RESTful Web Services�� 579

Adding Required Dependencies for Samples�� 580

Designing the Singer RESTful Web Service��� 580

Using Spring MVC to Expose RESTful Web Services�� 581

Configuring Castor XML��� 582

Implementing SingerController�� 584

Configuring a Spring Web Application��� 586

Using curl to Test RESTful-WS��� 590

Using RestTemplate to Access RESTful-WS�� 592

Securing RESTful-WS with Spring Security��� 597

RESTful-WS with Spring with Spring Boot�� 602

Using AMQP in Spring��� 605

Using AMQP with Spring Boot�� 611

Summary��� 613

■■Chapter 13: Spring Testing��� 615

Introducing Testing Categories�� 616

Using Spring Test Annotations��� 617

Implementing Logic Unit Tests�� 618

Adding Required Dependencies�� 619

Unit Testing Spring MVC Controllers�� 620

■ Contents

xviii

Implementing an Integration Test�� 623

Adding Required Dependencies�� 623

Configuring the Profile for Service-Layer Testing�� 623

Java Configuration Version�� 625

Implementing the Infrastructure Classes�� 627

Unit Testing the Service Layer��� 630

Dropping DbUnit�� 634

Implementing a Front-End Unit Test�� 637

Introducing Selenium�� 638

Summary��� 638

■■Chapter 14: Scripting Support in Spring�� 639

Working with Scripting Support in Java�� 640

Introducing Groovy�� 641

Dynamic Typing��� 642

Simplified Syntax��� 643

Closure�� 643

Using Groovy with Spring�� 644

Developing the Singer Domain�� 645

Implementing the Rule Engine�� 646

Implementing the Rule Factory as a Spring Refreshable Bean��� 648

Testing the Age Category Rule��� 650

Inlining Dynamic Language Code�� 652

Summary��� 654

■■Chapter 15: Application Monitoring��� 655

JMX Support in Spring�� 655

Exporting a Spring Bean to JMX�� 656

Using Java VisualVM for JMX Monitoring�� 657

Monitoring Hibernate Statistics��� 659

JMX with Spring Boot�� 661

Summary��� 664

■ Contents

xix

■■Chapter 16: Web Applications�� 665

Implementing the Service Layer for Samples��� 666

Using a Data Model for the Samples��� 666

Implementing the DAO Layer��� 670

Implementing the Service Layer�� 670

Configuring SingerService�� 672

Introducing MVC and Spring MVC��� 673

Introducing MVC�� 674

Introducing Spring MVC��� 675

Spring MVC WebApplicationContext Hierarchy�� 675

Spring MVC Request Life Cycle��� 676

Spring MVC Configuration��� 678

Creating the First View in Spring MVC��� 681

Configuring DispatcherServlet��� 683

Implementing SingerController�� 684

Implementing the Singer List View�� 685

Testing the Singer List View�� 686

Understanding the Spring MVC Project Structure��� 686

Enabling Internationalization (i18n)��� 687

Configuring i18n in the DispatcherServlet Configuration�� 688

Modifying the Singer List View for i18n Support��� 690

Using Theming and Templating��� 691

Theming Support��� 691

View Templating with Apache Tiles��� 693

Designing the Template Layout��� 693

Implementing Page Layout Components��� 694

Configuring Tiles in Spring MVC�� 698

Implementing the Views for Singer Information�� 699

Mapping URLs to the Views��� 699

Implementing the Show Singer View��� 700

■ Contents

xx

Implementing the Edit Singer View��� 703

Implementing the Add Singer View�� 708

Enabling JSR-349 (Bean Validation)�� 709

Using jQuery and jQuery UI��� 711

Introducing jQuery and jQuery UI��� 711

Enabling jQuery and jQuery UI in a View�� 712

Rich-Text Editing with CKEditor��� 714

Using jqGrid for a Data Grid with Pagination��� 715

Enabling jqGrid in the Singer List View�� 715

Enabling Pagination on the Server Side�� 717

Handling File Upload��� 721

Configuring File Upload Support�� 721

Modifying Views for File Upload Support��� 723

Modifying Controllers for File Upload Support��� 724

Securing a Web Application with Spring Security��� 726

Configuring Spring Security��� 726

Adding Login Functions to the Application�� 729

Using Annotations to Secure Controller Methods�� 731

Creating Spring Web Applications with Spring Boot�� 732

Setting Up the DAO Layer�� 733

Setting Up the Service Layer��� 735

Setting Up the Web Layer�� 735

Setting Up Spring Security�� 737

Creating Thymeleaf Views��� 738

Using Thymeleaf Extensions��� 743

Using Webjars�� 747

Summary��� 749

■■Chapter 17: WebSocket�� 751

Introducing WebSocket��� 751

Using WebSocket with Spring��� 752

■ Contents

xxi

Using the WebSocket API�� 752

Using SockJS��� 760

Sending Messages with STOMP�� 765

Summary��� 772

■■Chapter 18: Spring Projects: Batch, Integration, XD, and More�������������������������� 773

Spring Batch�� 774

JSR-352�� 783

Spring Boot Batch��� 786

Spring Integration�� 790

Spring XD�� 796

Spring Framework’s Five Most Notable Features��� 798

The Functional Web Framework�� 799

Java 9 Interoperabiliy�� 811

JDK Modularity�� 811

Reactive Programming with Java 9 and Spring WebFlux�� 814

Spring Support for JUnit 5 Jupiter��� 817

Summary��� 827

■■Appendix A: Setting Up Your Development Environment������������������������������������ 829

Introducing Project pro-spring-15��� 829

Understanding the Gradle Configuration��� 831

Building and Troubleshooting�� 834

Deploy on Apache Tomcat��� 837

Index�� 841

xxiii

About the Authors

Iuliana Cosmina is a Spring-certified Web Application Developer and is also a Spring-certified Spring
Professional, as defined by Pivotal, the makers of Spring Framework, Boot, and other tools. She has authored
books with Apress on core Spring certification and Spring-certified web development. She is a software
architect at Bearing Point Software and is an active coder and software contributor on GitHub, Stack
Overflow, and more.

Rob Harrop is a software consultant specializing in delivering high-performance, highly scalable enterprise
applications. He is an experienced architect with a particular flair for understanding and solving complex
design issues. With a thorough knowledge of both Java and .NET, Harrop has successfully deployed projects
across both platforms. He also has extensive experience across a variety of sectors, retail and government
in particular. Harrop is the author of five books, including the book you are currently reading, not at its
fifth edition, a widely acclaimed, comprehensive resource on the Spring Framework.

Chris Schaefer is a principle software developer for Spring projects at Pivotal, the makers of Spring
Framework, Boot, and other Spring tools.

Clarence Ho is the senior Java architect of a Hong Kong–based software consultancy firm, SkywideSoft
Technology Limited. Having been worked in the IT field for more than 20 years, Clarence has been the team
leader of many in-house application development projects, as well as providing consultancy services on
enterprise solutions to clients.

xxv

About the Technical Reviewer

Massimo Nardone has more than 23 years of experience in security,
web/mobile development, cloud computing, and IT architecture. His true
IT passions are security and Android.

He currently works as the chief information security officer (CISO) for
Cargotec Oyj and is a member of the ISACA Finland Chapter board. Over
his long career, he has held these positions: project manager, software
engineer, research engineer, chief security architect, information security
manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA
architect. In addition, he has been a visiting lecturer and supervisor
for exercises at the Networking Laboratory of the Helsinki University of
Technology (Aalto University).

Massimo has a master of science degree in computing science from
the University of Salerno in Italy, and he holds four international patents
(PKI, SIP, SAML, and proxy areas). Besides working on this book, Massimo
has reviewed more than 40 IT books for different publishing companies
and is the coauthor of Pro Android Games (Apress, 2015).

xxvii

Acknowledgments

It is a huge honor for me to be the main author of the fifth edition of this book. Would you believe I got this
assignment by mistake? I thought I was getting an assignment as a technical reviewer for this book. Only
when I received the files did I realize that I was going to be one of the authors of the fifth edition of one of the
best Spring books on the market.

Apress has published many of the books I have read and used to improve myself professionally
during my studies and even after that. This is my third book with Apress, and it is great to contribute to the
education of the next generation of developers.

I am grateful to all my friends who had the patience to listen to me complain about losing sleep, having
too much work to do, and encountering writer’s block. Thank you all for being supportive and making sure
I still had some fun while writing this book.

Also, I would like to give a big thanks to all my favorite singers who made my work easier with their
wonderful music, especially John Mayer; I was so determined to finish this book on time just so I could go
to the United States to one of his concerts. That is why I changed the topic of the examples in this book to be
about singers and their music; it’s a tribute to their art and talent.

—Iuliana Cosmina

xxix

Introduction

Covering version 5 of the Spring Framework, this book is the most comprehensive Spring reference and
practical guide available for harnessing the power of this leading enterprise Java application development
framework.

This edition covers core Spring and its integration with other leading Java technologies, such as
Hibernate, JPA 2, Tiles, Thymeleaf, and WebSocket. The focus of the book is on using Java configuration
classes, lambda expressions, Spring Boot, and reactive programming. We share our insights and real-world
experiences with enterprise application development, including remoting, transactions, the web and
presentation tiers, and much more.

With Pro Spring 5, you’ll learn how to do the following:

•	 Use inversion of control (IoC) and dependency injection (DI)

•	 Discover what’s new in Spring Framework 5

•	 Build Spring-based web applications using Spring MVC and WebSocket

•	 Build Spring web reactive applications with Spring WebFlux

•	 Test Spring applications using Junit 5

•	 Utilize the new Java 8 lambda syntax

•	 Use Spring Boot to an advanced level to get any kind of Spring application up and
running in no time

•	 Use Java 9 features in Spring applications

Because the Java 9 release date kept being postponed, Spring 5 was released based on Java 8. Thus,
interoperability with Java 9 is covered in this book based on an early-access build.

There is a multimodule project associated with this book, configured using Gradle 4. The project
is available on the Apress official repository: https://github.com/Apress/pro-spring-5. The project
can be built right after cloning according to the instructions in its README.adoc file as long as Gradle is
installed locally. If you do not have Gradle installed, you can rely on InteliJ IDEA to download it and use
it to build your project by using the Gradle Wrapper. (https://docs.gradle.org/current/userguide/
gradle_wrapper.html). There is a small appendix at the end of the book describing the project structure,
configuration and additional details related to development tools that can be used to develop and run the
code samples of the book, which are available on GitHub.

As the book was being written, new release candidate versions of Spring 5 were released, a new version of
Intellij IDEA was released, and new versions of Gradle and other technologies used in the book were updated.
We upgraded to the new versions to provide the most recent information and keep this book synchronized
with the official documentation. Several reviewers have checked the book for technical accuracy, but if you
notice any inconsistencies, please send an email to editorial@apress.com and errata will be created.

You can access the example source code for this book via the Download Source Code button at
www.apress.com/9781484228074. It will be maintained, synchronized with new versions of the technologies,
and enriched based on the recommendations of the developers using it to learn Spring.

We truly hope you will enjoy using this book to learn Spring as much as we enjoyed writing it.

https://github.com/Apress/pro-spring-5
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html
http://www.apress.com/9781484228074

1© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_1

CHAPTER 1

Introducing Spring

When we think of the community of Java developers, we are reminded of the hordes of gold rush prospectors
of the late 1840s, frantically panning the rivers of North America, looking for fragments of gold. As Java
developers, our rivers run rife with open source projects, but, like the prospectors, finding a useful project
can be time-consuming and arduous.

A common gripe with many open source Java projects is that they are conceived merely out of the need
to fill the gap in the implementation of the latest buzzword-heavy technology or pattern. Having said that,
many high-quality, usable projects meet and address a real need for real applications, and in the course of
this book, you will meet a subset of these projects. You will get to know one in particular rather well—Spring.
The first version of Spring was released in October 2002 and consisted of a small core with an inversion
of control (IoC) container that was easy to configure and use. Over the years Spring has become the main
replacement of Java Enterprise Edition (JEE) servers and has grown into a full-blown technology made up of
many distinct projects, each with its own purpose, so whether you want to build microservices, applications,
or classical ERPs, Spring has a project for that.

Throughout this book, you will see many applications of different open source technologies, all of
which are unified under the Spring Framework. When working with Spring, an application developer can
use a large variety of open source tools, without needing to write reams of code and without coupling an
application too closely to any particular tool.

In this chapter, as its title indicates, we introduce you to the Spring Framework, rather than presenting
any solid examples or explanations. If you are already familiar with Spring, you might want to skip this
chapter and proceed straight to Chapter 2.

What Is Spring?
Perhaps one the hardest parts of explaining Spring is classifying exactly what it is. Typically, Spring is
described as a lightweight framework for building Java applications, but that statement brings up two
interesting points.

First, you can use Spring to build any application in Java (for example, stand-alone, web, or JEE
applications), unlike many other frameworks (such as Apache Struts, which is limited to web applications).

Second, the lightweight part of the description doesn’t really refer to the number of classes or the size
of the distribution but rather defines the principle of the Spring philosophy as a whole—that is, minimal
impact. Spring is lightweight in the sense that you have to make few, if any, changes to your application code
to gain the benefits of Spring Core, and should you choose to stop using Spring at any point, you will find
doing so quite simple.

Notice that we qualified that last statement to refer to Spring Core only—many of the extra Spring
components, such as data access, require a much closer coupling to the Spring Framework. However, the
benefits of this coupling are quite clear, and throughout the book we present techniques for minimizing the
impact this has on your application.

https://doi.org/10.1007/978-1-4842-2808-1_1
http://dx.doi.org/10.1007/978-1-4842-2808-1_2

Chapter 1 ■ Introducing Spring

2

Evolution of the Spring Framework
The Spring Framework originated from the book Expert One-on-One: J2EE Design and Development by
Rod Johnson (Wrox, 2002). Over the last decade, the Spring Framework has grown dramatically in core
functionality, associated projects, and community support. With the new major release of the Spring
Framework, it’s worthwhile to take a quick look back at important features that have come along with each
milestone release of Spring, leading up to Spring Framework 5.0.

•	 Spring 0.9: This is the first public release of the framework, based on the book Expert
One-on-One: J2EE Design and Development, that offered a bean configuration
foundation, AOP support, a JDBC abstraction framework, abstract transaction
support, and so on. This version does not have official reference documentation, but
you can find the existing sources and documentation on SourceForge.1

•	 Spring 1.x: This is the first version released with official reference documentation. It
is composed of the seven modules shown in Figure 1-1.

–– Spring Core: Bean container and supporting utilities

–– Spring Context: ApplicationContext, UI, validation, JNDI, Enterprise
JavaBeans (EJB), remoting, and mail support

–– Spring DAO: Transaction infrastructure, Java Database Connectivity (JDBC),
and data access object (DAO) support

–– Spring ORM: Hibernate, iBATIS, and Java Data Objects (JDO) support

–– Spring AOP: An AOP Alliance–compliant aspect-oriented programming (AOP)
implementation

–– Spring Web: Basic integration features such as multipart functionality, context
initialization through servlet listeners, and a web-oriented application context

–– Spring Web MVC: Web-based Model-View-Controller (MVC) framework

•	 Spring 2.x: This is composed of the six modules shown in Figure 1-2. The Spring
Context module is now included in Spring Core, and all Spring web components
have been represented here by a single item.

Figure 1-1.  Overview of the Spring Framework, version 1.x

1You can download older versions of Spring including 0.9 from the SourceForge site: https://sourceforge.net/
projects/springframework/files/springframework/.

https://sourceforge.net/projects/springframework/files/springframework/
https://sourceforge.net/projects/springframework/files/springframework/

Chapter 1 ■ Introducing Spring

3

–– Easier XML configuration through the use of the new XML Schema–based
configuration rather than the DTD format. Notable areas of improvement include
bean definitions, AOP, and declarative transactions.

–– New bean scopes for web and portal usage (request, session, and global
sessions).

–– @AspectJ annotation support for AOP development.

–– Java Persistence API (JPA) abstraction layer.

–– Full support for asynchronous JMS message-driven POJOs (for plain old Java
objects).

–– JDBC simplifications including SimpleJdbcTemplate when using Java 5+.

–– JDBC named parameter support (NamedParameterJdbcTemplate).

–– Form tag library for Spring MVC.

–– Introduction of the Portlet MVC framework.

–– Dynamic language support. Beans can be written in JRuby, Groovy, and BeanShell.

–– Notification support and controllable MBean registration in JMX.

–– TaskExecutor abstraction introduced for scheduling tasks.

–– Java 5 annotation support, specifically for @Transactional, @Required, and
@AspectJ.

•	 Spring 2.5.x: This version has the following features:

–– A new configuration annotation called @Autowired and support for JSR-250
annotations (@Resource, @PostConstruct, @PreDestroy)

–– New stereotype annotations: @Component, @Repository, @Service, @Controller

–– Automatic classpath-scanning support to detect and wire classes annotated with
stereotype annotations

–– AOP updates, including a new bean pointcut element and AspectJ load-time
weaving

–– Full WebSphere transaction management support

Figure 1-2.  Overview of the Spring Framework, version 2.x

Chapter 1 ■ Introducing Spring

4

–– In addition to the Spring MVC @Controller annotation, @RequestMapping,
@RequestParam, and @ModelAttribute annotations added to support request
handling through annotation configuration

–– Tiles 2 support

–– JSF 1.2 support

–– JAX-WS 2.0/2.1 support

–– Introduction of the Spring TestContext Framework, providing annotation-driven
and integration testing support, agnostic of the testing framework being used

–– Ability to deploy a Spring application context as a JCA adapter

•	 Spring 3.0.x: This is the first version of Spring based on Java 5 and is designed to
take full advantage of Java 5 features such as generics, varargs, and other language
improvements. This version introduces the Java-based @Configuration model. The
framework modules have been revised to be managed separately with one source
tree per module JAR. This is abstractly depicted in Figure 1-3.

–– Support for Java 5 features such as generics, varargs, and other improvements

–– First-class support for Callables, Futures, ExecutorService adapters, and
ThreadFactory integration

–– Framework modules now managed separately with one source tree per module JAR

–– Introduction of the Spring Expression Language (SpEL)

–– Integration of core Java Config features and annotations

–– General-purpose type conversion system and field-formatting system

–– Comprehensive REST support

–– New MVC XML namespace and additional annotations such as @CookieValue
and @RequestHeaders for Spring MVC

Figure 1-3.  Overview of the Spring Framework, version 3.0.x

Chapter 1 ■ Introducing Spring

5

–– Validation enhancements and JSR-303 (Bean Validation) support

–– Early support for Java EE 6, including @Async/@Asynchronous annotation,
JSR-303, JSF 2.0, JPA 2.0, and so on

–– Support for embedded databases such as HSQL, H2, and Derby

•	 Spring 3.1.x: This version has the following features:

–– New cache abstraction

–– Bean definition profiles can be defined in XML as well as support for the
@Profile annotation

–– Environment abstraction for unified property management

–– Annotation equivalents for common Spring XML namespace elements such as
@ComponentScan, @EnableTransactionManagement, @EnableCaching,
@EnableWebMvc, @EnableScheduling, @EnableAsync, @EnableAspectJAutoProxy,
@EnableLoadTimeWeaving, and @EnableSpringConfigured

–– Support for Hibernate 4

–– Spring TestContext Framework support for @Configuration classes and bean
definition profiles

–– c: namespace for simplified constructor injection

–– Support for Servlet 3 code-based configuration of the Servlet container

–– Ability to bootstrap the JPA EntityManagerFactory without persistence.xml

–– Flash and RedirectAttributes added to Spring MVC, allowing attributes to
survive a redirect by using the HTTP session

–– URI template variable enhancements

–– Ability to annotate Spring MVC @RequestBody controller method arguments with @Valid

–– Ability to annotate Spring MVC controller method arguments with the
@RequestPart annotation

•	 Spring 3.2.x: This version has the following features:

–– Support for Servlet 3–based asynchronous request processing.

–– New Spring MVC test framework.

–– New Spring MVC annotations @ControllerAdvice and @MatrixVariable.

–– Support for generic types in RestTemplate and in @RequestBody arguments.

–– Jackson JSON 2 support.

–– Support for Tiles 3.

–– @RequestBody or an @RequestPart argument can now be followed by an Errors
argument, making it possible to handle validation errors.

–– Ability to exclude URL patterns by using the MVC namespace and Java Config
configuration options.

–– Support for @DateTimeFormat without Joda Time.

Chapter 1 ■ Introducing Spring

6

–– Global date and time formatting.

–– Concurrency refinements across the framework, minimizing locks and generally
improving concurrent creation of scoped/prototyped beans

–– New Gradle-based build system.

–– Migration to GitHub (https://github.com/SpringSource/spring-framework).

–– Refined Java SE 7/OpenJDK 7 support in the framework and third-party depen-
dencies. CGLIB and ASM are now included as part of Spring. AspectJ 1.7 is
supported in addition to 1.6.

•	 Spring 4.0.x: This is a major Spring release and the first to fully support Java 8. Older
versions of Java can be used, but the minimum requirement has been raised to Java
SE6. Deprecated classes and methods were removed, and the module organization is
pretty much the same, as depicted in Figure 1-4.

–– Improved getting-started experience via a series of Getting Started guides on the
new www.spring.io/guides web site

–– Removal of deprecated packages and methods from the prior Spring 3 version

–– Java 8 support, raising the minimum Java version to 6 update 18

–– Java EE 6 and above is now considered the baseline for Spring Framework 4.0

–– Groovy bean definition DSL, allowing bean definitions to be configured via
Groovy syntax

–– Core container, testing, and general web improvements

–– WebSocket, SockJS, and STOMP messaging

•	 Spring 4.2.x: This version has the following features:

–– Core improvements (eg., introduction of @AliasFor and modification of existing
annotation to make use of it)

–– Full support for Hibernate ORM 5.0

Figure 1-4.  Overview of the Spring Framework, version 4.0.x

https://github.com/SpringSource/spring-framework
http://www.spring.io/guides

Chapter 1 ■ Introducing Spring

7

–– JMS and web improvements

–– WebSocket messaging improvements

–– Testing improvements, most notably the introduction of @Commit to replace
@Rollback(false) and the introduction of the AopTestUtils utility class that
allows access to the underlying object hidden behind a Spring proxy

•	 Spring 4.3.x: This version has the following features:

–– The programming model has been refined.

–– Considerable improvements in the core container (inclusions of ASM 5.1, CGLIB
3.2.4, and Objenesis 2.4 in spring-core.jar) and MVC.

–– Composed annotations were added.

–– Spring TestContext Framework requires JUnit 4.12 or higher.

–– Support for new libraries, including Hibernate ORM 5.2, Hibernate Validator 5.3,
Tomcat 8.5 and 9.0, Jackson 2.8, and so on

•	 Spring 5.0.x: This is a major release. The entire framework codebase is based on Java 8
and is fully compatible with Java 9 as of July 2016.2

–– Support was dropped for Portlet, Velocity, JasperReports, XMLBeans, JDO, Guava,
Tiles2, and Hibernate3.

–– XML configuration namespaces are now streamed to unversioned schemas; version-
specific declarations are still supported but validated against the latest XSD schema.

–– Overall improvements were introduced by harnessing the full power of Java 8 features.

–– The Resource abstraction provides isFile indicator for defensive getFile access.

–– Full Servlet 3.1 signature support in Spring-provided Filter implementations.

–– Support for Protobuf 3.0.

–– Support for JMS 2.0+, JPA 2.1+.

–– Introduction of Spring Web Flow, a project that is an alternative to Spring MVC built
on a reactive foundation, which means that it is fully asynchronous and non-blocking,
intended for use in an event-loop execution model vs. traditional large thread pool
with a thread-per-request execution model (built upon Project Reactor3).

–– The web and core modules were adapted to the reactive programming model.4

–– There are a lot of improvements in the Spring test module. JUnit 5 is now
supported, and new annotations were introduced to support the Jupiter
programming and extension model such as @SpringJUnitConfig,
@SpringJUnitWebConfig, @EnabledIf, @DisabledIf.

–– Support for parallel test execution in the Spring TestContext Framework.

2Keep in mind that Java 9 will be released officially to the public in September 2017, according to the Oracle schedule
available at http://openjdk.java.net/projects/jdk9/.
3Project Reactor implements the Reactive Streams API specification; see https://projectreactor.io/.
4Reactive programming is a style of micro-architecture involving intelligent routing and consumption of events. This
should lead to nonblocking applications that are asynchronous and event-driven and require a small number of threads to
scale vertically within the JVM, rather than horizontally through clustering.

http://openjdk.java.net/projects/jdk9/
https://projectreactor.io/

Chapter 1 ■ Introducing Spring

8

Inverting Control or Injecting Dependencies?
The core of the Spring Framework is based on the principle of inversion of control. IoC is a technique that
externalizes the creation and management of component dependencies. Consider an example in which class
Foo depends on an instance of class Bar to perform some kind of processing. Traditionally, Foo creates an
instance of Bar by using the new operator or obtains one from some kind of factory class. Using the IoC approach,
an instance of Bar (or a subclass) is provided to Foo at runtime by some external process. This behavior, the
injection of dependencies at runtime, led to IoC being renamed by Martin Fowler as the much more descriptive
dependency injection (DI). Chapter 3 discusses the precise nature of the dependencies managed by DI.

  As you will see in Chapter 3, using the term dependency injection when referring to inversion of control
is always correct. In the context of Spring, you can use the terms interchangeably, without any loss of meaning.

Spring’s DI implementation is based on two core Java concepts: JavaBeans and interfaces. When you
use Spring as the DI provider, you gain the flexibility of defining dependency configuration within your
applications in different ways (for example, XML files, Java configuration classes, annotations within your
code, or the new Groovy bean definition method). JavaBeans (POJOs) provide a standard mechanism for
creating Java resources that are configurable in a number of ways, such as constructors and setter methods.
In Chapter 3, you will see how Spring uses the JavaBean specification to form the core of its DI configuration
model; in fact, any Spring-managed resource is referred to as a bean. If you are unfamiliar with JavaBeans,
refer to the quick primer we present at the beginning of Chapter 3.

Interfaces and DI are technologies that are mutually beneficial. Clearly designing and coding
an application to interfaces makes for a flexible application, but the complexity of wiring together an
application designed using interfaces is quite high and places an additional coding burden on developers.
By using DI, you reduce the amount of code you need to use an interface-based design in your application to
almost zero. Likewise, by using interfaces, you can get the most out of DI because your beans can utilize any
interface implementation to satisfy their dependency. The use of interfaces also allows Spring to utilize JDK
dynamic proxies (the Proxy pattern) to provide powerful concepts such as AOP for crosscutting concerns.

In the context of DI, Spring acts more like a container than a framework—providing instances of your
application classes with all the dependencies they need—but it does so in a much less intrusive way. Using
Spring for DI relies on nothing more than following the JavaBeans naming conventions within your classes—
there are no special classes from which to inherit or proprietary naming schemes to follow. If anything, the
only change you make in an application that uses DI is to expose more properties on your JavaBeans, thus
allowing more dependencies to be injected at runtime.

Evolution of Dependency Injection
In the past few years, thanks to the popularity gained by Spring and other DI frameworks, DI has gained wide
acceptance among Java developer communities. At the same time, developers were convinced that using DI
was a best practice in application development, and the benefits of using DI were also well understood.

The popularity of DI was acknowledged when the Java Community Process (JCP) adopted JSR-330
(Dependency Injection for Java) in 2009. JSR-330 had become a formal Java specification request, and as
you might expect, one of the specification leads was Rod Johnson—the founder of the Spring Framework.
In JEE 6, JSR-330 became one of the included specifications of the entire technology stack. In the meantime,
the EJB architecture (starting from version 3.0) was also revamped dramatically; it adopted the DI model in
order to ease the development of various Enterprise JavaBeans apps.

http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 1 ■ Introducing Spring

9

Although we leave the full discussion of DI until Chapter 3, it is worth taking a look at the benefits of
using DI rather than a more traditional approach.

•	 Reduced glue code: One of the biggest plus points of DI is its ability to dramatically
reduce the amount of code you have to write to glue the components of your
application together. Often this code is trivial, so creating a dependency involves
simply creating a new instance of an object. However, the glue code can get quite
complex when you need to look up dependencies in a JNDI repository or when the
dependencies cannot be invoked directly, as is the case with remote resources. In
these cases, DI can really simplify the glue code by providing automatic JNDI lookup
and automatic proxying of remote resources.

•	 Simplified application configuration: By adopting DI, you can greatly simplify the
process of configuring an application. You can use a variety of options to configure
those classes that were injectable to other classes. You can use the same technique to
express the dependency requirements to the “injector” for injecting the appropriate
bean instance or property. In addition, DI makes it much simpler to swap one
implementation of a dependency for another. Consider the case where you have a
DAO component that performs data operations against a PostgreSQL database and
you want to upgrade to Oracle. Using DI, you can simply reconfigure the appropriate
dependency on your business objects to use the Oracle implementation rather than
the PostgreSQL one.

•	 Ability to manage common dependencies in a single repository: Using a traditional
approach to dependency management of common services—for example, data
source connection, transaction, and remote services—you create instances (or lookup
from some factory classes) of your dependencies where they are needed (within the
dependent class). This will cause the dependencies to spread across the classes in
your application, and changing them can prove problematic. When you use DI, all the
information about those common dependencies is contained in a single repository,
making the management of dependencies much simpler and less error prone.

•	 Improved testability: When you design your classes for DI, you make it possible to
replace dependencies easily. This is especially handy when you are testing your
application. Consider a business object that performs some complex processing; for
part of this, it uses a DAO to access data stored in a relational database. For your test,
you are not interested in testing the DAO; you simply want to test the business object
with various sets of data. In a traditional approach, whereby the business object is
responsible for obtaining an instance of the DAO itself, you have a hard time testing
this, because you are unable to easily replace the DAO implementation with a mock
implementation that returns your test data sets. Instead, you need to make sure
your test database contains the correct data and uses the full DAO implementation
for your tests. Using DI, you can create a mock implementation of the DAO object
that returns the test data sets, and then you can pass this to your business object
for testing. This mechanism can be extended for testing any tier of your application
and is especially useful for testing web components where you can create mock
implementations of HttpServletRequest and HttpServletResponse.

•	 Fostering of good application design: Designing for DI means, in general, designing
against interfaces. A typical injection-oriented application is designed so that all
major components are defined as interfaces, and then concrete implementations of
these interfaces are created and hooked together using the DI container. This kind of
design was possible in Java before the advent of DI and DI-based containers such as
Spring, but by using Spring, you get a whole host of DI features for free, and you are
able to concentrate on building your application logic, not a framework to support it.

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 1 ■ Introducing Spring

10

As you can see from this list, DI provides a lot of benefits for your application, but it is not without its
drawbacks. In particular, DI can make it difficult for someone not intimately familiar with the code to see
just what implementation of a particular dependency is being hooked into which objects. Typically, this is a
problem only when developers are inexperienced with DI; after becoming more experienced and following
good DI coding practice (for example, putting all injectable classes within each application layer into the
same package), developers will be able to discover the whole picture easily. For the most part, the massive
benefits far outweigh this small drawback, but you should consider this when planning your application.

Beyond Dependency Injection
Spring Core alone, with its advanced DI capabilities, is a worthy tool, but where Spring really excels is in its
myriad of additional features, all elegantly designed and built using the principles of DI. Spring provides
features for all layers of an application, from helper application programming interfaces (APIs) for data
access right through to advanced MVC capabilities. What is great about these features in Spring is that,
although Spring often provides its own approach, you can easily integrate them with other tools in Spring,
making these tools first-class members of the Spring family.

Support for Java 9
Java 8 brings many exciting features that Spring Framework 5 supports, most notably lambda expressions
and method references with Spring’s callback interfaces. The Spring 5 release plan was aligned with the
initial release plan for JDK 9, and although the release deadline for JDK 9 has been postponed, Spring 5 was
released according to plan. It is estimated that Spring 5.1 will fully embrace JDK 9. Spring 5 will make use of
JDK 9 features such as compact strings, the ALPN stack, and the new HTTP Client implementation. While
Spring Framework 4.0 supports Java 8, compatibility is still maintained back to JDK 6 update 18. The use of a
more recent version of Java such as 7 or 8 is recommended for new development projects. Spring 5.0 requires
Java 8+ because the Spring development team has applied the Java 8 language level to the entire framework
codebase, but Spring 5 was built on JDK 9 too, even from the start, to provide comprehensive support for
advertised features of JDK 9.

Aspect-Oriented Programming with Spring
AOP provides the ability to implement crosscutting logic—that is, logic that applies to many parts of
your application—in a single place and to have that logic applied across your application automatically.
Spring’s approach to AOP is to create dynamic proxies to the target objects and weave the objects with the
configured advice to execute the crosscutting logic. By the nature of JDK dynamic proxies, target objects
must implement an interface declaring the method in which the AOP advice will be applied. Another
popular AOP library is the Eclipse AspectJ project,5 which provides more-powerful features including object
construction, class loading, and stronger crosscutting capability. However, the good news for Spring and
AOP developers is that starting from version 2.0, Spring offers much tighter integration with AspectJ. The
following are some highlights:

•	 Support for AspectJ-style pointcut expressions

•	 Support for @AspectJ annotation style, while still using Spring AOP for weaving

•	 Support for aspects implemented in AspectJ for DI

•	 Support for load-time weaving within the Spring ApplicationContext

5www.eclipse.org/aspectj

http://www.eclipse.org/aspectj

Chapter 1 ■ Introducing Spring

11

  Starting with Spring Framework version 3.2, @AspectJ annotation support can be enabled with Java
configuration.

Both kinds of AOP have their place, and in most cases, Spring AOP is sufficient for addressing an
application’s crosscutting requirements. However, for more complicated requirements, AspectJ can be used,
and both Spring AOP and AspectJ can be mixed in the same Spring-powered application.

AOP has many applications. A typical one given in many of the traditional AOP examples involves
performing some kind of logging, but AOP has found uses well beyond the trivial logging applications.
Indeed, within the Spring Framework itself, AOP is used for many purposes, particularly in transaction
management. Spring AOP is covered in full detail in Chapter 5, where we show you typical uses of AOP
within the Spring Framework and your own applications, as well as AOP performance and areas where
traditional technologies are better suited than AOP.

Spring Expression Language
Expression Language (EL) is a technology to allow an application to manipulate Java objects at runtime.
However, the problem with EL is that different technologies provide their own EL implementations and
syntaxes. For example, Java Server Pages (JSP) and Java Server Faces (JSF) both have their own EL, and their
syntaxes are different. To solve the problem, the Unified Expression Language (EL) was created.

Because the Spring Framework is evolving so quickly, there is a need for a standard expression language
that can be shared among all the Spring Framework modules as well as other Spring projects. Consequently,
starting in version 3.0, Spring introduced the Spring Expression Language. SpEL provides powerful features
for evaluating expressions and for accessing Java objects and Spring beans at runtime. The result can be
used in the application or injected into other JavaBeans.

Validation in Spring
Validation is another large topic in any kind of application. The ideal scenario is that the validation rules of
the attributes within JavaBeans containing business data can be applied in a consistent way, regardless of
whether the data manipulation request is initiated from the front end, a batch job, or remotely (for example,
via web services, RESTful web services, or remote procedure calls [RPCs]).

To address these concerns, Spring provides a built-in validation API by way of the Validator interface.
This interface provides a simple yet concise mechanism allowing you to encapsulate your validation logic
into a class responsible for validating the target object. In addition to the target object, the validate method
takes an Errors object, which is used to collect any validation errors that may occur.

Spring also provides a handy utility class, ValidationUtils, which provides convenience methods for
invoking other validators, checking for common problems such as empty strings, and reporting errors back
to the provided Errors object.

Driven by need, the JCP also developed JSR-303 (Bean Validation), which provides a standard way of
defining bean validation rules. For example, when applying the @NotNull annotation to a bean’s property,
it mandates that the attribute shouldn’t contain a null value before being able to persist into the database.

Starting in version 3.0, Spring provides out-of-the-box support for JSR-303. To use the API, just declare a
LocalValidatorFactoryBean and inject the Validator interface into any Spring-managed beans. Spring will
resolve the underlying implementation for you. By default, Spring will first look for the Hibernate Validator
(hibernate.org/subprojects/validator), which is a popular JSR-303 implementation. Many front-end
technologies (for example, JSF 2 and Google Web Toolkit), including Spring MVC, also support the application
of JSR-303 validation in the user interface. The time when developers needed to program the same validation
logic in both the user interface and the back-end layer is gone. Chapter 10 discusses the details.

http://dx.doi.org/10.1007/978-1-4842-2808-1_5
http://dx.doi.org/10.1007/978-1-4842-2808-1_10

Chapter 1 ■ Introducing Spring

12

  Starting with Spring Framework version 4.0, the 1.1 version of JSR-349 (Bean Validation) is supported.

Accessing Data in Spring
Data access and persistence seem to be the most discussed topics in the Java world. Spring provides
excellent integration with a choice selection of these data access tools. In addition, Spring makes plain-
vanilla JDBC a viable option for many projects, with its simplified wrapper APIs around the standard API.
Spring’s data access module provides out-of-the-box support for JDBC, Hibernate, JDO, and the JPA.

  Starting with Spring Framework version 4.0, iBATIS support has been removed. The MyBatis-Spring project
provides integration with Spring, and you can find more information at http://mybatis.github.io/spring/.

However, in the past few years, because of the explosive growth of the Internet and cloud computing,
besides relational databases, a lot of other “special-purpose” databases were developed. Examples include
databases based on key-value pairs to handle extremely large volumes of data (generally referred to as
NoSQL), graph databases, and document databases. To help developers support those databases and to not
complicate the Spring data access module, a separate project called Spring Data6 was created. The project
was further split into different categories to support more specific database access requirements.

  Spring’s support of nonrelational databases is not covered in this book. If you are interested in this topic,
the Spring Data project mentioned earlier is a good place to look. The project page details the nonrelational
databases that it supports, with links to those databases’ home pages.

The JDBC support in Spring makes building an application on top of JDBC a realistic undertaking, even for
more complex applications. The support for Hibernate, JDO, and JPA makes already simple APIs even simpler,
thus easing the burden on developers. When using the Spring APIs to access data via any tool, you are able to
take advantage of Spring’s excellent transaction support. You’ll find a full discussion of this in Chapter 9.

One of the nicest features in Spring is the ability to easily mix and match data access technologies
within an application. For instance, you may be running an application with Oracle, using Hibernate for
much of your data access logic. However, if you want to take advantage of some Oracle-specific features, it is
simple to implement that part of your data access tier by using Spring’s JDBC APIs.

Object/XML Mapping in Spring
Most applications need to integrate or provide services to other applications. One common requirement is
to exchange data with other systems, either on a regular basis or in real time. In terms of data format, XML is
the most commonly used. As a result, you will often need to transform a JavaBean into XML format, and vice
versa. Spring supports many common Java-to-XML mapping frameworks and, as usual, eliminates the need
for directly coupling to any specific implementation. Spring provides common interfaces for marshalling
(transforming JavaBeans into XML) and unmarshalling (transforming XML into Java objects) for DI into any
Spring beans. Common libraries such as Java Architecture for XML Binding (JAXB) , Castor, XStream, JiBX, and
XMLBeans are supported. In Chapter 12, when we discuss remotely accessing a Spring application for business
data in XML format, you will see how to use Spring’s Object/XML Mapping (OXM) support in your application.

6http://projects.spring.io/spring-data

http://mybatis.github.io/spring/
http://dx.doi.org/10.1007/978-1-4842-2808-1_9
http://dx.doi.org/10.1007/978-1-4842-2808-1_12
http://projects.spring.io/spring-data

Chapter 1 ■ Introducing Spring

13

Managing Transactions
Spring provides an excellent abstraction layer for transaction management, allowing for programmatic and
declarative transaction control. By using the Spring abstraction layer for transactions, you can make it simple
to change the underlying transaction protocol and resource managers. You can start with simple, local,
resource-specific transactions and move to global, multiresource transactions without having to change your
code. Transactions are covered in full detail in Chapter 9.

Simplifying and Integrating with JEE
With the growing acceptance of DI frameworks such as Spring, a lot of developers have chosen to construct
applications by using DI frameworks in favor of JEE’s EJB approach. As a result, the JCP communities also
realize the complexity of EJB. Starting in version 3.0 of the EJB specification, the API was simplified, so it now
embraces many of the concepts from DI.

However, for those applications that were built on EJB or need to deploy the Spring-based applications
in a JEE container and utilize the application server’s enterprise services (for example, Java Transaction API’s
Transaction Manager, data source connection pooling, and JMS connection factories), Spring also provides
simplified support for those technologies. For EJB, Spring provides a simple declaration to perform the
JNDI lookup and inject into Spring beans. On the reverse side, Spring also provides simple annotation for
injecting Spring beans into EJBs.

For any resources stored in a JNDI-accessible location, Spring allows you to do away with the complex
lookup code and have JNDI-managed resources injected as dependencies into other objects at runtime. As a
side effect of this, your application becomes decoupled from JNDI, allowing you more scope for code reuse
in the future.

MVC in the Web Tier
Although Spring can be used in almost any setting, from the desktop to the Web, it provides a rich array of
classes to support the creation of web-based applications. Using Spring, you have maximum flexibility when
you are choosing how to implement your web front end. For developing web applications, the MVC pattern
is the most popular practice. In recent versions, Spring has gradually evolved from a simple web framework
into a full-blown MVC implementation. First, view support in Spring MVC is extensive. In addition to
standard support for JSP and Java Standard Tag Library (JSTL), which is greatly bolstered by the Spring tag
libraries, you can take advantage of fully integrated support for Apache Velocity, FreeMarker, Apache Tiles,
Thymeleaf, and XSLT. In addition, you will find a set of base view classes that make it simple to add Microsoft
Excel, PDF, and JasperReports output to your applications.

In many cases, you will find Spring MVC sufficient for your web application development needs.
However, Spring can also integrate with other popular web frameworks such as Struts, JSF, Atmosphere,
Google Web Toolkit (GWT), and so on.

In the past few years, the technology of web frameworks has evolved quickly. Users have required
more responsive and interactive experiences, and that has resulted in the rise of Ajax as a widely adopted
technology in developing rich Internet applications (RIAs). On the other hand, users also want to be able
to access their applications from any device, including smartphones and tablets. This creates a need for
web frameworks that support HTML5, JavaScript, and CSS3. In Chapter 16, we discuss developing web
applications by using Spring MVC.

http://dx.doi.org/10.1007/978-1-4842-2808-1_9
http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 1 ■ Introducing Spring

14

WebSocket Support
Starting with Spring Framework 4.0, support for JSR-356 (Java API for WebSocket) is available. WebSocket
defines an API for creating a persistent connection between a client and server, typically implemented
in web browsers and servers. WebSocket-style development opens the door for efficient, full-duplex
communication enabling real-time message exchanges for highly responsive applications. Use of WebSocket
support is detailed further in Chapter 17.

Remoting Support
Accessing or exposing remote components in Java has never been the simplest of jobs. Using Spring, you can
take advantage of extensive support for a wide range of remoting techniques to quickly expose and access
remote services. Spring provides support for a variety of remote access mechanisms, including Java Remote
Method Invocation (RMI), JAX-WS, Caucho Hessian and Burlap, JMS, Advanced Message Queuing Protocol
(AMQP), and REST. In addition to these remoting protocols, Spring provides its own HTTP-based invoker
that is based on standard Java serialization. By applying Spring’s dynamic proxying capabilities, you can
have a proxy to a remote resource injected as a dependency into one of your classes, thus removing the need
to couple your application to a specific remoting implementation and also reducing the amount of code you
need to write for your application. We discuss remote support in Spring in Chapter 12.

Mail Support
Sending e-mail is a typical requirement for many kinds of applications and is given first-class treatment
within the Spring Framework. Spring provides a simplified API for sending e-mail messages that fits nicely
with the Spring DI capabilities. Spring supports the standard JavaMail API. Spring provides the ability to
create a prototype message in the DI container and uses this as the base for all messages sent from your
application. This allows for easy customization of mail parameters such as the subject and sender address.
In addition, for customizing the message body, Spring integrates with template engines, such as Apache
Velocity; this allows the mail content to be externalized from the Java code.

Job Scheduling Support
Most nontrivial applications require some kind of scheduling capability. Whether this is for sending updates
to customers or performing housekeeping tasks, the ability to schedule code to run at a predefined time is an
invaluable tool for developers. Spring provides scheduling support that can fulfill most common scenarios.
A task can be scheduled either for a fixed interval or by using a Unix cron expression. On the other hand,
for task execution and scheduling, Spring integrates with other scheduling libraries as well. For example, in
the application server environment, Spring can delegate execution to the CommonJ library that is used by
many application servers. For job scheduling, Spring also supports libraries including the JDK Timer API
and Quartz, a commonly used open source scheduling library. The scheduling support in Spring is covered
in full in Chapter 11.

Dynamic Scripting Support
Starting with JDK 6, Java introduced dynamic language support, in which you can execute scripts written
in other languages in a JVM environment. Examples include Groovy, JRuby, and JavaScript. Spring also
supports the execution of dynamic scripts in a Spring-powered application, or you can define a Spring
bean that was written in a dynamic scripting language and injected into other JavaBeans. Spring-supported
dynamic scripting languages include Groovy, JRuby, and BeanShell. In Chapter 14, we discuss the support of
dynamic scripting in Spring in detail.

http://dx.doi.org/10.1007/978-1-4842-2808-1_17
http://dx.doi.org/10.1007/978-1-4842-2808-1_12
http://dx.doi.org/10.1007/978-1-4842-2808-1_11
http://dx.doi.org/10.1007/978-1-4842-2808-1_14

Chapter 1 ■ Introducing Spring

15

Simplified Exception Handling
One area where Spring really helps reduce the amount of repetitive, boilerplate code you need to write
is in exception handling. The core of the Spring philosophy in this respect is that checked exceptions
are overused in Java and that a framework should not force you to catch any exception from which you
are unlikely to be able to recover—a point of view that we agree with wholeheartedly. In reality, many
frameworks are designed to reduce the impact of having to write code to handle checked exceptions.
However, many of these frameworks take the approach of sticking with checked exceptions but artificially
reducing the granularity of the exception class hierarchy. One thing you will notice with Spring is that
because of the convenience afforded to the developer from using unchecked exceptions, the exception
hierarchy is remarkably granular. Throughout the book, you will see examples in which the Spring
exception-handling mechanisms can reduce the amount of code you have to write and, at the same time,
improve your ability to identify, classify, and diagnose errors within your application.

The Spring Project
One of the most endearing things about the Spring project is the level of activity present in the community
and the amount of cross-pollination between Spring and other projects such as CGLIB, Apache Geronimo,
and AspectJ. One of the most touted benefits of open source is that if the project folded tomorrow, you
would be left with the code; but let’s face it—you do not want to be left with a codebase the size of Spring
to support and improve. For this reason, it is comforting to know how well established and active the
Spring community is.

Origins of Spring
As noted earlier in this chapter, the origins of Spring can be traced back to Expert One-to-One: J2EE
Design and Development. In this book, Rod Johnson presented his own framework, called the Interface 21
Framework, which he developed to use in his own applications. Released into the open source world, this
framework formed the foundation of the Spring Framework as we know it today. Spring proceeded quickly
through the early beta and release candidate stages, and the first official 1.0 release was made available in
March 2004. Since then, Spring has undergone dramatic growth, and at the time of this writing, the latest
major version of Spring Framework is 5.0.

The Spring Community
The Spring community is one of the best in any open source project we have encountered. The mailing
lists and forums are always active, and progress on new features is usually rapid. The development team is
truly dedicated to making Spring the most successful of all the Java application frameworks, and this shows
in the quality of the code that is reproduced. As we mentioned already, Spring also benefits from excellent
relationships with other open source projects, a fact that is extremely beneficial when you consider the
large amount of dependency the full Spring distribution has. From a user’s perspective, perhaps one of
the best features of Spring is the excellent documentation and test suite that accompany the distribution.
Documentation is provided for almost all the features of Spring, making it easy for new users to pick up the
framework. The test suite Spring provides is impressively comprehensive—the development team writes
tests for everything. If they discover a bug, they fix that bug by first writing a test that highlights the bug and
then getting the test to pass. Fixing bugs and creating new features is not limited just to the development
team! You can contribute code through pull requests against any portfolio of Spring projects through the
official GitHub repositories (http://github.com/spring-projects). Additionally, issues can be created and

http://github.com/spring-projects

Chapter 1 ■ Introducing Spring

16

tracked by way of the official Spring JIRA (https://jira.spring.io/secure/Dashboard.jspa). What does
all this mean to you? Well, put simply, it means you can be confident in the quality of the Spring Framework
and confident that, for the foreseeable future, the Spring development team will continue to improve what is
already an excellent framework.

The Spring Tool Suite
To ease the development of Spring-based applications in Eclipse, Spring created the Spring IDE project.
Soon after that, SpringSource, the company behind Spring founded by Rod Johnson, created an integrated
tool called the Spring Tool Suite (STS) , which can be downloaded from https://spring.io/tools.
Although it used to be a paid-for product, the tool is now freely available. The tool integrates the Eclipse
IDE, Spring IDE, Mylyn (a task-based development environment in Eclipse), Maven for Eclipse, AspectJ
Development Tools, and many other useful Eclipse plug-ins into a single package. In each new version,
more features are being added, such as Groovy scripting language support, a graphical Spring configuration
editor, visual development tools for projects such as Spring Batch and Spring Integration, and support for
the Pivotal tc Server application server.

  SpringSource was bought by VMware and incorporated into Pivotal Software.

In addition to the Java-based suite, a Groovy/Grails Tool Suite is available with similar capabilities but
targeted at Groovy and Grails development (http://spring.io/tools).

The Spring Security Project
The Spring Security project (http://projects.spring.io/spring-security), formerly known as the Acegi
Security System for Spring, is another important project within the Spring portfolio. Spring Security provides
comprehensive support for both web application and method-level security. It tightly integrates with the
Spring Framework and other commonly used authentication mechanisms, such as HTTP basic authentication,
form-based login, X.509 certificate, and single sign-on (SSO) products (for example, CA SiteMinder). It
provides role-based access control to application resources, and in applications with more-complicated
security requirements (for example, data segregations), use of an access control list (ACL) is supported.
However, Spring Security is mostly used in securing web applications, which we discuss in detail in Chapter 16.

Spring Boot
Setting up the basis of an application is a cumbersome job. Configuration files for the project must be
created, and additional tools (like an application server) must be installed and configured. Spring Boot
(http://projects.spring.io/spring-boot/) is a Spring project that makes it easy to create stand-alone,
production-grade Spring-based applications that you can just run. Spring Boot comes with out-of-the-box
configurations for different types of Spring applications that are packed in starter packages. The web-starter
package, for example, contains a preconfigured and easily customizable web application context and
supports Tomcat 7+, Jetty 8+, and Undertow 1.3 embedded servlet containers out of the box.

Spring Boot also wraps up all dependencies a Spring application needs, taking into account
compatibility between versions. At the time of writing, the current version of Spring Boot is 2.0.0.RELEASE.

Spring Boot is covered in Chapter 4, as an alternative Spring project configuration, and most of the
projects assigned to later chapters will be run using Spring Boot because it makes development and testing
more practical and faster.

https://jira.spring.io/secure/Dashboard.jspa
https://spring.io/tools
http://spring.io/tools
http://projects.spring.io/spring-security
http://dx.doi.org/10.1007/978-1-4842-2808-1_16
http://projects.spring.io/spring-boot/
http://dx.doi.org/10.1007/978-1-4842-2808-1_4

Chapter 1 ■ Introducing Spring

17

Spring Batch and Integration
Needless to say, batch job execution and integration are common use cases in applications. To cope with
this need and to make it easy for developers in these areas, Spring created the Spring Batch and Spring
Integration projects. Spring Batch provides a common framework and various policies for batch job
implementation, reducing a lot of boilerplate code. By implementing the Enterprise Integration Patterns
(EIP), Spring Integration can make integrating Spring applications with external systems easy. We discuss
the details in Chapter 20.

Many Other Projects
We’ve covered the core modules of Spring and some of the major projects within the Spring portfolio,
but there are many other projects that have been driven by the need of the community for different
requirements. Some examples include Spring Boot, Spring XD, Spring for Android, Spring Mobile, Spring
Social, and Spring AMQP. Some of these projects are discussed further in Chapter 20. For additional details,
you can refer to the Spring by Pivotal web site (www.spring.io/projects).

Alternatives to Spring
Going back to our previous comments on the number of open source projects, you should not be surprised
to learn that Spring is not the only framework offering dependency injection features or full end-to-end
solutions for building applications. In fact, there are almost too many projects to mention. In the spirit of
being open, we include a brief discussion of several of these frameworks here, but it is our belief that none of
these platforms offers quite as comprehensive a solution as that available in Spring.

JBoss Seam Framework
Founded by Gavin King (the creator of the Hibernate ORM library), the Seam Framework (http://
seamframework.org) is another full-blown DI-based framework. It supports web application front-
end development (JSF), business logic layer (EJB 3), and JPA for persistence. As you can see, the main
difference between Seam and Spring is that the Seam Framework is built entirely on JEE standards. JBoss
also contributes the ideas in the Seam Framework back to the JCP and has become JSR-299 (Contexts and
Dependency Injection for the Java EE Platform).

Google Guice
Another popular DI framework is Google Guice (http://code.google.com/p/google-guice). Led by the search
engine giant Google, Guice is a lightweight framework that focuses on providing DI for application configuration
management. It was also the reference implementation of JSR-330 (Dependency Injection for Java).

PicoContainer
PicoContainer (http://picocontainer.com) is an exceptionally small DI container that allows you to
use DI for your application without introducing any dependencies other than PicoContainer. Because
PicoContainer is nothing more than a DI container, you may find that as your application grows, you need
to introduce another framework, such as Spring, in which case you would have been better off using Spring
from the start. However, if all you need is a tiny DI container, then PicoContainer is a good choice, but since
Spring packages the DI container separately from the rest of the framework, you can just as easily use that
and keep the flexibility for the future.

http://dx.doi.org/10.1007/978-1-4842-2808-1_20
http://dx.doi.org/10.1007/978-1-4842-2808-1_20
http://www.spring.io/projects
http://seamframework.org/
http://seamframework.org/
http://code.google.com/p/google-guice
http://picocontainer.com/

Chapter 1 ■ Introducing Spring

18

7The JEE8 release date has been postponed to the end of 2017; see https://jcp.org/en/jsr/detail?id=366.

JEE 7 Container7

As discussed previously, the concept of DI was widely adopted and also realized by JCP. When you are
developing an application for application servers compliant with JEE 7 (JSR-342), you can use standard DI
techniques across all layers.

Summary
In this chapter, we gave you a high-level view of the Spring Framework, complete with discussions of all the
major features, and we guided you to the relevant sections of the book where these features are discussed
in detail. After reading this chapter, you should understand what Spring can do for you; all that remains is
to see how it can do it. In the next chapter, we discuss all the information you need to know to get up and
running with a basic Spring application. We show you how to obtain the Spring Framework and discuss the
packaging options, the test suite, and the documentation. Also, Chapter 2 introduces some basic Spring
code, including a time-honored Hello World example in all its DI-based glory.

https://jcp.org/en/jsr/detail?id=366
http://dx.doi.org/10.1007/978-1-4842-2808-1_2

19© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_2

CHAPTER 2

Getting Started

Often the hardest part of learning to use any new development tool is figuring out where to begin. Typically,
this problem is worse when the tool offers as many choices as Spring. Fortunately, getting started with Spring
isn’t that hard if you know where to look first. In this chapter, we present you with all the basic knowledge
you need to get off to a flying start. Specifically, you will look at the following:

•	 Obtaining Spring: The first logical step is to obtain or build the Spring JAR files. If
you want to get up and running quickly, simply use the dependency management
snippets in your build system with the examples provided at http://projects.
spring.io/spring-framework. However, if you want to be on the cutting edge of
Spring development, check out the latest version of the source code from Spring’s
GitHub repository.1

•	 Spring packaging options: Spring packaging is modular; it allows you to pick and
choose which components you want to use in your application and to include
only those components when you are distributing your application. Spring has
many modules, but you need only a subset of these modules depending on your
application’s needs. Each module has its compiled binary code in a JAR file along
with corresponding Javadoc and source JARs.

•	 Spring guides: The new Spring web site includes a Guides section located at http://
spring.io/guides. The guides are meant to be quick, hands-on instructions for
building the Hello World version of any development task with Spring. These guides
also reflect the latest Spring project releases and techniques, providing you with the
most up-to-date samples available.

•	 Test suite and documentation: One of the things members of the Spring community
are most proud of is their comprehensive test suite and documentation set. Testing is
a big part of what the team does. The documentation set provided with the standard
distribution is also excellent.

•	 Putting some Spring into Hello World: All bad punning aside, we think the best way
to get started with any new programming tool is to dive right in and write some code.
We present a simple example, which is a full DI-based implementation of everyone’s
favorite Hello World application. Don’t be alarmed if you don’t understand all the
code right away; full discussions follow later in the book.

1Find Spring’s GitHub repository at http://github.com/spring-projects/spring-framework.

https://doi.org/10.1007/978-1-4842-2808-1_2
http://projects.spring.io/spring-framework
http://projects.spring.io/spring-framework
http://spring.io/guides
http://spring.io/guides
http://github.com/spring-projects/spring-framework

Chapter 2 ■ Getting Started

20

If you are already familiar with the basics of the Spring Framework, feel free to proceed straight to
Chapter 3 to dive into IoC and DI in Spring. However, even if you are familiar with the basics of Spring,
you may find some of the discussions in this chapter interesting, especially those on packaging and
dependencies.

Obtaining the Spring Framework
Before you can get started with any Spring development, you need to obtain the Spring libraries. You have a
couple of options for retrieving the libraries: you can use your build system to bring in the modules you want
to use, or you can check out and build the code from the Spring GitHub repository. Using a dependency
management tool such as Maven or Gradle is often the most straightforward approach; all you need to do is
declare the dependency in the configuration file and let the tool obtain the required libraries for you.

 I f you have an Internet connection and use a build tool such as Maven or Gradle in combination with
a smart IDE like Eclipse or IntelliJ IDEA, you can download the Javadoc and libraries automatically so you can
access them during development. When you upgrade the versions in the build configuration files when building
the project, the libraries and Javadoc will be updated too.

Getting Started Quickly
Visit the Spring Framework project page2 to obtain a dependency management snippet for your build system
to include the latest-release RELEASE version of Spring in your project. You can also use milestones/nightly
snapshots for upcoming releases or previous versions.

When using Spring Boot, there is no need to specify the Spring version you want to use, as Spring Boot
provides opinionated “starter” project object model (POM) files to simplify your Maven configuration
and default Gradle starter configuration. Just keep in mind that Spring Boot versions that precede version
2.0.0.RELEASE use Spring 4.x versions.

Checking Spring Out of GitHub
If you want to learn about new features before they make their way even into the snapshots, you can check
out the source code directly from Pivotal’s GitHub repository. To check out the latest version of the Spring
code, first install Git, which you can download from http://git-scm.com. Then open a terminal shell and
run the following command:

git clone git://github.com/spring-projects/spring-framework.git

See the README.md file in the project root for full details and requirements on how to build from source.

2http://projects.spring.io/spring-framework

http://dx.doi.org/10.1007/978-1-4842-2808-1_3
http://git-scm.com/
http://projects.spring.io/spring-framework

Chapter 2 ■ Getting Started

21

Using the Right JDK
The Spring Framework is built in Java, which means you need to be able to execute Java applications on your
computer to use it. For this you need to install Java. There are three widely used Java acronyms when people
talk about Java applications development.

•	 A Java virtual machine (JVM) is an abstract machine. It is a specification that
provides a runtime environment in which Java bytecode can be executed.

•	 The Java Runtime Environment (JRE) is used to provide a runtime environment. It is
the implementation of the JVM that physically exists. It contains a set of libraries and
other files that the JVM uses at runtime. Oracle bought Sun Microsystems in 2010;
since then, new versions and patches have been actively provided. Other companies,
such as IBM, provide their own implementations of the JVM.

•	 The Java Development Kit (JDK) contains the JRE, documentation, and Java tools.
This is what Java developers install on their machines. A smart editor like IntelliJ
IDEA or Eclipse will require you to provide the location of the JDK so classes and
documentation can be loaded and used during development.

If you are using a build tool like Maven or Gradle (the source code accompanying the book is organized
in a Gradle multimodule project), it will require a JVM as well; Maven and Gradle are both Java-based
projects themselves.

The latest stable Java version is Java 8, and Java 9 is scheduled to be released on 21 September 2017.
You can download the JDK from https://www.oracle.com/. By default it will be installed in some default
location on your computer, depending on your operating system. If you want to use Maven or Gradle from
the command line, you need to define environment variables for the JDK and Maven/Gradle and to add the
path to their executables to the system path. You can find instructions on how to do this on the official site
for each product and in the appendix of this book.

Chapter 1 presented a list with Spring versions and the required JDK version. The Spring version
covered in the book is 5.0.x. The source code presented in the book is written using Java 8 syntax, so you
need at least JDK version 8 to be able to compile and run the examples.

Understanding Spring Packaging
Spring modules are simply JAR files that package the required code for that module. After you understand
the purpose of each module, you can select the modules required in your project and include them in
your code. As of Spring version 5.0.0.RELEASE, Spring comes with 21 modules, packaged into 21 JAR
files. Table 2-1 describes these JAR files and their corresponding modules. The actual JAR file name is, for
example, spring-aop-5.0.0.RELEASE.jar, though we have included only the specific module portion for
simplicity (as in aop, for example).

https://www.oracle.com/
http://dx.doi.org/10.1007/978-1-4842-2808-1_1

Chapter 2 ■ Getting Started

22

Table 2-1.  Spring modules

Module Description

aop This module contains all the classes you need to use Spring’s AOP features within
your application. You also need to include this JAR in your application if you
plan to use other features in Spring that use AOP, such as declarative transaction
management. Moreover, classes that support integration with AspectJ are packed in
this module.

aspects This module contains all the classes for advanced integration with the AspectJ AOP
library. For example, if you are using Java classes for your Spring configuration and
need AspectJ-style annotation-driven transaction management, you will need this
module.

beans This module contains all the classes for supporting Spring’s manipulation of Spring
beans. Most of the classes here support Spring’s bean factory implementation. For
example, the classes required for processing the Spring XML configuration file and
Java annotations are packed into this module.

beans-groovy This module contains Groovy classes for supporting Spring’s manipulation of
Spring beans.

context This module contains classes that provide many extensions to Spring Core.
You will find that all classes need to use Spring’s ApplicationContext feature
(covered in Chapter 5), along with classes for Enterprise JavaBeans (EJB), Java
Naming and Directory Interface (JNDI), and Java Management Extensions (JMX)
integration. Also contained in this module are the Spring remoting classes, classes
for integration with dynamic scripting languages (for example, JRuby, Groovy, and
BeanShell), JSR-303 (Bean Validation), scheduling and task execution, and so on.

context-indexer This module contains an indexer implementation that provides access to the
candidates that are defined in META-INF/spring.components. The core class
CandidateComponentsIndex is not meant to be used externally.

context-support This module contains further extensions to the spring-context module. On
the user-interface side, there are classes for mail support and integration with
templating engines such as Velocity, FreeMarker, and JasperReports. Also,
integration with various task execution and scheduling libraries including
CommonJ and Quartz are packaged here.

core This is the main module that you will need for every Spring application. In this JAR
file, you will find all the classes that are shared among all other Spring modules (for
example, classes for accessing configuration files). Also, in this JAR, you will find
selections of extremely useful utility classes that are used throughout the Spring
codebase and that you can use in your own application.

expression This module contains all support classes for Spring Expression Language (SpEL).

instrument This module includes Spring’s instrumentation agent for JVM bootstrapping. This
JAR file is required for using load-time weaving with AspectJ in a Spring application.

(continued)

http://dx.doi.org/10.1007/978-1-4842-2808-1_5

Chapter 2 ■ Getting Started

23

Module Description

dbc This module includes all classes for JDBC support. You will need this module for
all applications that require database access. Classes for supporting data sources,
JDBC data types, JDBC templates, native JDBC connections, and so on, are packed
in this module.

jms This module includes all classes for JMS support.

messaging This module contains key abstractions taken from the Spring Integration project to
serve as a foundation for message-based applications and adds support for STOMP
messages.

orm This module extends Spring’s standard JDBC feature set with support for popular
ORM tools including Hibernate, JDO, JPA, and the data mapper iBATIS. Many of the
classes in this JAR depend on classes contained in the spring-jdbc JAR file, so you
definitely need to include that in your application as well.

oxm This module provides support for Object/XML Mapping (OXM). Classes for the
abstraction of XML marshalling and unmarshalling and support for popular tools
such as Castor, JAXB, XMLBeans, and XStream are packed into this module.

test Spring provides a set of mock classes to aid in testing your applications, and
many of these mock classes are used within the Spring test suite, so they are
well tested and make testing your applications much simpler. Certainly we have
found great use for the mock HttpServletRequest and HttpServletResponse
classes in unit tests for our web applications. On the other hand, Spring provides
a tight integration with the JUnit unit-testing framework, and many classes that
support the development of JUnit test cases are provided in this module; for
example, SpringJUnit4ClassRunner provides a simple way to bootstrap the Spring
ApplicationContext in a unit test environment.

tx This module provides all classes for supporting Spring’s transaction infrastructure.
You will find classes from the transaction abstraction layer to support the Java
Transaction API (JTA) and integration with application servers from major vendors.

web This module contains the core classes for using Spring in your web applications,
including classes for loading an ApplicationContext feature automatically, file
upload support classes, and a bunch of useful classes for performing repetitive tasks
such as parsing integer values from the query string.

web-reactive This module contains core interfaces and classes for Spring Web Reactive model.

web-mvc This module contains all the classes for Spring’s own MVC framework. If you are
using a separate MVC framework for your application, you won’t need any of the
classes from this JAR file. Spring MVC is covered in more detail in Chapter 16.

websocket This module provides support for JSR-356 (Java API for WebSocket).

Table 2-1.  (continued)

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 2 ■ Getting Started

24

Choosing Modules for Your Application
Without a dependency management tool such as Maven or Gradle, choosing which modules to use in your
application may be a bit tricky. For example, if you require Spring’s bean factory and DI support only, you
still need several modules including spring-core, spring-beans, spring-context, and spring-aop. If you
need Spring’s web application support, you then need to further add spring-web and so on. Thanks to build
tool features such as Maven’s transitive dependencies support, all required third-party libraries would be
included automatically.

Accessing Spring Modules on the Maven Repository
Founded by Apache Software Foundation, Maven3 has become one of the most popular tools in managing
the dependencies for Java applications, from open source to enterprise environments. Maven is a powerful
application building, packaging, and dependency management tool. It manages the entire build cycle
of an application, from resource processing and compiling to testing and packaging. There also exists a
large number of Maven plug-ins for various tasks, such as updating databases and deploying a packaged
application to a specific server (for example, Tomcat, JBoss, or WebSphere). As of this writing, the current
Maven version is 3.3.9.

Almost all open source projects support distribution of libraries via the Maven repository. The most
popular one is the Maven Central repository hosted on Apache, and you can access and search for the
existence and related information of an artifact on the Maven Central web site.4 If you download and install
Maven into your development machine, you automatically gain access to the Maven Central repository.
Some other open source communities (for example, JBoss and Spring by Pivotal) also provide their own
Maven repository for their users. However, to be able to access those repositories, you need to add the
repository into your Maven’s setting file or in your project’s POM file.

A detailed discussion of Maven is not in the scope of this book, and you can always refer to the online
documentation or books that give you a detailed reference to Maven. However, since Maven is widely
adopted, it’s worth mentioning the typical structure of the project packaging on the Maven repository.

A group ID, artifact ID, packaging type, and version identify each Maven artifact. For example, for log4j,
the group ID is log4j, the artifact ID is log4j, and the packaging type is jar. Under that, different versions
are defined. For example, for version 1.2.12, the artifact’s file name becomes log4j-1.2.17.jar under the
group ID, artifact ID, and version folder. Maven configuration files are written in XML and must respect the
Maven standard syntax defined by the http://maven.apache.org/maven-v4_0_0.xsd schema. The default
name of a Maven configuration file for a project is om.xml, and a sample file is shown here:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.apress.prospring5.ch02</groupId>
 <artifactId>hello-world</artifactId>
 <packaging>jar</packaging>
 <version>5.0-SNAPSHOT</version>
 <name>hello-world</name>

3http://maven.apache.org
4http://search.maven.org

http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/
http://search.maven.org/

Chapter 2 ■ Getting Started

25

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <spring.version>5.0.0.RELEASE</spring.version>
 </properties>
 <dependencies>
 <!-- https://mvnrepository.com/artifact/log4j/log4j -->
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 ...
 </plugin>
 </plugins>
 </build>
</project>

Maven also defines a typical standard project structure, as depicted in Figure 2-1.

The main directory contains the classes (the java directory) and configuration files (the resources
directory) for the application.

The test directory contains the classes (the java directory) and configuration files (the resources
directory) that are used to test the application from the main directory.

Figure 2-1.  Typical Maven project structure

Chapter 2 ■ Getting Started

26

Accessing Spring Modules Using Gradle
The Maven project standard structure and artifact categorization and organization is important because Gradle
respects the same rules and even uses the Maven central repository to retrieve artifacts. Gradle is a powerful
build tool that has given up the bloated XML for configuration and switched to the simplicity and flexibility of
Groovy. At the time of writing, the current version of Gradle is 4.0.5 Starting with version 4.x, the Spring team
has switched to using Gradle for the configuration of every Spring product. That is why the source code for this
book can be built and executed using Gradle too. The default name of a Gradle configuration file for a project is
build.gradle. The equivalent of the pom.xml file depicted earlier (well, one version of it) is shown here:

group 'com.apress.prospring5.ch02'
version '5.0-SNAPSHOT'

apply plugin: 'java'

repositories {
 mavenCentral()
}

ext{
 springVersion = '5.0.0.RELEASE'
}

tasks.withType(JavaCompile) {
 options.encoding = "UTF-8"
}

dependencies {
 compile group: 'log4j', name: 'log4j', version: '1.2.17'
 ...
}

That’s way more readable, right? As you can observe, the artifacts are identified using the group, artifact,
and version as previously introduced with Maven, but the property names differ. And since Gradle is not in
the scope of this book either, the coverage for it must end here.

Using Spring Documentation
One of the aspects of Spring that makes it such a useful framework for developers who are building real
applications is its wealth of well-written, accurate documentation. In every release, the Spring Framework’s
documentation team works hard to ensure that all the documentation is finished and polished by the
development team. This means that every feature of Spring is not only fully documented in the Javadoc but
is also covered in the Spring reference manual included in every distribution. If you haven’t yet familiarized
yourself with the Spring Javadoc and the reference manual, do so now. This book is not a replacement for
either of these resources; rather, it is a complementary reference, demonstrating how to build a Spring-
based application from the ground up.

5On the official project site you can find detailed instructions on how to download, install, and configure Gradle for
development: https://gradle.org/install.

https://gradle.org/install

Chapter 2 ■ Getting Started

27

Putting a Spring into Hello World
We hope by this point in the book you appreciate that Spring is a solid, well-supported project that has all
the makings of a great tool for application development. However, one thing is missing—we haven’t shown
you any code yet. We are sure you are dying to see Spring in action, and because we cannot go any longer
without getting into the code, let’s do just that. Do not worry if you do not fully understand all the code in
this section; we go into much more detail on all the topics as we proceed through the book.

Building the Sample Hello World Application
Now, we are sure you are familiar with the traditional Hello World example, but just in case you have been
living on the moon for the past 30 years, the following code snippet shows the Java version in all its glory:

package com.apress.prospring5.ch2;

public class HelloWorld {
 public static void main(String... args) {
 System.out.println("Hello World!");
 }
}

As examples go, this one is pretty simple—it does the job, but it is not very extensible. What if we
want to change the message? What if we want to output the message differently, maybe to standard error
instead of standard output or enclosed in HTML tags rather than as plain text? We are going to redefine
the requirements for the sample application and say that it must support a simple, flexible mechanism
for changing the message, and it must be easy to change the rendering behavior. In the basic Hello World
example, you can make both of these changes quickly and easily by just changing the code as appropriate.
However, in a bigger application, recompiling takes time, and it requires the application to be fully tested
again. A better solution is to externalize the message content and read it in at runtime, perhaps from the
command-line arguments shown in the following code snippet:

package com.apress.prospring5.ch2;

public class HelloWorldWithCommandLine {

 public static void main(String... args) {
 if (args.length > 0) {
 System.out.println(args[0]);
 } else {
 System.out.println("Hello World!");
 }
 }
}

This example accomplishes what we wanted—we can now change the message without changing
the code. However, there is still a problem with this application: the component responsible for rendering
the message is also responsible for obtaining the message. Changing how the message is obtained means
changing the code in the renderer. Add to this the fact that we still cannot change the renderer easily; doing
so means changing the class that launches the application.

Chapter 2 ■ Getting Started

28

If we take this application a step further (away from the basics of Hello World), a better solution is
to refactor the rendering and message retrieval logic into separate components. Plus, if we really want
to make your application flexible, we should have these components implement interfaces and define
the interdependencies between the components and the launcher using these interfaces. By refactoring
the message retrieval logic, we can define a simple MessageProvider interface with a single method,
getMessage(), as shown in the following code snippet:

package com.apress.prospring5.ch2.decoupled;

public interface MessageProvider {
 String getMessage();
}

The MessageRenderer interface is implemented by all components that can render messages, and such
a component is depicted in the following code snippet:

package com.apress.prospring5.ch2.decoupled;

public interface MessageRenderer {
 void render();
 void setMessageProvider(MessageProvider provider);
 MessageProvider getMessageProvider();
}

As you can see, the MessageRenderer interface declares a method, render(), and also a JavaBean-style
method, setMessageProvider(). Any MessageRenderer implementations are decoupled from message
retrieval and delegate that responsibility to the MessageProvider instance with which they are supplied.
Here, MessageProvider is a dependency of MessageRenderer. Creating simple implementations of these
interfaces is easy, as shown in the following code snippet:

package com.apress.prospring5.ch2.decoupled;

public class HelloWorldMessageProvider implements MessageProvider {
 @Override
 public String getMessage() {
 return "Hello World!";
 }
}

You can see that we have created a simple MessageProvider that always returns “Hello World!” as the
message. The StandardOutMessageRenderer class shown next is just as simple:

package com.apress.prospring5.ch2.decoupled;

public class StandardOutMessageRenderer implements MessageRenderer {
 private MessageProvider messageProvider;

 @Override
 public void render() {
 if (messageProvider == null) {
 throw new RuntimeException(
 "You must set the property messageProvider of class:"

Chapter 2 ■ Getting Started

29

 + StandardOutMessageRenderer.class.getName());
 }
 System.out.println(messageProvider.getMessage());
 }

 @Override
 public void setMessageProvider(MessageProvider provider) {
 this.messageProvider = provider;
 }

 @Override
 public MessageProvider getMessageProvider() {
 return this.messageProvider;
 }
}

Now all that remains is to rewrite the main() method of the entry class.

package com.apress.prospring5.ch2.decoupled;

public class HelloWorldDecoupled {
 public static void main(String... args) {
 MessageRenderer mr = new StandardOutMessageRenderer();
 MessageProvider mp = new HelloWorldMessageProvider();
 mr.setMessageProvider(mp);
 mr.render();
 }
}

Figure 2-2 depicts the abstract schema of the application built so far.

Figure 2-2.  A little more decoupled Hello World application

Chapter 2 ■ Getting Started

30

The code here is fairly simple. We instantiate instances of HelloWorldMessageProvider and
StandardOutMessageRenderer, although the declared types are MessageProvider and MessageRenderer,
respectively. This is because we need to interact only with the methods provided by the interface in
the programming logic, and HelloWorldMessageProvider and StandardOutMessageRenderer already
implemented those interfaces, respectively. Then, we pass MessageProvider to MessageRenderer and
invoke MessageRenderer.render(). If we compile and run this program, we get the expected “Hello World!”
output. Now, this example is more like what we are looking for, but there is one small problem. Changing the
implementation of either the MessageRenderer or MessageProvider interface means a change to the code.
To get around this, we can create a simple factory class that reads the implementation class names from a
properties file and instantiates them on behalf of the application, as shown here:

package com.apress.prospring5.ch2.decoupled;
import java.util.Properties;

public class MessageSupportFactory {
 private static MessageSupportFactory instance;

 private Properties props;
 private MessageRenderer renderer;
 private MessageProvider provider;

 private MessageSupportFactory() {
 props = new Properties();

 try {
 props.load(this.getClass().getResourceAsStream("/msf.properties"));

 String rendererClass = props.getProperty("renderer.class");
 String providerClass = props.getProperty("provider.class");

 renderer = (MessageRenderer) Class.forName(rendererClass).newInstance();
 provider = (MessageProvider) Class.forName(providerClass).newInstance();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

 static {
 instance = new MessageSupportFactory();
 }

 public static MessageSupportFactory getInstance() {
 return instance;
 }

public MessageRenderer getMessageRenderer() {
 return renderer;
 }

 public MessageProvider getMessageProvider() {
 return provider;
 }
}

Chapter 2 ■ Getting Started

31

The implementation here is trivial and naive, the error handling is simplistic, and the name of the
configuration file is hard-coded, but we already have a substantial amount of code. The configuration file for
this class is quite simple.

renderer.class=
 com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer
provider.class=
 com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider

To make use of the previous implementation, you must modify the main method again.

package com.apress.prospring5.ch2.decoupled;

public class HelloWorldDecoupledWithFactory {
 public static void main(String... args) {
 MessageRenderer mr =
 MessageSupportFactory.getInstance().getMessageRenderer();
 MessageProvider mp =
 MessageSupportFactory.getInstance().getMessageProvider();
 mr.setMessageProvider(mp);
 mr.render();
 }
}

Before we move on to see how we can introduce Spring into this application, let’s quickly recap what
we have done. Starting with the simple Hello World application, we defined two additional requirements
that the application must fulfill. The first was that changing the message should be simple, and the second
was that changing the rendering mechanism should also be simple. To meet these requirements, we used
two interfaces: MessageProvider and MessageRenderer. The MessageRenderer interface depends on an
implementation of the MessageProvider interface to be able to retrieve a message to render. Finally, we added
a simple factory class to retrieve the names of the implementation classes and instantiate them as applicable.

Refactoring with Spring
The final example shown earlier met the goals laid out for the sample application, but there are still
problems with it. The first problem is that we had to write a lot of glue code to piece the application
together, while at the same time keeping the components loosely coupled. The second problem is that
we still had to provide the implementation of MessageRenderer with an instance of MessageProvider
manually. We can solve both of these problems by using Spring. To solve the problem of too much glue
code, we can completely remove the MessageSupportFactory class from the application and replace it with
a Spring interface, ApplicationContext. Don’t worry too much about this interface; for now, it is enough
to know that this interface is used by Spring for storing all the environmental information with regard to
an application being managed by Spring. This interface extends another interface, ListableBeanFactory,
which acts as the provider for any Spring-managed bean instance.

package com.apress.prospring5.ch2;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class HelloWorldSpringDI {

Chapter 2 ■ Getting Started

32

 public static void main(String args) {
 ApplicationContext ctx = new ClassPathXmlApplicationContext
 ("spring/app-context.xml");

 MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
 mr.render();
 }
}

In the previous code snippet, you can see that the main() method obtains an instance of
ClassPathXmlApplicationContext (the application configuration information is loaded from the file
spring/app-context.xml in the project’s classpath), typed as ApplicationContext, and from this, it obtains
the MessageRenderer instances by using the ApplicationContext.getBean() method. Don’t worry too
much about the getBean() method for now; just know that this method reads the application configuration
(in this case, an XML file), initializes Spring’s ApplicationContext environment, and then returns the
configured bean6 instance. This XML file (app-context.xml) serves the same purpose as the one used for
MessageSupportFactory.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="provider"
 class="com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider"/>

 <bean id="renderer"
 class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
 p:messageProvider-ref="provider"/>
</beans>

The previous file shows a typical Spring ApplicationContext configuration. First, Spring’s namespaces
are declared, and the default namespace is beans. The beans namespace is used to declare the beans that
need to be managed by Spring and to declare their dependency requirements (for the preceding example,
the renderer bean’s messageProvider property is referencing the provider bean). Spring will resolve and
inject those dependencies.

Afterward, we declare the bean with the ID provider and the corresponding implementation class.
When Spring sees this bean definition during the ApplicationContext initialization, it will instantiate the
class and store it with the specified ID.

Then the renderer bean is declared, with the corresponding implementation class. Remember that
this bean depends on the MessageProvider interface for getting the message to render. To inform Spring
about the DI requirement, we use the p namespace attribute. The tag attribute p:messageProvider-
ref="provider" tells Spring that the bean’s property, messageProvider, should be injected with another
bean. The bean to be injected into the property should reference a bean with the ID provider. When Spring
sees this definition, it will instantiate the class, look up the bean’s property named messageProvider, and
inject it with the bean instance with the ID provider.

6A bean is what an instance of a class is called in Spring.

Chapter 2 ■ Getting Started

33

As you can see, upon the initialization of Spring’s ApplicationContext, the main() method now just
obtains the MessageRenderer bean by using its type-safe getBean() method (passing in the ID and the
expected return type, which is the MessageRenderer interface) and calls render(); Spring has created the
MessageProvider implementation and injected it into the MessageRenderer implementation. Notice that we
didn’t have to make any changes to the classes that are being wired together using Spring. In fact, these classes
have no reference to Spring and are completely oblivious to its existence. However, this isn’t always the case.
Your classes can implement Spring-specified interfaces to interact in a variety of ways with the DI container.

With your new Spring configuration and modified main() method, let’s see it in action. Using Gradle,
enter the following commands into your terminal to build the project and the root of your source code:

gradle clean build copyDependencies

The only required Spring module to be declared in your configuration file is spring-context. Gradle
will automatically bring in any transitive dependencies required for this module. In Figure 2-3 you can see
the transitive dependencies of spring-context.jar.

The previous command will build the project from scratch, deleting previously generated files, and copy
all required dependencies in the same location where the resulting artifact is placed, under build/libs. This
path value will also be used as an appending prefix to the library files added to MANIFEST.MF when building
the JAR. See the Chapter 2 source code (available on the Apress web site), specifically the Gradle hellor-
world/build.properties file, for more information if you are unfamiliar with the Gradle JAR building
configuration and process. Finally, to run the Spring DI sample, enter the following commands:

cd build/libs; java -jar hello-world-5.0-SNAPSHOT.jar

At this point, you should see some log statements generated by the Spring container’s startup process
followed by the expected Hello World output.

Figure 2-3.  spring-context and its transitive dependencies depicted in IntelliJ IDEA

http://dx.doi.org/10.1007/978-1-4842-2808-1_2

Chapter 2 ■ Getting Started

34

Spring Configuration Using Annotations
Starting with Spring 3.0, XML configuration files are no longer necessary when developing a Spring
application. They can be replaced with annotations and configuration classes. Configuration classes are
Java classes annotated with @Configuration that contain bean definitions (methods annotated with
@Bean) or are configured themselves to identify bean definitions in the application by annotating them with
@ComponentScanning. The equivalent of the app-context.xml file presented earlier is shown here:

package com.apress.prospring5.ch2.annotated;

import com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class HelloWorldConfiguration {

 // equivalent to <bean id="provider" class=".."/>
 @Bean
 public MessageProvider provider() {
 return new HelloWorldMessageProvider();
 }

 // equivalent to <bean id="renderer" class=".."/>
 @Bean
 public MessageRenderer renderer(){
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(provider());
 return renderer;
 }
}

The main() method has to be modified to replace ClassPathXmlApplicationContext with another
ApplicationContext implementation that knows how to read bean definitions from configuration classes.
That class is AnnotationConfigApplicationContext.

package com.apress.prospring5.ch2.annotated;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class HelloWorldSpringAnnotated {

 public static void main(String... args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext
 (HelloWorldConfiguration.class);

Chapter 2 ■ Getting Started

35

 MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
 mr.render();
 }
}

This is just one version of configuration using annotations and configuration classes. Without XML,
things get pretty flexible when it comes to Spring configuration. You’ll learn more about that later in this
book, but the focus when it comes to configuration is on Java configuration and annotations.

  Some of the interfaces and classes defined in the Hello World sample may be used in later chapters.
Although we showed the full source code in this sample, future chapters may show condensed versions of
code to be less verbose, especially in the case of incremental code modifications. The code has been organized
a little, and all classes that can be used in Spring future examples were placed under the com.apress.
prospring5.ch2.decoupled and com.apress.prospring5.ch2.annotated packages, but keep in mind in a
real application you would want to layer your code appropriately.

Summary
In this chapter, we presented you with all the background information you need to get up and running
with Spring. We showed you how to get started with Spring through dependency management systems
and the current development version directly from GitHub. We described how Spring is packaged and
the dependencies you need for each of Spring’s features. Using this information, you can make informed
decisions about which of the Spring JAR files your application needs and which dependencies you need to
distribute with your application. Spring’s documentation, guides, and test suite provide Spring users with an
ideal base from which to start their Spring development, so we took some time to investigate what is made
available by Spring. Finally, we presented an example of how, using Spring DI, it is possible to make the
traditional Hello World a loosely coupled, extendable message-rendering application. The important thing
to realize is that we only scratched the surface of Spring DI in this chapter, and we barely made a dent in
Spring as a whole. In the next chapter, we take look at IoC and DI in Spring.

37© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_3

CHAPTER 3

Introducing IoC and DI in Spring

In Chapter 2, we covered the basic principles of inversion of control. Practically, dependency injection is
a specialized form of IoC, although you will often find that the two terms are used interchangeably. In this
chapter, we give you a much more detailed look at IoC and DI, formalizing the relationship between the two
concepts and looking in great detail at how Spring fits into the picture.

After defining both and looking at Spring’s relationship with them, we explore the concepts that
are essential to Spring’s implementation of DI. This chapter covers only the basics of Spring’s DI
implementation; we discuss more advanced DI features in Chapter 4. More specifically, this chapter covers
the following topics:

•	 Inversion of control concepts: In this section, we discuss the various kinds of IoC,
including dependency injection and dependency lookup. This section presents the
differences between the various IoC approaches as well as the pros and cons of each.

•	 Inversion of control in Spring: This section looks at IoC capabilities available in
Spring and how they are implemented. In particular, you’ll see the dependency
injection services that Spring offers, including setter, constructor, and Method
Injection.

•	 Dependency injection in Spring: This section covers Spring’s implementation of
the IoC container. For bean definition and DI requirements, BeanFactory is the
main interface an application interacts with. However, other than the first few, the
remainder of the sample code provided in this chapter focuses on using Spring’s
ApplicationContext interface, which is an extension of BeanFactory and provides
much more powerful features. We cover the difference between BeanFactory and
ApplicationContext in later sections.

•	 Configuring the Spring application context: The final part of this chapter focuses on
using the XML and annotation approaches for ApplicationContext configuration.
Groovy and Java configuration are further discussed in Chapter 4. This section starts
with a discussion of DI configuration and moves on to present additional services
provided by BeanFactory such as bean inheritance, life-cycle management, and
autowiring.

Inversion of Control and Dependency Injection
At its core, IoC, and therefore DI, aims to offer a simpler mechanism for provisioning component
dependencies (often referred to as an object’s collaborators) and managing these dependencies throughout
their life cycles. A component that requires certain dependencies is often referred to as the dependent object
or, in the case of IoC, the target. In general, IoC can be decomposed into two subtypes: dependency injection

https://doi.org/10.1007/978-1-4842-2808-1_3
http://dx.doi.org/10.1007/978-1-4842-2808-1_2
http://dx.doi.org/10.1007/978-1-4842-2808-1_4
http://dx.doi.org/10.1007/978-1-4842-2808-1_4

Chapter 3 ■ Introducing IoC and DI in Spring

38

and dependency lookup. These subtypes are further decomposed into concrete implementations of the IoC
services. From this definition, you can clearly see that when we are talking about DI, we are always talking
about IoC, but when we are talking about IoC, we are not always talking about DI (for example, dependency
lookup is also a form of IoC).

Types of Inversion of Control
You may be wondering why there are two types of IoC and why these types are split further into different
implementations. There seems to be no clear answer to this question; certainly the different types provide a
level of flexibility, but to us, it seems that IoC is more of a mixture of old and new ideas. The two types of IoC
represent this. Dependency lookup is a much more traditional approach, and at first glance, it seems more
familiar to Java programmers. Dependency injection, although it appears counterintuitive at first, is actually
much more flexible and usable than dependency lookup. With dependency lookup–style IoC, a component
must acquire a reference to a dependency, whereas with dependency injection, the dependencies are
injected into the component by the IoC container. Dependency lookup comes in two types: dependency
pull and contextualized dependency lookup (CDL). Dependency injection also has two common flavors:
constructor and setter dependency injection.

  For the discussions in this section, we are not concerned with how the fictional IoC container comes to
know about all the different dependencies, just that at some point, it performs the actions described for each
mechanism.

Dependency Pull
To a Java developer, dependency pull is the most familiar types of IoC. In dependency pull, dependencies
are pulled from a registry as required. Anyone who has ever written code to access an EJB (2.1 or prior
versions) has used dependency pull (that is, via the JNDI API to look up an EJB component). Figure 3-1
shows the scenario of dependency pull via the lookup mechanism.

Figure 3-1.  Dependency pull via JNDI lookup

Chapter 3 ■ Introducing IoC and DI in Spring

39

Spring also offers dependency pull as a mechanism for retrieving the components that the framework
manages; you saw this in action in Chapter 2. The following code sample shows a typical dependency pull
lookup in a Spring-based application:

package com.apress.prospring5.ch3;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class DependencyPull {
 public static void main(String... args) {
 ApplicationContext ctx = new ClassPathXmlApplicationContext
 ("spring/app-context.xml");

 MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
 mr.render();
 }
}

This kind of IoC is not only prevalent in JEE-based applications (using EJB 2.1 or prior versions), which
make extensive use of JNDI lookups to obtain dependencies from a registry, but also pivotal to working with
Spring in many environments.

Contextualized Dependency Lookup
Contextualized dependency lookup (CDL) is similar, in some respects, to dependency pull, but in CDL,
lookup is performed against the container that is managing the resource, not from some central registry, and
it is usually performed at some set point. Figure 3-2 shows the CDL mechanism.

Figure 3-2.  Contextualized dependency lookup

CDL works by having the component implement an interface similar to that in the following code snippet:

package com.apress.prospring5.ch3;

public interface ManagedComponent {
 void performLookup(Container container);
}

http://dx.doi.org/10.1007/978-1-4842-2808-1_2

Chapter 3 ■ Introducing IoC and DI in Spring

40

By implementing this interface, a component is signaling to the container that it wants to obtain a
dependency. The container is usually provided by the underlying application server or framework (for
example, Tomcat or JBoss) or framework (for example, Spring). The following code snippet shows a simple
Container interface that provides a dependency lookup service:

package com.apress.prospring5.ch3;

public interface Container {
 Object getDependency(String key);
}

When the container is ready to pass dependencies to a component, it calls performLookup() on each
component in turn. The component can then look up its dependencies by using the Container interface, as
shown in the following code snippet:

package com.apress.prospring5.ch3;

public class ContextualizedDependencyLookup
 implements ManagedComponent {
 private Dependency dependency;

 @Override
 public void performLookup(Container container) {
 this.dependency = (Dependency) container.getDependency("myDependency");
 }

 @Override
 public String toString() {
 return dependency.toString();
 }
}

Constructor Dependency Injection
Constructor dependency injection occurs when a component’s dependencies are provided to it in its
constructor (or constructors). The component declares a constructor or a set of constructors, taking as
arguments its dependencies, and the IoC container passes the dependencies to the component when
instantiation occurs, as shown in the following code snippet:

package com.apress.prospring5.ch3;

public class ConstructorInjection {
 private Dependency dependency;

 public ConstructorInjection(Dependency dependency) {
 this.dependency = dependency;
 }

 @Override
 public String toString() {
 return dependency.toString();
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

41

An obvious consequence of using constructor injection is that an object cannot be created without its
dependencies; thus, they are mandatory.

Setter Dependency Injection
In setter dependency injection, the IoC container injects a component’s dependencies via JavaBean-style
setter methods. A component’s setters expose the dependencies the IoC container can manage. The
following code sample shows a typical setter dependency injection–based component:

package com.apress.prospring5.ch3;

public class SetterInjection {
 private Dependency dependency;

 public void setDependency(Dependency dependency) {
 this.dependency = dependency;
 }

 @Override
 public String toString() {
 return dependency.toString();
 }
}

An obvious consequence of using setter injection is that an object can be created without its
dependencies, and they can be provided later by calling the setter.

Within the container, the dependency requirement exposed by the setDependency() method is referred
to by the JavaBeans-style name, dependency. In practice, setter injection is the most widely used injection
mechanism, and it is one of the simplest IoC mechanisms to implement.

 T here is a another type of injection supported in Spring called field injection, but this will be covered
later in the chapter, when you learn about autowiring using the @Autowire annotation.

Injection vs. Lookup
Choosing which style of IoC to use—injection or lookup—is not usually a difficult decision. In many cases,
the type of IoC you use is mandated by the container you are using. For instance, if you are using EJB 2.1 or
prior versions, you must use lookup-style IoC (via JNDI) to obtain an EJB from the JEE container. In Spring,
aside from initial bean lookups, your components and their dependencies are always wired together using
injection-style IoC.

  When you are using Spring, you can access EJB resources without needing to perform an explicit
lookup. Spring can act as an adapter between lookup and injection-style IoC systems, thus allowing you to
manage all resources by using injection.

Chapter 3 ■ Introducing IoC and DI in Spring

42

The real question is this: given the choice, which method should you use, injection or lookup? The
answer is most definitely injection. If you look at the code in the previous code samples, you can clearly see
that using injection has zero impact on your components’ code. The dependency pull code, on the other
hand, must actively obtain a reference to the registry and interact with it to obtain the dependencies, and
using CDL requires your classes to implement a specific interface and look up all dependencies manually.
When you are using injection, the most your classes have to do is allow dependencies to be injected by using
either constructors or setters.

Using injection, you are free to use your classes completely decoupled from the IoC container that
is supplying dependent objects with their collaborators manually, whereas with lookup, your classes are
always dependent on the classes and interfaces defined by the container. Another drawback with lookup
is that it becomes difficult to test your classes in isolation from the container. Using injection, testing your
components is trivial because you can simply provide the dependencies yourself by using the appropriate
constructor or setter.

  For a more complete discussion of testing by using dependency injection and Spring, refer to Chapter 13.

Lookup-based solutions are, by necessity, more complex than injection-based ones. Although
complexity is nothing to be afraid of, we question the validity of adding unneeded complexity to a process as
central to your application as dependency management.

All of these reasons aside, the biggest reason to choose injection over lookup is that it makes your life
easier. You write substantially less code when you are using injection, and the code that you do write is
simple and can, in general, be automated by a good IDE. You will notice that all the code in the injection
samples is passive, in that it doesn’t actively try to accomplish a task. The most exciting thing you see in
injection code is that objects get stored in a field only; no other code is involved in pulling the dependency
from any registry or container. Therefore, the code is much simpler and less error prone. Passive code is
much simpler to maintain than active code because there is very little that can go wrong. Consider the
following code taken from the CDL example:

public void performLookup(Container container) {
 this.dependency = (Dependency) container.getDependency("myDependency");
}

In this code, plenty could go wrong: the dependency key could change, the container instance could be
null, or the returned dependency might be the incorrect type. We refer to this code as having a lot of moving
parts, because plenty of things can break. Using dependency lookup might decouple the components of
your application, but it adds complexity in the additional code required to couple these components back
together in order to perform any useful tasks.

Setter Injection vs. Constructor Injection
Now that we have established which method of IoC is preferable, you still need to choose whether to use
setter injection or constructor injection. Constructor injection is particularly useful when you absolutely
must have an instance of the dependency class before your component is used. Many containers, Spring
included, provide a mechanism for ensuring that all dependencies are defined when you use setter
injection, but by using constructor injection, you assert the requirement for the dependency in a container-
agnostic manner. Constructor injection also helps achieve the use of immutable objects.

Setter injection is useful in a variety of cases. If the component is exposing its dependencies to the
container but is happy to provide its own defaults, setter injection is usually the best way to accomplish
this. Another benefit of setter injection is that it allows dependencies to be declared on an interface,

http://dx.doi.org/10.1007/978-1-4842-2808-1_13

Chapter 3 ■ Introducing IoC and DI in Spring

43

although this is not as useful as you might first think. Consider a typical business interface with one business
method, defineMeaningOfLife(). If, in addition to this method, you define a setter for injection such
as setEncylopedia(), you are mandating that all implementations must use or at least be aware of the
encyclopedia dependency. However, you don’t need to define setEncylopedia() in the business interface.
Instead, you can define the method in the classes implementing the business interface. While programming
in this way, all recent IoC containers, Spring included, can work with the component in terms of the business
interface but still provide the dependencies of the implementing class. An example of this may clarify this
matter slightly. Consider the business interface in the following code snippet:

package com.apress.prospring5.ch3;

public interface Oracle {
 String defineMeaningOfLife();
}

Notice that the business interface does not define any setters for dependency injection. This interface
could be implemented as shown in the following code snippet:

package com.apress.prospring5.ch3;

public class BookwormOracle implements Oracle {
 private Encyclopedia encyclopedia;

 public void setEncyclopedia(Encyclopedia encyclopedia) {
 this.encyclopedia = encyclopedia;
 }

 @Override
 public String defineMeaningOfLife() {
 return "Encyclopedias are a waste of money - go see the world instead";
 }
}

As you can see, the BookwormOracle class not only implements the Oracle interface but also defines
the setter for dependency injection. Spring is more than comfortable dealing with a structure like this.
There is absolutely no need to define the dependencies on the business interface. The ability to use
interfaces to define dependencies is an often-touted benefit of setter injection, but in actuality, you
should strive to keep setters used solely for injection out of your interfaces. Unless you are absolutely
sure that all implementations of a particular business interface require a particular dependency, let each
implementation class define its own dependencies and keep the business interface for business methods.

Although you shouldn’t always place setters for dependencies in a business interface, placing setters
and getters for configuration parameters in the business interface is a good idea and makes setter injection
a valuable tool. We consider configuration parameters to be a special case for dependencies. Certainly your
components depend on the configuration data, but configuration data is significantly different from the
types of dependency you have seen so far. We will discuss the differences shortly, but for now, consider the
business interface shown in the following code snippet:

package com.apress.prospring5.ch3;

public interface NewsletterSender {
 void setSmtpServer(String smtpServer);
 String getSmtpServer();

Chapter 3 ■ Introducing IoC and DI in Spring

44

 void setFromAddress(String fromAddress);
 String getFromAddress();

 void send();
}

Classes that send a set of newsletters via e-mail implement the NewsletterSender interface. The
send() method is the only business method, but notice that we have defined two JavaBean properties on the
interface. Why are we doing this when we just said that you shouldn’t define dependencies in the business
interface? The reason is that these values, the SMTP server address and the address the e-mails are sent
from, are not dependencies in the practical sense; rather, they are configuration details that affect how all
implementations of the NewsletterSender interface function. The question here then is this: what is the
difference between a configuration parameter and any other kind of dependency? In most cases, you can
clearly see whether a dependency should be classified as a configuration parameter, but if you are not sure,
look for the following three characteristics that point to a configuration parameter:

•	 Configuration parameters are passive. In the NewsletterSender example depicted
in the previous code snippet, the SMTP server parameter is an example of a passive
dependency. Passive dependencies are not used directly to perform an action;
instead, they are used internally or by another dependency to perform their actions.
In the MessageRenderer example from Chapter 2, the MessageProvider dependency
was not passive; it performed a function that was necessary for the MessageRenderer
to complete its task.

•	 Configuration parameters are usually information, not other components. By this
we mean that a configuration parameter is usually some piece of information that
a component needs to complete its work. Clearly, the SMTP server is a piece of
information required by the NewsletterSender, but the MessageProvider is really
another component that the MessageRenderer needs to function correctly.

•	 Configuration parameters are usually simple values or collections of simple
values. This is really a by-product of the previous two points, but configuration
parameters are usually simple values. In Java this means they are a primitive (or
the corresponding wrapper class) or a String or collections of these values. Simple
values are generally passive. This means you can’t do much with a String other
than manipulate the data it represents; and you almost always use these values for
information purposes, for example, an int value that represents the port number
that a network socket should listen on or a String that represents the SMTP server
through which an e-mail program should send messages.

When considering whether to define configuration options in the business interface, also consider
whether the configuration parameter is applicable to all implementations of the business interface
or just one. For instance, in the case of implementations of NewsletterSender, it is obvious that all
implementations need to know which SMTP server to use when sending e-mails. However, we would
probably choose to leave the configuration option that flags whether to send secure e-mail off the
business interface because not all e-mail APIs are capable of this, and it is correct to assume that many
implementations will not take security into consideration at all.

 R ecall that in Chapter 2 it was chosen to define the dependencies in the business purposes. This was
for illustration purposes and should not be treated in any way as a best practice.

http://dx.doi.org/10.1007/978-1-4842-2808-1_2
http://dx.doi.org/10.1007/978-1-4842-2808-1_2

Chapter 3 ■ Introducing IoC and DI in Spring

45

Setter injection also allows you to swap dependencies for a different implementation on the fly without
creating a new instance of the parent component. Spring’s JMX support makes this possible. Perhaps the
biggest benefit of setter injection is that it is the least intrusive of the injection mechanisms.

In general, you should choose an injection type based on your use case. Setter-based injection allows
dependencies to be swapped out without creating new objects and also lets your class choose appropriate
defaults without the need to explicitly inject an object. Constructor injection is a good choice when you
want to ensure that dependencies are being passed to a component and when designing for immutable
objects. Do keep in mind that while constructor injection ensures that all dependencies are provided to a
component, most containers provide a mechanism to ensure this as well but may incur a cost of coupling
your code to the framework.

Inversion of Control in Spring
As mentioned earlier, inversion of control is a big part of what Spring does. The core of Spring’s
implementation is based on dependency injection, although dependency lookup features are provided as
well. When Spring provides collaborators to a dependent object automatically, it does so using dependency
injection. In a Spring-based application, it is always preferable to use dependency injection to pass
collaborators to dependent objects rather than have the dependent objects obtain the collaborators via
lookup. Figure 3-3 shows Spring’s dependency injection mechanism. Although dependency injection is
the preferred mechanism for wiring together collaborators and dependent objects, you need dependency
lookup to access the dependent objects. In many environments, Spring cannot automatically wire up all
of your application components by using dependency injection, and you must use dependency lookup to
access the initial set of components. For example, in stand-alone Java applications, you need to bootstrap
Spring’s container in the main() method and obtain the dependencies (via the ApplicationContext
interface) for processing programmatically. However, when you are building web applications by using
Spring’s MVC support, Spring can avoid this by gluing your entire application together automatically.
Wherever it is possible to use dependency injection with Spring, you should do so; otherwise, you can fall
back on the dependency lookup capabilities. You will see examples of both in action during the course of
this chapter, and we will point them out when they first arise.

Figure 3-3.  Spring’s dependency injection mechanism

An interesting feature of Spring’s IoC container is that it has the ability to act as an adapter between its
own dependency injection container and external dependency lookup containers. We discuss this feature
later in this chapter.

Spring supports both constructor and setter injection and bolsters the standard IoC feature set with a
whole host of useful additions to make your life easier.

The rest of this chapter introduces the basics of Spring’s DI container, complete with plenty of
examples.

Chapter 3 ■ Introducing IoC and DI in Spring

46

Dependency Injection in Spring
Spring’s support for dependency injection is comprehensive and, as you will see in Chapter 4, goes beyond
the standard IoC feature set we have discussed so far. The rest of this chapter addresses the basics of Spring’s
dependency injection container, looking at setter, constructor, and Method Injection, along with a detailed
look at how dependency injection is configured in Spring.

Beans and BeanFactory
The core of Spring’s dependency injection container is the BeanFactory interface. BeanFactory is
responsible for managing components, including their dependencies as well as their life cycles. In Spring,
the term bean is used to refer to any component managed by the container. Typically, your beans adhere, at
some level, to the JavaBeans specification, but this is not required, especially if you plan to use constructor
injection to wire your beans together.

If your application needs only DI support, you can interact with the Spring DI container via the
BeanFactory interface. In this case, your application must create an instance of a class that implements the
BeanFactory interface and configures it with bean and dependency information. After this is complete, your
application can access the beans via BeanFactory and get on with its processing.

In some cases, all of this setup is handled automatically (for example, in a web application, Spring’s
ApplicationContext will be bootstrapped by the web container during application startup via a Spring-
provided ContextLoaderListener class declared in the web.xml descriptor file). But in many cases, you
need to code the setup yourself. All of the examples in this chapter require manual setup of the BeanFactory
implementation.

Although the BeanFactory can be configured programmatically, it is more common to see it
configured externally using some kind of configuration file. Internally, bean configuration is represented
by instances of classes that implement the BeanDefinition interface. The bean configuration stores
information not only about a bean itself but also about the beans that it depends on. For any BeanFactory
implementation classes that also implement the BeanDefinitionReader interface, you can read the
BeanDefinition data from a configuration file, using either PropertiesBeanDefinitionReader or
XmlBeanDefinitionReader. PropertiesBeanDefinitionReader reads the bean definition from properties
files, while XmlBeanDefinitionReader reads from XML files.

So, you can identify your beans within BeanFactory; each bean can be assigned an ID, a name, or both.
A bean can also be instantiated without any ID or name (known as an anonymous bean) or as an inner bean
within another bean. Each bean has at least one name but can have any number of names (additional names
are separated by commas). Any names after the first are considered aliases for the same bean. You use bean
IDs or names to retrieve a bean from BeanFactory and also to establish dependency relationships (that is,
bean X depends on bean Y).

BeanFactory Implementations
The description of the BeanFactory interface may appear overly complex, but in practice, this is not the case.
Take a look at a simple example. Let’s say you have an implementation that mimics an oracle that can tell
you the meaning of life.

//interface
package com.apress.prospring5.ch3;

public interface Oracle {
 String defineMeaningOfLife();
}

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

Chapter 3 ■ Introducing IoC and DI in Spring

47

//implementation
package com.apress.prospring5.ch3;

public class BookwormOracle implements Oracle {
 private Encyclopedia encyclopedia;

 public void setEncyclopedia(Encyclopedia encyclopedia) {
 this.encyclopedia = encyclopedia;
 }

 @Override
 public String defineMeaningOfLife() {
 return "Encyclopedias are a waste of money - go see the world instead";
 }
}

Now let’s see, in a stand-alone Java program, how Spring’s BeanFactory can be initialized and obtain
the oracle bean for processing. Here’s the code:

package com.apress.prospring5.ch3;

import org.springframework.beans.factory.support.DefaultListableBeanFactory;
import org.springframework.beans.factory.xml.XmlBeanDefinitionReader;
import org.springframework.core.io.ClassPathResource;

public class XmlConfigWithBeanFactory {

 public static void main(String... args) {
 DefaultListableBeanFactory factory = new DefaultListableBeanFactory();
 XmlBeanDefinitionReader rdr = new XmlBeanDefinitionReader(factory);
 rdr.loadBeanDefinitions(new
 ClassPathResource("spring/xml-bean-factory-config.xml"));
 Oracle oracle = (Oracle) factory.getBean("oracle");
 System.out.println(oracle.defineMeaningOfLife());
 }
}

In the previous code sample, you can see that we are using DefaultListableBeanFactory, which is
one of the two main BeanFactory implementations supplied with Spring, and that we are reading in the
BeanDefinition information from an XML file by using XmlBeanDefinitionReader. Once the BeanFactory
implementation is created and configured, we retrieve the oracle bean by using its name, oracle, which is
configured in the XML configuration file.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

Chapter 3 ■ Introducing IoC and DI in Spring

48

 <bean id="oracle"
 name="wiseworm"
 class="com.apress.prospring5.ch3.BookwormOracle"/>
</beans>

  When declaring a Spring XSD location, it’s a best practice to not include the version number. This
resolution is already handled for you by Spring as the versioned XSD file is configured through a pointer in the
spring.schemas file. This file resides in the spring-beans module defined as a dependency in your project.
This also prevents you from having to modify all of your bean files when upgrading to a new version of Spring.

The previous file declares a Spring bean, gives it an ID of oracle and a name of wiseworm, and tells
Spring that the underlying implementation class is com.apress.prospring4.ch3.BookwormOracle. Don’t
worry too much about the configuration at the moment; we discuss the details in later sections.

Having the configuration defined, run the program shown in the previous code sample; you will see the
phrase returned by the defineMeaningOfLife() method in the console output.

In addition to XmlBeanDefinitionReader, Spring also provides PropertiesBeanDefinitionReader,
which allows you to manage your bean configuration by using properties rather than XML. Although
properties are ideal for small, simple applications, they can quickly become cumbersome when you are
dealing with a large number of beans. For this reason, it is preferable to use the XML configuration format for
all but the most trivial of applications.

Of course, you are free to define your own BeanFactory implementations, although be aware that
doing so is quite involved; you need to implement a lot more interfaces than just BeanFactory to get the
same level of functionality you have with the supplied BeanFactory implementations. If all you want to do is
define a new configuration mechanism, create your definition reader by developing a class that extends the
DefaultListableBeanFactory class, which has the BeanFactory interface implemented.

ApplicationContext
In Spring, the ApplicationContext interface is an extension to BeanFactory. In addition to DI services,
ApplicationContext provides other services, such as transaction and AOP service, message source for
internationalization (i18n), and application event handling, to name a few. In developing Spring-based
applications, it’s recommended that you interact with Spring via the ApplicationContext interface. Spring
supports the bootstrapping of ApplicationContext by manual coding (instantiate it manually and load the
appropriate configuration) or in a web container environment via ContextLoaderListener. From this point
onward, all the sample code in this book uses ApplicationContext and its implementations.

Configuring ApplicationContext
Having discussed the basic concepts of IoC and DI and gone through a simple example of using Spring’s
BeanFactory interface, let’s dive into the details of how to configure a Spring application. In the following
sections, we go through various aspects of configuring Spring applications. Specifically, we should focus our
attention on the ApplicationContext interface, which provides many more configuration options than the
traditional BeanFactory interface.

Chapter 3 ■ Introducing IoC and DI in Spring

49

Setting Spring Configuration Options
Before we dive into the details of configuring Spring’s ApplicationContext, let’s take a look at the options
that are available for defining an application’s configuration within Spring. Originally, Spring supported
defining beans through either properties or an XML file. Since the release of JDK 5 and Spring’s support of
Java annotations, Spring (starting from Spring 2.5) also supports using Java annotations when configuring
ApplicationContext. So, which one is better, XML or annotations? There have been lots of debates on
this topic, and you can find numerous discussions on the Internet.1 There is no definite answer, and each
approach has its pros and cons. Using an XML file can externalize all configuration from Java code, while
annotations allow the developer to define and view the DI setup from within the code. Spring also supports
a mix of the two approaches in a single ApplicationContext. One common approach is to define the
application infrastructure (for example, data source, transaction manager, JMS connection factory, or JMX) in
an XML file, while defining the DI configuration (injectable beans and beans’ dependencies) in annotations.
However, no matter which option you choose, stick to it and deliver the message clearly across the entire
development team. Agreeing on the style to use and keeping it consistent across the application will make
ongoing development and maintenance activities much easier.

To facilitate your understanding of both the XML and annotation configuration, we provide sample
code for XML and annotations side by side whenever appropriate, but the focus of this book will be on
annotations and Java configuration, as XML was already covered in the previous editions of this book.

Basic Configuration Overview
For XML configuration, you need to declare the required namespace base provided by Spring that your
application requires. The following configuration sample shows the most basic sample, which declares only
the bean’s namespace for you to define the Spring beans. We refer to this configuration file as app-context-
xml.xml for XML-style configuration throughout the samples.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">
</beans>

Besides beans, Spring provides a large number of other namespaces for different purposes. Some
examples include context for ApplicationContext configuration, aop for AOP support, and tx for
transactional support. Namespaces are covered in the appropriate chapters.

To use Spring’s annotation support in your application, you need to declare the tags shown in the
next configuration sample in your XML configuration. We refer to this configuration file as app-context-
annotation.xml for XML configuration with annotation support throughout the samples.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

1For example, try the Spring community forums at http://forum.spring.io.

http://forum.spring.io/

Chapter 3 ■ Introducing IoC and DI in Spring

50

 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotation"/>

</beans>

The <context:component-scan> tag tells Spring to scan the code for injectable beans annotated with
@Component, @Controller, @Repository, and @Service as well as supporting the @Autowired, @Inject, and
@Resource annotations under the package (and all its subpackages) specified. In the <context:component-scan>
tag, multiple packages can be defined by using either a comma, a semicolon, or a space as the delimiter.
Moreover, the tag supports inclusion and exclusion of a component scan for more fine-grained control.
For example, consider the following configuration sample:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotation">
 <context:exclude-filter type="assignable"
 expression="com.example.NotAService"/>
 </context:component-scan>

</beans>

The previous tag tells Spring to scan the package as specified but omit the classes that were assignable
to the type as specified in the expression (can be either a class or an interface). Besides the exclude filter, you
can also use an include filter. And for the type, you can use annotation, regex, assignable, AspectJ, or custom
(with your own filter class that implements org.springframework.core.type.filter.TypeFilter) as the
filter criteria. The expression format depends on the type you specified.

Declaring Spring Components
After you develop some kind of service class and want to use it in a Spring-based application, you need
to tell Spring that those beans are eligible for injection to other beans and have Spring manage them
for you. Consider the sample in Chapter 2, where MessageRender outputs the message and depends on
MessageProvider to provide the message to render. The following code sample depicts the interfaces and
the implementation of the two services:

http://dx.doi.org/10.1007/978-1-4842-2808-1_2

Chapter 3 ■ Introducing IoC and DI in Spring

51

package com.apress.prospring5.ch2.decoupled;

//renderer interface
public interface MessageRenderer {
 void render();
 void setMessageProvider(MessageProvider provider);
 MessageProvider getMessageProvider();
}
// rendered implementation
public class StandardOutMessageRenderer
 implements MessageRenderer {

 private MessageProvider messageProvider;

 @Override
 public void render() {
 if (messageProvider == null) {
 throw new RuntimeException(
 "You must set the property messageProvider of class:"
 + StandardOutMessageRenderer.class.getName());
 }
 System.out.println(messageProvider.getMessage());
 }

 @Override
 public void setMessageProvider(MessageProvider provider) {
 this.messageProvider = provider;
 }

 @Override
 public MessageProvider getMessageProvider() {
 return this.messageProvider;
 }
}

//provider interface
public interface MessageProvider {
 String getMessage();
}

//provider implementation
public class HelloWorldMessageProvider implements MessageProvider {

 @Override
 public String getMessage() {
 return "Hello World!";
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

52

 T he classes shown previously are part of the com.apress.prospring5.ch2.decoupled package. They
are used in the project specific to this chapter as well, because in a real production application, developers try
to reuse code instead of duplicating it. That is why, as you will see when you will get the sources, the project for
Chapter 2 is defined as a dependency for some of the projects for Chapter 3.

To declare bean definitions in an XML file, the <bean ../> tag is used, and the resulting app-context-
xml.xml file now looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="provider"
 class="com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider"/>

 <bean id="renderer"
 class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
 p:messageProvider-ref="provider"/>
</beans>

The previous tags declare two beans, one with an ID of provider with the HelloWorldMessageProvider
implementation, and the other with an ID of renderer with the StandardOutMessageRenderer
implementation.

Starting with this example, namespaces will no longer be added to configuration samples, unless new
namespaces will be introduced, as this will make the bean definitions more visible.

To create bean definitions using annotations, the bean classes must be annotated with the appropriate
stereotype annotation,2 and the methods or constructors must be annotated with @Autowired to tell the
Spring IoC container to look for a bean of that type and use it as an argument when calling that method.
In the following code snippet, the annotations used to create the bean definition are underlined. The
stereotype annotations can have as a parameter the name of the resulting bean.

package com.apress.prospring5.ch3.annotation;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import org.springframework.stereotype.Component;
//simple bean
@Component("provider")
public class HelloWorldMessageProvider implements MessageProvider {

2These annotations are called stereotype because they are part of a package named org.springframework.stereotype.
This package groups together all annotations used to define beans. These annotations are also relevant to the role of a
bean. For example, @Service is used to define a service bean, which is a more complex functional bean that provides
services that other beans may require, and @Repository is used to define a bean that is used to retrieve/save data from/to
a database, etc.

http://dx.doi.org/10.1007/978-1-4842-2808-1_2
http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 3 ■ Introducing IoC and DI in Spring

53

 @Override
 public String getMessage() {
 return "Hello World!";
 }
}

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.stereotype.Service;
import org.springframework.beans.factory.annotation.Autowired;

//complex, service bean
@Service("renderer")
public class StandardOutMessageRenderer
 implements MessageRenderer {
 private MessageProvider messageProvider;

 @Override
 public void render() {
 if (messageProvider == null) {
 throw new RuntimeException(
 "You must set the property messageProvider of class:"
 + StandardOutMessageRenderer.class.getName());
 }

 System.out.println(messageProvider.getMessage());
 }

 @Override
 @Autowired
 public void setMessageProvider(MessageProvider provider) {
 this.messageProvider = provider;
 }

 @Override
 public MessageProvider getMessageProvider() {
 return this.messageProvider;
 }
}

When bootstrapping Spring’s ApplicationContext with the XML configuration depicted here, in file
app-context-annotation.xml, Spring will seek out those components and instantiate the beans with the
specified names:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

Chapter 3 ■ Introducing IoC and DI in Spring

54

 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotation"/>
</beans>

Using either approach doesn’t affect the way you obtain the beans from ApplicationContext.

package com.apress.prospring5.ch3;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DeclareSpringComponents {

 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();
 MessageRenderer messageRenderer = ctx.getBean("renderer",
 MessageRenderer.class);
 messageRenderer.render();
 ctx.close();
 }
}

Instead of DefaultListableBeanFactory, an instance of GenericXmlApplicationContext is
instantiated. The GenericXmlApplicationContext class implements the ApplicationContext interface and
is able to bootstrap Spring’s ApplicationContext from the configurations defined in XML files.

You can swap the app-context-xml.xml file with app-context-annotation.xml in the provided source
code for this chapter, and you will find that both cases produce the same result: “Hello World!” is printed.
The only difference is that after the swap the beans providing the functionality are the ones defined with
annotations in the com.apress.prospring5.ch3.annotation package.

Using Java Configuration
In Chapter 1 we mentioned that app-context-xml.xml can be replaced with a configuration class, without
modifying the classes representing the bean types being created. This is useful when the bean types that
the application needs are part of third-party libraries that cannot be modified. Such a configuration class is
annotated with @Configuration and contains methods annotated with @Bean that are called directly by the
Spring IoC container to instantiate the beans. The bean name will be the same as the name of the method
used to create it. The class is shown in the following code sample, and the method names are underlined to
make obvious how the resulting beans will be named:

http://dx.doi.org/10.1007/978-1-4842-2808-1_1

Chapter 3 ■ Introducing IoC and DI in Spring

55

package com.apress.prospring5.ch2.annotated;

import com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class HelloWorldConfiguration {

 @Bean
 public MessageProvider provider() {
 return new HelloWorldMessageProvider();
 }

 @Bean
 public MessageRenderer renderer(){
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(provider());
 return renderer;
 }
}

To read the configuration from this class, a different implementation of ApplicationContext is needed.

package com.apress.prospring5.ch2.annotated;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
public class HelloWorldSpringAnnotated {

 public static void main(String... args) {
 ApplicationContext ctx = new AnnotationConfigApplicationContext
 (HelloWorldConfiguration.class);
 MessageRenderer mr = ctx.getBean("renderer", MessageRenderer.class);
 mr.render();
 }
}

Instead of DefaultListableBeanFactory, an instance of AnnotationConfigApplicationContext
is instantiated. The AnnotationConfigApplicationContext class implements the ApplicationContext
interface and is able to bootstrap Spring’s ApplicationContext from the configurations defined by the
HelloWorldConfiguration class.

A configuration class can be used to read the annotated beans definitions as well. In this case, because
the bean’s definition configuration is part of the bean class, the class will no longer need any @Bean
annotated methods. But, to be able to look for bean definitions inside Java classes, component scanning has
to be enabled. This is done by annotating the configuration class with an annotation that is the equivalent
of the <context:component-scanning ../> element. This annotation is @ComponentScanning and has the
same parameters as the XML analogous element.

Chapter 3 ■ Introducing IoC and DI in Spring

56

package com.apress.prospring5.ch3.annotation;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@ComponentScan(basePackages = {"com.apress.prospring5.ch3.annotation"})
@Configuration
public class HelloWorldConfiguration {
}

The code to bootstrap a Spring environment using AnnotationConfigApplicationContext will work
with this class too, with no additional changes.

In real-life production applications, there might be legacy code, developed with older versions of
Spring, or requirements might be of such a nature that require XML and configuration classes. Fortunately,
XML and Java configuration can be mixed in more than one way. For example, a configuration class can
import bean definitions from an XML file (or more) using @ImportResource, and the same bootstrapping
using AnnotationConfigApplicationContext will work in this case as well.

package com.apress.prospring5.ch3.mixed;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;

@ImportResource(locations = {"classpath:spring/app-context-xml.xml"})
@Configuration
public class HelloWorldConfiguration {
}

So, Spring allows you to be really creative when defining your beans; you’ll learn more about this in
Chapter 4, which is focused solely on Spring application configuration.

Using Setter Injection
To configure setter injection by using XML configuration, you need to specify <property> tags under the
<bean> tag for each <property> into which you want to inject a dependency. For example, to assign the
message provider bean to the messageProvider property of the messageRenderer bean, you simply change
the <bean> tag for the renderer bean, as shown in the following code snippet:

<beans ...>
 <bean id="renderer"
 class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer">
 <property name="messageProvider" ref="provider"/>
 </bean>

 <bean id="provider"
 class="com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider"/>
</beans>

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

Chapter 3 ■ Introducing IoC and DI in Spring

57

From this code, we can see that the provider bean is assigned to the messageProvider property. You
can use the ref attribute to assign a bean reference to a property (discussed in more detail shortly).

If you are using Spring 2.5 or newer and have the p namespace declared in your XML configuration file,
you can declare the injection as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="renderer"
 class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
 p:messageProvider-ref="provider"/>

 <bean id="provider"
 class="com.apress.prospring5.ch2.decoupled.HelloWorldMessageProvider"/>
</beans>

 T he p namespace is not defined in an XSD file and exists only in Spring core; therefore, no XSD is
declared in the schemaLocation attribute.

With annotations, it’s even simpler. You just need to add an @Autowired annotation to the setter
method, as shown in the following code snippet:

package com.apress.prospring5.ch3.annotation;
...
import org.springframework.beans.factory.annotation.Autowired;

@Service("renderer")
public class StandardOutMessageRenderer implements MessageRenderer {
...
 @Override
 @Autowired
 public void setMessageProvider(MessageProvider provider) {
 this.messageProvider = provider;
 }
}

Since we declared the <context:component-scan> tag in the XML configuration file, during the
initialization of Spring’s ApplicationContext, Spring will discover those @Autowired annotations and inject
the dependency as required.

Chapter 3 ■ Introducing IoC and DI in Spring

58

  Instead of @Autowired, you can use @Resource(name="messageProvider") to achieve the same result.
@Resource is one of the annotations in the JSR-250 standard that defines a common set of Java annotations
for use on both JSE and JEE platforms. Different from @Autowired, the @Resource annotation supports the name
parameter for more fine-grained DI requirements. Additionally, Spring supports use of the @Inject annotation
introduced as part of JSR-299 (Contexts and Dependency Injection for the Java EE Platform). @Inject is
equivalent in behavior to Spring’s @Autowired annotation.

To verify the result, you can use DeclareSpringComponents that was presented earlier. As in the
previous section, you can swap the app-context-xml.xml file with app-context-annotation.xml in the
provided source code for this chapter, and you will find that both cases produce the same result: “Hello
World!” is printed.

Using Constructor Injection
In the previous example, the MessageProvider implementation, HelloWorldMessageProvider, returned the
same hard-coded message for each call of the getMessage() method. In the Spring configuration file, you
can easily create a configurable MessageProvider that allows the message to be defined externally, as shown
in the following code snippet:

package com.apress.prospring5.ch3.xml;

import com.apress.prospring5.ch2.decoupled.MessageProvider;

public class ConfigurableMessageProvider
 implements MessageProvider {
 private String message;

 public ConfigurableMessageProvider(String message) {
 this.message = message;
 }

 @Override
 public String getMessage() {
 return message;
 }
}

As you can see, it is impossible to create an instance of ConfigurableMessageProvider without
providing a value for the message (unless you supply null). This is exactly what we want, and this class is
ideally suited for use with constructor injection. The following code snippet shows how you can redefine the
provider bean definition to create an instance of ConfigurableMessageProvider, injecting the message by
using constructor injection:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="messageProvider"

Chapter 3 ■ Introducing IoC and DI in Spring

59

 class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider">
 <constructor-arg value="I hope that someone gets my message in a bottle"/>
 </bean>
</beans>

In this code, instead of using a <property> tag, we used a <constructor-arg> tag. Because we are not
passing in another bean this time, just a String literal, we use the value attribute instead of ref to specify
the value for the constructor argument. When you have more than one constructor argument or your class
has more than one constructor, you need to give each <constructor-arg> tag an index attribute to specify
the index of the argument, starting at 0, in the constructor signature. It is always best to use the index
attribute whenever you are dealing with constructors that have multiple arguments, to avoid confusion
between the parameters and ensure that Spring picks the correct constructor.

In addition to the p namespace, as of Spring 3.1, you can also use the c namespace, as shown here:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="provider"
 class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider"
 c:message="I hope that someone gets my message in a bottle"/>
</beans>

 T he c namespace is not defined in an XSD file either and exists only in Spring Core; therefore, no XSD is
declared in the schemaLocation attribute.

To use an annotation for constructor injection, we also use the @Autowired annotation in the target
bean’s constructor method, which is an alternative option to the one using setter injection, as shown in the
following code snippet:

package com.apress.prospring5.ch3.annotated;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service("provider")
public class ConfigurableMessageProvider implements MessageProvider {

 private String message;

 @Autowired
 public ConfigurableMessageProvider(
 (@Value("Configurable message") String message) {
 this.message = message;
 }

Chapter 3 ■ Introducing IoC and DI in Spring

60

 @Override
 public String getMessage() {
 return this.message;
 }
}

From the previous code, we can see that we use another annotation, @Value, to define the value to be
injected into the constructor. This is the way in Spring we inject values into a bean. Besides simple strings,
we can use the powerful SpEL for dynamic value injection (more on this later in this chapter).

However, hard-coding the value in the code is not a good idea; to change it, we would need to
recompile the program. Even if you choose annotation-style DI, a good practice is to externalize those
values for injection. To externalize the message, let’s define the message as a Spring bean in the annotation
configuration file, as shown in the following code snippet:

<beans ...>
 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotated"/>

 <bean id="message" class="java.lang.String"
 c:_0="I hope that someone gets my message in a bottle"/>
</beans>

Here we define a bean with an ID of message and type of java.lang.String. Notice that we also use the
c namespace for constructor injection to set the string value, and _0 indicates the index for the constructor
argument. Having the bean declared, we can take away the @Value annotation from the target bean, as
shown in the following code snippet:

package com.apress.prospring5.ch3.annotated;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service("provider")
public class ConfigurableMessageProvider implements MessageProvider {

 private String message;

 @Autowired
 public ConfigurableMessageProvider(String message) {
 this.message = message;
 }

 @Override
 public String getMessage() {
 return this.message;
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

61

Since we declare that the message bean and its ID are the same as the name of the argument specified
in the constructor, Spring will detect the annotation and inject the value into the constructor method.
Now run the test by using the following code against both the XML (app-context.xml.xml) and annotation
configurations (app-context-annotation.xml), and the configured message will be displayed in both cases:

package com.apress.prospring5.ch3;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DeclareSpringComponents {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();

 MessageProvider messageProvider = ctx.getBean("provider",
 MessageProvider.class);

 System.out.println(messageProvider.getMessage());
 }
}

In some cases, Spring finds it impossible to tell which constructor we want it to use for constructor
injection. This usually arises when we have two constructors with the same number of arguments and the
types used in the arguments are represented in the same way. Consider the following code:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

public class ConstructorConfusion {
 private String someValue;

 public ConstructorConfusion(String someValue) {
 System.out.println("ConstructorConfusion(String) called");
 this.someValue = someValue;
 }

 public ConstructorConfusion(int someValue) {
 System.out.println("ConstructorConfusion(int) called");
 this.someValue = "Number: " + Integer.toString(someValue);
 }

 public String toString() {
 return someValue;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

Chapter 3 ■ Introducing IoC and DI in Spring

62

 ConstructorConfusion cc = (ConstructorConfusion)
 ctx.getBean("constructorConfusion");
 System.out.println(cc);
 ctx.close
 }
}

This simply retrieves a bean of type ConstructorConfusion from ApplicationContext and writes the
value to console output. Now look at the following configuration code:

<beans ...>
 <bean id="provider"
 class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider"
 c:message="I hope that someone gets my message in a bottle"/>

 <bean id="constructorConfusion"
 class="com.apress.prospring5.ch3.xml.ConstructorConfusion">
 <constructor-arg>
 <value>90</value>
 </constructor-arg>
 </bean>

</beans>

Which of the constructors is called in this case? Running the example yields the following output:

ConstructorConfusion(String) called

This shows that the constructor with the String argument is called. This is not the desired effect, since
we want to prefix any integer values passed in by using constructor injection with Number:, as shown in the
int constructor. To get around this, we need to make a small modification to the configuration, as shown in
the following code snippet:

<beans ...>
 <bean id="provider"
 class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider"
 c:message="I hope that someone gets my message in a bottle"/>

 <bean id="constructorConfusion"
 class="com.apress.prospring5.ch3.xml.ConstructorConfusion">
 <constructor-arg type="int">
 <value>90</value>
 </constructor-arg>
 </bean>

</beans>

Notice now that the <constructor-arg> tag has an additional attribute, type, that specifies the type
of argument Spring should look for. Running the example again with the corrected configuration yields the
correct output.

ConstructorConfusion(int) called
Number: 90

Chapter 3 ■ Introducing IoC and DI in Spring

63

For annotation-style construction injection, the confusion can be avoided by applying the annotation
directly to the target constructor method, as shown in the following code snippet:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Service;

@Service("constructorConfusion")
public class ConstructorConfusion {

 private String someValue;

 public ConstructorConfusion(String someValue) {
 System.out.println("ConstructorConfusion(String) called");
 this.someValue = someValue;
 }

 @Autowired
 public ConstructorConfusion(@Value("90") int someValue) {
 System.out.println("ConstructorConfusion(int) called");
 this.someValue = "Number: " + Integer.toString(someValue);
 }

 public String toString() {
 return someValue;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();

 ConstructorConfusion cc = (ConstructorConfusion)
 ctx.getBean("constructorConfusion");
 System.out.println(cc);
 ctx.close();
 }
}

By applying the @Autowired annotation to the desired constructor method, Spring will use that method
to instantiate the bean and inject the value as specified. As before, we should externalize the value from the
configuration.

 T he @Autowired annotation can be applied to only one of the constructor methods. If we apply the
annotation to more than one constructor method, Spring will complain while bootstrapping ApplicationContext.

Chapter 3 ■ Introducing IoC and DI in Spring

64

Using Field Injection
There is a third type of dependency injection supported in Spring called field injection. As the name says,
the dependency is injected directly in the field, with no constructor or setter needed. This is done by
annotating the class member with the Autowired annotation. This might seem practical, because when
the dependency is not needed outside of the object it is part of, it relieves the developer of writing some
code that is no longer used after the initial creation of the bean. In the following code snippet, the bean of
type Singer has a field of type Inspiration:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

@Service("singer")
public class Singer {

 @Autowired
 private Inspiration inspirationBean;

 public void sing() {
 System.out.println("... " + inspirationBean.getLyric());
 }
}

The field is private, but the Spring IoC container does not really care about that; it uses reflection to
populate the required dependency. The Inspiration class code is shown here; it is a simple bean with a
String member:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Component;

@Component
public class Inspiration {

 private String lyric =
 "I can keep the door cracked open, to let light through";

 public Inspiration(
 @Value("For all my running, I can understand") String lyric) {
 this.lyric = lyric;
 }

 public String getLyric() {
 return lyric;
 }

 public void setLyric(String lyric) {
 this.lyric = lyric;
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

65

The following configuration uses component scanning to discover the bean definitions that will be
created by the Spring IoC container:

<beans ...>
 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotated"/>
</beans>

Finding one bean of type Inspiration, the Spring IoC container will inject that bean in the
inspirationBean member of the singer bean. That is why when running the example depicted in the next
code snippet, “For all my running, I can understand” will be printed in the console.

package com.apress.prospring5.ch3.annotated;

import org.springframework.context.support.GenericXmlApplicationContext;

public class FieldInjection {

 public static void main(String... args) {

 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context.xml");
 ctx.refresh();

 Singer singerBean = ctx.getBean(Singer.class);
 singerBean.sing();

 ctx.close();
 }
}

But there are drawbacks, and this is why using field injection is usually avoided.

•	 Although it is easy to add dependencies this way, we must be careful not to violate the
single responsibility principle. Having more dependencies means more responsibilities
for a class, which might lead to a difficulty of separating concerns at refactoring time.
The situation when a class becomes bloated is easier to see when dependencies are set
using constructors or setters but is quite well hidden when using field injection.

•	 The responsibility of injecting dependencies is passed to the container in Spring,
but the class should clearly communicate the type of dependencies needed using
a public interface, through methods or constructors. Using field injections, it can
become unclear what type of dependency is really needed and if the dependency is
mandatory or not.

•	 Field injection introduces a dependency of the Spring container, as the @Autowired
annotation is a Spring component; thus, the bean is no longer a POJO and cannot be
instantiated independently.

•	 Field injection cannot be used for final fields. This type of fields can only be initialized using
constructor injection.

•	 Field injection introduces difficulties when writing tests as the dependencies have to
be injected manually.

Chapter 3 ■ Introducing IoC and DI in Spring

66

Using Injection Parameters
In the three previous examples, you saw how to inject other components and values into a bean by using
both setter injection and constructor injection. Spring supports a myriad of options for injection parameters,
allowing you to inject not only other components and simple values but also Java collections, externally
defined properties, and even beans in another factory. You can use all of these injection parameter types for
both setter injection and constructor injection by using the corresponding tag under the <property> and
<constructor-args> tags, respectively.

Injecting Simple Values
Injecting simple values into your beans is easy. To do so, simply specify the value in the configuration tag,
wrapped inside a <value> tag. By default, not only can the <value> tag read String values, but it can also
convert these values to any primitive or primitive wrapper class. The following code snippet shows a simple
bean that has a variety of properties exposed for injection:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

public class InjectSimple {

 private String name;
 private int age;
 private float height;
 private boolean programmer;
 private Long ageInSeconds;

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 InjectSimple simple = (InjectSimple) ctx.getBean("injectSimple");
 System.out.println(simple);
 ctx.close();
 }

 public void setAgeInSeconds(Long ageInSeconds) {
 this.ageInSeconds = ageInSeconds;
 }

 public void setProgrammer(boolean programmer) {
 this.programmer = programmer;
 }

 public void setAge(int age) {
 this.age = age;
 }

Chapter 3 ■ Introducing IoC and DI in Spring

67

 public void setHeight(float height) {
 this.height = height;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String toString() {
 return "Name: " + name + "\n"
 + "Age: " + age + "\n"
 + "Age in Seconds: " + ageInSeconds + "\n"
 + "Height: " + height + "\n"
 + "Is Programmer?: " + programmer;
 }
}

In addition to the properties, the InjectSimple class also defines the main() method that creates an
Application Context and then retrieves an InjectSimple bean from Spring. The property values of this
bean are then written to the console output. The configuration contained in app-context-xml.xml for this
bean is depicted in the following snippet:

<beans ...>

 <bean id="injectSimpleConfig"
 class="com.apress.prospring5.ch3.xml.InjectSimpleConfig"/>

 <bean id="injectSimpleSpel"
 class="com.apress.prospring5.ch3.xml.InjectSimpleSpel"
 p:name="John Mayer"
 p:age="39"
 p:height="1.92"
 p:programmer="false"
 p:ageInSeconds="1241401112"/>
</beans>

You can see from the two previous code snippets that it is possible to define properties on your bean
that accept String values, primitive values, or primitive wrapper values and then inject values for these
properties by using the <value> tag. Here is the output created by running this example as expected:

Name: John Mayer
Age: 39
Age in Seconds: 1241401112
Height: 1.92
Is Programmer?: false

Chapter 3 ■ Introducing IoC and DI in Spring

68

For annotation-style simple value injection, we can apply the @Value annotation to the bean properties.
This time, instead of the setter method, we apply the annotation to the property declaration statement, as we
can see in the following code snippet (Spring supports the annotation either at the setter method or in the
properties):

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Service;

@Service("injectSimple")
public class InjectSimple {

 @Value("John Mayer")
 private String name;
 @Value("39")
 private int age;
 @Value("1.92")
 private float height;
 @Value("false")
 private boolean programmer;
 @Value("1241401112")
 private Long ageInSeconds;

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();

 InjectSimple simple = (InjectSimple) ctx.getBean("injectSimple");
 System.out.println(simple);

 ctx.close();
 }

 public String toString() {
 return "Name: " + name + "\n"
 + "Age: " + age + "\n"
 + "Age in Seconds: " + ageInSeconds + "\n"
 + "Height: " + height + "\n"
 + "Is Programmer?: " + programmer;
 }
}

This achieves the same result as the XML configuration.

Chapter 3 ■ Introducing IoC and DI in Spring

69

Injecting Values by Using SpEL
One powerful feature introduced in Spring 3 is the Spring Expression Language (SpEL). SpEL enables you to
evaluate an expression dynamically and then use it in Spring’s ApplicationContext. You can use the result
for injection into Spring beans. In this section, we take a look at how to use SpEL to inject properties from
other beans, by using the example in the preceding section.

Suppose now we want to externalize the values to be injected into a Spring bean in a configuration class,
as shown in the following code snippet:

package com.apress.prospring5.ch3.annotated;

import org.springframework.stereotype.Component;

@Component("injectSimpleConfig")
public class InjectSimpleConfig {

 private String name = "John Mayer";
 private int age = 39;
 private float height = 1.92f;
 private boolean programmer = false;
 private Long ageInSeconds = 1_241_401_112L;

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 public float getHeight() {
 return height;
 }

 public boolean isProgrammer() {
 return programmer;
 }

 public Long getAgeInSeconds() {
 return ageInSeconds;
 }
}

We can then define the bean in the XML configuration and use SpEL to inject the bean’s properties into
the dependent bean, as shown in the following configuration snippet:

<beans ...>

 <bean id="injectSimpleConfig"
 class="com.apress.prospring5.ch3.xml.InjectSimpleConfig"/>

Chapter 3 ■ Introducing IoC and DI in Spring

70

 <bean id="injectSimpleSpel"
 class="com.apress.prospring5.ch3.xml.InjectSimpleSpel"
 p:name="#{injectSimpleConfig.name}"
 p:age="#{injectSimpleConfig.age + 1}"
 p:height="#{injectSimpleConfig.height}"
 p:programmer="#{injectSimpleConfig.programmer}"
 p:ageInSeconds="#{injectSimpleConfig.ageInSeconds}"/>
</beans>

Notice that we use the SpEL #{injectSimpleConfig.name} in referencing the property of the other
bean. For the age, we add 1 to the value of the bean to indicate that we can use SpEL to manipulate the
property as we see fit and inject it into the dependent bean. Now we can test the configuration with the
program shown in the following code snippet:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

public class InjectSimpleSpel {
 private String name;
 private int age;
 private float height;
 private boolean programmer;
 private Long ageInSeconds;

 public String getName() {
 return this.name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return this.age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public float getHeight() {
 return this.height;
 }

 public void setHeight(float height) {
 this.height = height;
 }

 public boolean isProgrammer() {
 return this.programmer;
 }

Chapter 3 ■ Introducing IoC and DI in Spring

71

 public void setProgrammer(boolean programmer) {
 this.programmer = programmer;
 }

 public Long getAgeInSeconds() {
 return this.ageInSeconds;
 }

 public void setAgeInSeconds(Long ageInSeconds) {
 this.ageInSeconds = ageInSeconds;
 }

 public String toString() {
 return "Name: " + name + "\n"
 + "Age: " + age + "\n"
 + "Age in Seconds: " + ageInSeconds + "\n"
 + "Height: " + height + "\n"
 + "Is Programmer?: " + programmer;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 InjectSimpleSpel simple = (InjectSimpleSpel)ctx.getBean("injectSimpleSpel");
 System.out.println(simple);

 ctx.close();
 }
}

The following is the output of the program:

Name: John Mayer
Age: 40
Age in Seconds: 1241401112
Height: 1.92
Is Programmer?: false

When using annotation-style value injection, we just need to substitute the value annotations with the
SpEL expressions (see the following code snippet):

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Service;

@Service("injectSimpleSpel")
public class InjectSimpleSpel {

Chapter 3 ■ Introducing IoC and DI in Spring

72

 @Value("#{injectSimpleConfig.name}")
 private String name;

 @Value("#{injectSimpleConfig.age + 1}")
 private int age;

 @Value("#{injectSimpleConfig.height}")
 private float height;

 @Value("#{injectSimpleConfig.programmer}")
 private boolean programmer;

 @Value("#{injectSimpleConfig.ageInSeconds}")
 private Long ageInSeconds;

 public String toString() {
 return "Name: " + name + "\n"
 + "Age: " + age + "\n"
 + "Age in Seconds: " + ageInSeconds + "\n"
 + "Height: " + height + "\n"
 + "Is Programmer?: " + programmer;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();

 InjectSimpleSpel simple = (InjectSimpleSpel)ctx.getBean("injectSimpleSpel");
 System.out.println(simple);

 ctx.close();
 }
}

The version of InjectSimpleConfig is shown here:

package com.apress.prospring5.ch3.annotated;

import org.springframework.stereotype.Component;

@Component("injectSimpleConfig")
public class InjectSimpleConfig {
 private String name = "John Mayer";
 private int age = 39;
 private float height = 1.92f;
 private boolean programmer = false;
 private Long ageInSeconds = 1_241_401_112L;

 // getters here ...
}

Chapter 3 ■ Introducing IoC and DI in Spring

73

In the previous snippet, instead of the @Service annotation, @Component was used. Basically, using
@Component has the same effect as @Service. Both annotations are instructing Spring that the annotated class
is a candidate for autodetection using annotation-based configuration and classpath scanning. However, since
the InjectSimpleConfig class is storing the application configuration, rather than providing a business service,
using @Component makes more sense. Practically, @Service is a specialization of @Component, which indicates
that the annotated class is providing a business service to other layers within the application.

Testing the program will produce the same result. Using SpEL, you can access any Spring-managed
beans and properties and manipulate them for application use by Spring’s support of sophisticated language
features and syntax.

Injecting Beans in the Same XML Unit
As you have already seen, it is possible to inject one bean into another by using the ref tag. The next code
snippet shows a class that exposes a setter to allow a bean to be injected:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;
import com.apress.prospring5.ch3.Oracle;

public class InjectRef {
 private Oracle oracle;

 public void setOracle(Oracle oracle) {
 this.oracle = oracle;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 InjectRef injectRef = (InjectRef) ctx.getBean("injectRef");
 System.out.println(injectRef);

 ctx.close();
 }

 public String toString() {
 return oracle.defineMeaningOfLife();
 }
}

To configure Spring to inject one bean into another, you first need to configure two beans: one to be
injected and one to be the target of the injection. Once this is done, you simply configure the injection by
using the <ref> tag on the target bean. The following code snippet shows an example of this configuration
(file app-context-xml.xml):

<beans ...>

 <bean id="oracle" name="wiseworm"
 class="com.apress.prospring5.ch3.BookwormOracle"/>

Chapter 3 ■ Introducing IoC and DI in Spring

74

 <bean id="injectRef"
 class="com.apress.prospring5.ch3.xml.InjectRef">
 <property name="oracle">
 <ref bean="oracle"/>
 </property>
 </bean>
</beans>

Running the InjectRef class produces the following output:

Encyclopedias are a waste of money - go see the world instead

An important point to note is that the type being injected does not have to be the exact type defined on
the target; the types just need to be compatible. Compatible means that if the declared type on the target is
an interface, the injected type must implement this interface. If the declared type is a class, the injected type
must be either the same type or a subtype. In this example, the InjectRef class defines the setOracle()
method to receive an instance of Oracle, which is an interface, and the injected type is BookwormOracle, a
class that implements Oracle. This is a point that causes confusion for some developers, but it is really quite
simple. Injection is subject to the same typing rules as any Java code, so as long as you are familiar with how
Java typing works, understanding typing in injection is easy.

In the previous example, the ID of the bean to inject is specified by using the local attribute of the
<ref> tag. As you will see later, in the section “Understanding Bean Naming,” you can give a bean more than
one name so that you can refer to it using a variety of aliases. When you use the local attribute, it means
that the <ref> tag only looks at the bean’s ID and never at any of its aliases. Moreover, the bean definition
should exist in the same XML configuration file. To inject a bean by any name or import one from other
XML configuration files, use the bean attribute of the <ref> tag instead of the local attribute. The following
code snippet shows an alternative configuration for the previous example, using an alternative name for the
injected bean:

<beans ...>

 <bean id="oracle" name="wiseworm"
 class="com.apress.prospring5.ch3.BookwormOracle"/>

 <bean id="injectRef"
 class="com.apress.prospring5.ch3.xml.InjectRef">
 <property name="oracle">
 <ref bean="wiseworm"/>
 </property>
 </bean>
</beans>

In this example, the oracle bean is given an alias by using the name attribute, and then it is injected into
the injectRef bean by using this alias in conjunction with the bean attribute of the <ref> tag. Don’t worry
too much about the naming semantics at this point. We discuss this in much more detail later in the chapter.
Running the InjectRef class again produces the same result as the previous example.

Chapter 3 ■ Introducing IoC and DI in Spring

75

Injection and ApplicationContext Nesting
So far, the beans we have been injecting have been located in the same ApplicationContext (and hence the
same BeanFactory) as the beans they are injected into. However, Spring supports a hierarchical structure for
ApplicationContext so that one context (and hence the associating BeanFactory) is considered the parent
of another. By allowing ApplicationContexts to be nested, Spring allows you to split your configuration into
different files, which is a godsend on larger projects with lots of beans.

When nesting ApplicationContext instances, Spring allows beans in what is considered the child context
to reference beans in the parent context. ApplicationContext nesting using GenericXmlApplicationContext
is simple to understand. To nest one GenericXmlApplicationContext inside another, simply call the
setParent() method in the child ApplicationContext, as shown in the following code sample:

package com.apress.prospring5.ch3;

import org.springframework.context.support.GenericXmlApplicationContext;

public class HierarchicalAppContextUsage {

 public static void main(String... args) {
 GenericXmlApplicationContext parent = new GenericXmlApplicationContext();
 parent.load("classpath:spring/parent-context.xml");
 parent.refresh();

 GenericXmlApplicationContext child = new GenericXmlApplicationContext();
 child.load("classpath:spring/child-context.xml");
 child.setParent(parent);
 child.refresh();

 Song song1 = (Song) child.getBean("song1");
 Song song2 = (Song) child.getBean("song2");
 Song song3 = (Song) child.getBean("song3");

 System.out.println("from parent ctx: " + song1.getTitle());
 System.out.println("from child ctx: " + song2.getTitle());
 System.out.println("from parent ctx: " + song3.getTitle());

 child.close();
 parent.close();
 }
}

The Song class is quite simple, and it is shown here:

package com.apress.prospring5.ch3;

public class Song {
 private String title;

 public void setTitle(String title) {
 this.title = title;
 }

Chapter 3 ■ Introducing IoC and DI in Spring

76

 public String getTitle() {
 return title;
 }
}

Inside the configuration file for the child ApplicationContext, referencing a bean in the parent
ApplicationContext works exactly like referencing a bean in the child ApplicationContext, unless you
have a bean in the child ApplicationContext that shares the same name. In that case, you simply replace
the bean attribute of the ref element with parent, and you are on your way. The following configuration
snippet depicts the contents of the configuration file for the parent BeanFactory, named parent-context.xml:

<beans ...>
 <bean id="childTitle" class="java.lang.String" c:_0="Daughters"/>

 <bean id="parentTitle" class="java.lang.String" c:_0="Gravity"/>
</beans>

As you can see, this configuration simply defines two beans: childTitle and parentTitle. Both are
String objects with the values Daughters and Gravity. The following configuration snippet depicts the
configuration for the child ApplicationContext that is contained in child-context.xml:

<beans ...>

 <bean id="song1" class="com.apress.prospring5.ch3.Song"
 p:title-ref="parentTitle"/>

 <bean id="song2" class="com.apress.prospring5.ch3.Song"
 p:title-ref="childTitle"/>

 <bean id="song3" class="com.apress.prospring5.ch3.Song">
 <property name="title">
 <ref parent="childTitle"/>
 </property>
 </bean>

 <bean id="childTitle" class="java.lang.String" c:_0="No Such Thing"/>
</beans>

Notice that we have defined four beans here. childTitle in this code is similar to childTitle in the
parent except that the String it represents has a different value, indicating that it is located in the child
ApplicationContext.

The song1 bean is using the bean ref attribute to reference the bean named parentTitle. Because this
bean exists only in the parent BeanFactory, song1 receives a reference to that bean. There are two points
of interest here. First, you can use the bean attribute to reference beans in both the child and the parent
ApplicationContexts. This makes it easy to reference the beans transparently, allowing you to move beans
between configuration files as your application grows. The second point of interest is that you can’t use
the local attribute to refer to beans in the parent ApplicationContext. The XML parser checks to see that
the value of the local attribute exists as a valid element in the same file, preventing it from being used to
reference beans in the parent context.

Chapter 3 ■ Introducing IoC and DI in Spring

77

The song2 bean is using the bean ref attribute to reference childTitle. Because that bean is
defined in both ApplicationContexts, the song2 bean receives a reference to childTitle in its own
ApplicationContext.

The song3 bean is using the <ref> tag to reference childTitle directly in the parent
ApplicationContext. Because song3 is using the parent attribute of the <ref> tag, the childTitle instance
declared in the child ApplicationContext is ignored completely.

  You may have noticed that, unlike song1 and song2, the song3 bean is not using the p namespace.
While the p namespace provides handy shortcuts, it does not provide all the capabilities as when using
property tags, such as referencing a parent bean. While we show it as an example, it’s best to pick either the p
namespace or property tags to define your beans, rather than mixing styles (unless absolutely necessary).

Here is the output from running the HierarchicalAppContextUsage class:

from parent ctx: Gravity
from child ctx: No Such Thing
from parent ctx: Daughters

As expected, the song1 and song3 beans both get a reference to beans in the parent
ApplicationContext, whereas the song2 bean gets a reference to a bean in the child ApplicationContext.

Injecting Collections
Often your beans need access to collections of objects rather than just individual beans or values. Therefore,
it should come as no surprise that Spring allows you to inject a collection of objects into one of your beans.
Using the collection is simple: you choose either <list>, <map>, <set>, or <props> to represent a List, Map,
Set, or Properties instance, and then you pass in the individual items just as you would with any other
injection. The <props> tag allows for only Strings to be passed in as the value, because the Properties class
allows only for property values to be Strings. When using <list>, <map>, or <set>, you can use any tag you
want when injecting into a property, even another collection tag. This allows you to pass in a List of Maps, a
Map of Sets, or even a List of Maps of Sets of Lists! The following code snippet shows a class that can have all
four of the collection types injected into it:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.Set;

public class CollectionInjection {

 private Map<String, Object> map;
 private Properties props;
 private Set set;
 private List list;

Chapter 3 ■ Introducing IoC and DI in Spring

78

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 CollectionInjection instance =
 (CollectionInjection) ctx.getBean("injectCollection");
 instance.displayInfo();

 ctx.close();
 }

 public void displayInfo() {
 System.out.println("Map contents:\n");
 map.entrySet().stream().forEach(e -> System.out.println(
 "Key: " + e.getKey() + " - Value: " + e.getValue()));

 System.out.println("\nProperties contents:\n");
 props.entrySet().stream().forEach(e -> System.out.println(
 "Key: " + e.getKey() + " - Value: " + e.getValue()));

 System.out.println("\nSet contents:\n");
 set.forEach(obj -> System.out.println("Value: " + obj));

 System.out.println("\nList contents:\n");
 list.forEach(obj -> System.out.println("Value: " + obj));
 }

 public void setList(List list) {
 this.list = list;
 }

 public void setSet(Set set) {
 this.set = set;
 }

 public void setMap(Map<String, Object> map) {
 this.map = map;
 }

 public void setProps(Properties props) {
 this.props = props;
 }
}

That is quite a lot of code, but it actually does very little. The main() method retrieves a
CollectionInjection bean from Spring and then calls the displayInfo() method. This method just
outputs the contents of the Map, Properties, Set, and List instances that will be injected from Spring.
The configuration required to inject values for each of the properties in the CollectionInjection class is
depicted next, and the configuration file is named app-context-xml.xml.

Chapter 3 ■ Introducing IoC and DI in Spring

79

Also, notice the declaration of the Map<String,Object> property. For JDK versions newer than 5, Spring
also supports the strongly typed Collection declaration and will perform the conversion from the XML
configuration to the corresponding type specified accordingly.

<beans ...>

 <bean id="lyricHolder"
 lass="com.apress.prospring5.ch3.xml.LyricHolder"/>

 <bean id="injectCollection"
 class="com.apress.prospring5.ch3.xml.CollectionInjection">
 <property name="map">
 <map>
 <entry key="someValue">
 <value>It's a Friday, we finally made it</value>
 </entry>
 <entry key="someBean">
 <ref bean="lyricHolder"/>
 </entry>
 </map>
 </property>
 <property name="props">
 <props>
 <prop key="firstName">John</prop>
 <prop key="secondName">Mayer</prop>
 </props>
 </property>
 <property name="set">
 <set>
 <value>I can't believe I get to see your face</value>
 <ref bean="lyricHolder"/>
 </set>
 </property>
 <property name="list">
 <list>
 <value>You've been working and I've been waiting</value>
 <ref bean="lyricHolder"/>
 </list>
 </property>
 </bean>
</beans>

In this code, you can see that we have injected values into all four setters exposed on the
CollectionInjection class. For the map property, we have injected a Map instance by using the <map> tag.
Notice that each entry is specified using an <entry> tag, and each has a String key and then an entry value.
This entry value can be any value you can inject into a property separately; this example shows the use of the
<value> and <ref> tags to add a String value and a bean reference to the Map. The LyricHolder class, which
is the type of the lyricHolder bean injected in the map in the previous configuration, is depicted here:

Chapter 3 ■ Introducing IoC and DI in Spring

80

package com.apress.prospring5.ch3.xml;

import com.apress.prospring5.ch3.ContentHolder;

public class LyricHolder implements ContentHolder{
 private String value = "'You be the DJ, I'll be the driver'";

 @Override public String toString() {
 return "LyricHolder: { " + value + "}";
 }
}

For the props property, we use the <props> tag to create an instance of java.util.Properties and
populate it using <prop> tags. Notice that although the <prop> tag is keyed in a similar manner to the
<entry> tag, we can specify only String values for each property that goes in the Properties instance.

Also, for the <map> element there is an alternative, more compact configuration using the value and
value-ref attributes, instead of the <value> and <ref> elements. The map declared here is equivalent with
the one in the previous configuration:

<property name="map">
 <map>
 <entry key="someValue" value="It's a Friday, we finally made it"/>
 <entry key="someBean" value-ref="lyricHolder"/>
 </map>
</property>

Both the <list> and <set> tags work in the same way: you specify each element by using any of the
individual value tags such as <value> and <ref> that are used to inject a single value into a property. In the
previous configuration, you can see that we have added a String value and a bean reference to both the
List and Set instances.

Here is the output generated by the main() method in the class CollectionInjection. As expected,
it simply lists the elements added to the collections in the configuration file.

Map contents:

Key: someValue - Value: It's a Friday, we finally made it
Key: someBean - Value: LyricHolder: { 'You be the DJ, I'll be the driver'}

Properties contents:

Key: secondName - Value: Mayer
Key: firstName - Value: John

Set contents:

Value: I can't believe I get to see your face
Value: LyricHolder: { 'You be the DJ, I'll be the driver'}

List contents:

Value: You've been working and I've been waiting
Value: LyricHolder: { 'You be the DJ, I'll be the driver'}

Chapter 3 ■ Introducing IoC and DI in Spring

81

Remember, with the <list>, <map>, and <set> elements, you can employ any of the tags used to set the
value of noncollection properties to specify the value of one of the entries in the collection. This is quite a
powerful concept because you are not limited just to injecting collections of primitive values; you can also
inject collections of beans or other collections.

Using this functionality, it is much easier to modularize your application and provide different, user-
selectable implementations of key pieces of application logic. Consider a system that allows corporate
staff to create, proofread, and order their personalized business stationery online. In this system, the
finished artwork for each order is sent to the appropriate printer when it is ready for production. The only
complication is that some printers want to receive the artwork via e-mail, some via FTP, and others using
Secure Copy Protocol (SCP). Using Spring’s collection injection, you can create a standard interface for this
functionality, as shown in the following code snippet:

package com.apress.prospring5.ch3;

public interface ArtworkSender {
 void sendArtwork(String artworkPath, Recipient recipient);
 String getFriendlyName();
 String getShortName();
}

In the previous example, the Recipient class is an empty class. From this interface, you can create multiple
implementations, each of which is capable of describing itself to a human, such as the one shown here:

package com.apress.prospring5.ch3;

public class FtpArtworkSender
 implements ArtworkSender {

 @Override
 public void sendArtwork(String artworkPath, Recipient recipient) {
 // ftp logic here...
 }

 @Override
 public String getFriendlyName() {
 return "File Transfer Protocol";
 }

 @Override
 public String getShortName() {
 return "ftp";
 }
}

Imagine that you then develop an ArtworkManager class that supports all available implementations
of the Artwork-Sender interface. With the implementations in place, you simply pass a List to your
ArtworkManager class, and you are on your way. Using the getFriendlyName() method, you can display a
list of delivery options for the system administrator to choose from when you are configuring each stationery
template. In addition, your application can remain fully decoupled from the individual implementations if
you just code to the ArtworkSender interface. We will leave the implementation of the ArtworkManager class
as an exercise for you.

Chapter 3 ■ Introducing IoC and DI in Spring

82

Besides the XML configuration, you can use annotations for collection injection. However, you
would also like to externalize the values of the collections into the configuration file for easy maintenance.
The following snippet is the configuration of four different Spring beans that mimic the same collection
properties of the previous sample (configuration file app-context-annotation.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd">

 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotated"/>

 <util:map id="map" map-class="java.util.HashMap">
 <entry key="someValue" value="It's a Friday, we finally made it"/>
 <entry key="someBean" value-ref="lyricHolder"/>
 </util:map>

 <util:properties id="props">
 <prop key="firstName">John</prop>
 <prop key="secondName">Mayer</prop>
 </util:properties>

 <util:set id="set" set-class="java.util.HashSet">
 <value>I can't believe I get to see your face</value>
 <ref bean="lyricHolder"/>
 </util:set>

 <util:list id="list" list-class="java.util.ArrayList">
 <value>You've been working and I've been waiting</value>
 <ref bean="lyricHolder"/>
 </util:list>
</beans>

Let’s also develop an annotation version of the LyricHolder class. The class content is depicted here:

package com.apress.prospring5.ch3.annotated;

import com.apress.prospring5.ch3.ContentHolder;
import org.springframework.stereotype.Service;

@Service("lyricHolder")
public class LyricHolder implements ContentHolder{

Chapter 3 ■ Introducing IoC and DI in Spring

83

 private String value = "'You be the DJ, I'll be the driver'";

 @Override public String toString() {
 return "LyricHolder: { " + value + "}";
 }
}

In the configuration depicted previously, we make use of the util namespace provided by Spring
to declare your beans for storing collection properties: the util namespace. It greatly simplifies the
configuration, as compared to previous versions of Spring. In the class we use to test your configuration, we
inject the previous beans and use the JSR-250 @Resource annotation with the name specified as an argument
to properly identify the beans. The displayInfo() method is the same as before so is no longer shown here.

@Service("injectCollection")
public class CollectionInjection {
 @Resource(name="map")
 private Map<String, Object> map;

 @Resource(name="props")
 private Properties props;

 @Resource(name="set")
 private Set set;

 @Resource(name="list")
 private List list;

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();

 CollectionInjection instance = (CollectionInjection)
 ctx.getBean("injectCollection");
 instance.displayInfo();

 ctx.close();
 }
 ...
}

Run the test program, and you will get the same result as the sample using XML configuration.

Chapter 3 ■ Introducing IoC and DI in Spring

84

  You may wonder why the annotation @Resource is used instead of @Autowired. It’s because the
@Autowired annotation is semantically defined in a way that it always treats arrays, collections, and maps as
sets of corresponding beans, with the target bean type derived from the declared collection value type. So,
for example, if a class has an attribute of type List<ContentHolder> and has the @Autowired annotation
defined, Spring will try to inject all beans of type ContentHolder within the current ApplicationContext into
that attribute (instead of the <util:list> declared in the configuration file), which will result in either the
unexpected dependencies being injected or Spring throwing an exception if no bean of type ContentHolder
was defined. So, for collection type injection, we have to explicitly instruct Spring to perform injection by
specifying the bean name, which the @Resource annotation supports.

 A combination of @Autowired and @Qualifier can be used to fulfill the same purpose, but it is always
preferable to use one annotation and not two. In the following code snippet, you can see the equivalent
configuration to inject a collection using its bean name by using @Autowired and @Qualifier.

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Qualifier;

@Service("injectCollection")

public class CollectionInjection {

 @Autowired

 @Qualifier("map")

 private Map<String, Object> map;

...

}

Using Method Injection
Besides constructor and setter injection, another less frequently used DI feature that Spring provides is
Method Injection. Spring’s Method Injection capabilities come in two loosely related forms, lookup Method
Injection and Method Replacement. Lookup Method Injection provides another mechanism by which a
bean can obtain one of its dependencies. Method replacement allows you to replace the implementation of
any method on a bean arbitrarily, without having to change the original source code. To provide these two
features, Spring uses the dynamic bytecode enhancement capabilities of CGLIB.3

3cglib is a powerful, high-performance, and high-quality code generation library. It can extend Java classes and implement
interfaces at runtime. It is open source, and you can find the official repository at https://github.com/cglib.

https://github.com/cglib

Chapter 3 ■ Introducing IoC and DI in Spring

85

Lookup Method Injection
Lookup Method Injection was added to Spring in version 1.1 to overcome the problems encountered when
a bean depends on another bean with a different life cycle, specifically, when a singleton depends on a
nonsingleton. In this situation, both setter and constructor injection result in the singleton maintaining a
single instance of what should be a nonsingleton bean. In some cases, you will want to have the singleton
bean obtain a new instance of the nonsingleton every time it requires the bean in question.

Consider a scenario in which a LockOpener class provides the service of opening any locker. The
LockOpener class relies on a KeyHelper class for opening the locker, which was injected into LockOpener.
However, the design of the KeyHelper class involves some internal states that make it not suitable for reuse.
Every time the openLock() method is called, a new KeyHelper instance is required. In this case, LockOpener
will be a singleton. However, if we inject the KeyHelper class by using the normal mechanism, the same
instance of the KeyHelper class (which was instantiated when Spring performed the injection the first time)
will be reused. To make sure that a new instance of the KeyHelper instance is passed into the openLock()
method every time it is invoked, we need to use Lookup Method Injection.

Typically, you can achieve this by having the singleton bean implement the ApplicationContextAware
interface (we discuss this interface in the next chapter). Then, using the ApplicationContext instance, the
singleton bean can look up a new instance of the nonsingleton dependency every time it needs it. Lookup
Method Injection allows the singleton bean to declare that it requires a nonsingleton dependency and that it
will receive a new instance of the nonsingleton bean each time it needs to interact with it, without needing to
implement any Spring-specific interfaces.

Lookup Method Injection works by having your singleton declare a method, the lookup method,
which returns an instance of the nonsingleton bean. When you obtain a reference to the singleton in your
application, you are actually receiving a reference to a dynamically created subclass on which Spring has
implemented the lookup method. A typical implementation involves defining the lookup method, and thus
the bean class, as abstract. This prevents any strange errors from creeping in when you forget to configure the
Method Injection and you are working directly against the bean class with the empty method implementation
instead of the Spring-enhanced subclass. This topic is quite complex and is best shown by example.

In this example, we create one nonsingleton bean and two singleton beans that both implement the
same interface. One of the singletons obtains an instance of the nonsingleton bean by using “traditional”
setter injection; the other uses Method Injection. The following code sample depicts the Singer class, which
in this example is the type of the nonsingleton bean:

package com.apress.prospring5.ch3;

public class Singer {
 private String lyric = "I played a quick game of chess with the salt
 and pepper shaker";

 public void sing() {
 //commented because it pollutes the output
 //System.out.println(lyric);
 }
}

This class is decidedly unexciting, but it serves the purposes of this example perfectly. Next, you can see
the DemoBean interface, which is implemented by both of the singleton bean classes.

package com.apress.prospring5.ch3;
public interface DemoBean {
 Singer getMySinger();
 void doSomething();
}

Chapter 3 ■ Introducing IoC and DI in Spring

86

This bean has two methods: getMySinger() and doSomething(). The sample application uses the
getMySinger() method to get a reference to the Singer instance and, in the case of the method lookup bean,
to perform the actual method lookup. The doSomething()method is a simple method that depends on the
Singer class to do its processing. The following code snippet shows the StandardLookupDemoBean class,
which uses setter injection to obtain an instance of the Singer class:

package com.apress.prospring5.ch3;

public class StandardLookupDemoBean
 implements DemoBean {

 private Singer mySinger;

 public void setMySinger(Singer mySinger) {
 this.mySinger = mySinger;
 }

 @Override
 public Singer getMySinger() {
 return this.mySinger;
 }

 @Override
 public void doSomething() {
 mySinger.sing();
 }
}

This code should all look familiar, but notice that the doSomething() method uses the stored instance of
Singer to complete its processing. In the following code snippet, you can see the AbstractLookupDemoBean
class, which uses Method Injection to obtain an instance of the Singer class.

package com.apress.prospring5.ch3;

public abstract class AbstractLookupDemoBean
 implements DemoBean {
 public abstract Singer getMySinger();

 @Override
 public void doSomething() {
 getMySinger().sing();
 }
}

Notice that the getMySinger() method is declared as abstract and that this method is called by the
doSomething() method to obtain a Singer instance. The Spring XML configuration for this example is
contained in a file named app-context-xml.xml and is shown here:

<beans ...>
 <bean id="singer" class="com.apress.prospring5.ch3.Singer"
 scope="prototype"/>

Chapter 3 ■ Introducing IoC and DI in Spring

87

 <bean id="abstractLookupBean"
 class="com.apress.prospring5.ch3.AbstractLookupDemoBean">
 <lookup-method name="getMySinger" bean="singer"/>
 </bean>

 <bean id="standardLookupBean"
 class="com.apress.prospring5.ch3.StandardLookupDemoBean">
 <property name="mySinger" ref="singer"/>
 </bean>
</beans>

The configuration for the singer and standardLookupBean beans should look familiar to you by now.
For abstract-LookupBean, you need to configure the lookup method by using the <lookup-method> tag. The
name attribute of the <lookup-method> tag tells Spring the name of the method on the bean that it should
override. This method must not accept any arguments, and the return type should be that of the bean
you want to return from the method. In this case, the method should return a class of type Singer, or its
subclasses. The bean attribute tells Spring which bean the lookup method should return. The following code
snippet shows the final piece of code for this example, which is the class containing the main() method used
to run the example:

package com.apress.prospring5.ch3;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.util.StopWatch;

public class LookupDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 DemoBean abstractBean = ctx.getBean("abstractLookupBean",
 DemoBean.class);
 DemoBean standardBean = ctx.getBean("standardLookupBean",
 DemoBean.class);

 displayInfo("abstractLookupBean", abstractBean);
 displayInfo("standardLookupBean", standardBean);

 ctx.close();
 }

 public static void displayInfo(String beanName, DemoBean bean) {
 Singer singer1 = bean.getMySinger();
 Singer singer2 = bean.getMySinger();

 System.out.println("" + beanName + ": Singer Instances the Same? "
 + (singer1 == singer2));

Chapter 3 ■ Introducing IoC and DI in Spring

88

 StopWatch stopWatch = new StopWatch();
 stopWatch.start("lookupDemo");
 for (int x = 0; x < 100000; x++) {
 Singer singer = bean.getMySinger();
 singer.sing();
 }

 stopWatch.stop();

 System.out.println("100000 gets took "
 + stopWatch.getTotalTimeMillis() + " ms");
 }
}

In this code, you can see that the abstractLookupBean and the standardLookupBean from the
GenericXmlApplicationContext are retrieved and each reference is passed to the displayInfo() method.
The instantiation of the abstract class is supported only when using Lookup Method Injection, in which
Spring will use CGLIB to generate a subclass of the AbstractLookupDemoBean class that overrides the
method dynamically. The first part of the displayInfo() method creates two local variables of Singer type
and assigns them each a value by calling getMySinger() on the bean passed to it. Using these two variables,
it writes a message to the console indicating whether the two references point to the same object.

For the abstractLookupBean bean, a new instance of Singer should be retrieved for each call to
getMySinger(), so the references should not be the same.

For standardLookupBean, a single instance of Singer is passed to the bean by setter injection, and this
instance is stored and returned for every call to getMySinger(), so the two references should be the same.

 T he StopWatch class used in the previous example is a utility class available with Spring. You’ll find
StopWatch very useful when you need to perform simple performance tests and when you are testing your
applications.

The final part of the displayInfo() method runs a simple performance test to see which bean is
faster. Clearly, standardLookupBean should be faster because it returns the same instance each time, but it
is interesting to see the difference. We can now run the LookupDemo class for testing. Here is the output we
received from this example:

[abstractLookupBean]: Singer Instances the Same? false
100000 gets took 431 ms

[standardLookupBean]: Singer Instances the Same? true
100000 gets took 1 ms

As you can see, the Singer instances are, as expected, the same when we use standardLookupBean and
different when we use abstractLookupBean. There is a noticeable performance difference when you use
standardLookupBean, but that is to be expected.

Of course, there is an equivalent way to configure the beans presented earlier using annotations. The
singer bean must have an extra annotation to specify the prototype scope.

package com.apress.prospring5.ch3.annotated;

Chapter 3 ■ Introducing IoC and DI in Spring

89

import org.springframework.context.annotation.Scope;
import org.springframework.stereotype.Component;

@Component("singer)
@Scope("prototype")
public class Singer {
 private String lyric = "I played a quick game of chess
 with the salt and pepper shaker";

 public void sing() {
 // commented to avoid console pollution
 //System.out.println(lyric);
 }
}

The AbstractLookupDemoBean class is no longer an abstract class, and the method getMySinger() has
an empty body and is annotated with @Lookup that receives as an argument the name of the Singer bean.
The method body will be overridden, in the dynamically generated subclass.

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Lookup;
import org.springframework.stereotype.Component;

@Component("abstractLookupBean")
public class AbstractLookupDemoBean implements DemoBean {
 @Lookup("singer")
 public Singer getMySinger() {
 return null; // overriden dynamically
 }

 @Override
 public void doSomething() {
 getMySinger().sing();
 }
}

The StandardLookupDemoBean class only must be annotated with @Component, and setMySinger must
be annotated with @Autowired and @Qualifier to inject the singer bean.

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Component;

@Component("standardLookupBean")
public class StandardLookupDemoBean implements DemoBean {

 private Singer mySinger;

Chapter 3 ■ Introducing IoC and DI in Spring

90

 @Autowired
 @Qualifier("singer")
 public void setMySinger(Singer mySinger) {
 this.mySinger = mySinger;
 }

 @Override
 public Singer getMySinger() {
 return this.mySinger;
 }

 @Override
 public void doSomething() {
 mySinger.sing();
 }
}

The configuration file, named app-context-annotated.xml, only must enable component scanning for
the package containing the annotated classes.

<beans ...>

 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotated"/>
</beans>

The class used to execute the code is identical to class LookupDemo; the only difference is the XML file
used as an argument to create the GenericXmlApplicationContext object.

If we want to get rid of XML files totally, this can be done using a configuration class to enable
component scanning on the com.apress.prospring5.ch3.annotated package. And this class can be
declared right where you need it, meaning in this case inside the class being run to test the beans,
as shown here:

package com.apress.prospring5.ch3.config;

import com.apress.prospring5.ch3.annotated.DemoBean;
import com.apress.prospring5.ch3.annotated.Singer;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.GenericApplicationContext;
import org.springframework.util.StopWatch;

import java.util.Arrays;

public class LookupConfigDemo {

 @Configuration
 @ComponentScan(basePackages = {"com.apress.prospring5.ch3.annotated"})
 public static class LookupConfig {}

Chapter 3 ■ Introducing IoC and DI in Spring

91

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(LookupConfig.class);

 DemoBean abstractBean = ctx.getBean("abstractLookupBean",
 DemoBean.class);
 DemoBean standardBean = ctx.getBean("standardLookupBean",
 DemoBean.class);

 displayInfo("abstractLookupBean", abstractBean);
 displayInfo("standardLookupBean", standardBean);

 ctx.close();
 }

 public static void displayInfo(String beanName, DemoBean bean) {
 // same implementation as before
 ...
 }
}

Alternative configurations using annotations and Java configuration are covered in more detail in
Chapter 4.

Considerations for Lookup Method Injection
Lookup Method Injection is intended for use when you want to work with two beans of different life cycles.
Avoid the temptation to use Lookup Method Injection when the beans share the same life cycle, especially
if they are singletons. The output of running the previous example shows a noticeable difference in
performance between using Method Injection to obtain new instances of a dependency and using standard
DI to obtain a single instance of a dependency. Also, make sure you don’t use Lookup Method Injection
needlessly, even when you have beans of different life cycles.

Consider a situation in which you have three singletons that share a dependency in common.
You want each singleton to have its own instance of the dependency, so you create the dependency
as a nonsingleton, but you are happy with each singleton using the same instance of the collaborator
throughout its life. In this case, setter injection is the ideal solution; Lookup Method Injection just adds
unnecessary overhead.

When you are using Lookup Method Injection, there are a few design guidelines that you should keep
in mind when building your classes. In the earlier examples, we declared the lookup method in an interface.
The only reason we did this was we did not have to duplicate the displayInfo() method twice for two
different bean types. As mentioned earlier, generally you do not need to pollute a business interface with
unnecessary definitions that are used solely for IoC purposes. Another point is that although you don’t have
to make your lookup method abstract, doing so prevents you from forgetting to configure the lookup method
and then using a blank implementation by accident. Of course, this works only with XML configuration.
Annotation-based configuration forces an empty implementation of the method; otherwise, your bean
won’t be created.

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

Chapter 3 ■ Introducing IoC and DI in Spring

92

Method Replacement
Although the Spring documentation classifies method replacement as a form of injection, it is different from
what you have seen so far. So far, we have used injection purely to supply beans with their collaborators. Using
method replacement, you can replace the implementation of any method on any beans arbitrarily without
having to change the source of the bean you are modifying. For example, you have a third-party library that
you use in your Spring application, and you need to change the logic of a certain method. However, you are
not able to change the source code because it was provided by a third party, so one solution is to use method
replacement to just replace the logic for that method with your own implementation.

Internally, you achieve this by creating a subclass of the bean class dynamically. You use CGLIB and
redirect calls to the method you want to replace to another bean that implements the MethodReplacer
interface. In the following code sample, you can see a simple bean that declares two overloads of the
formatMessage() method:

package com.apress.prospring5.ch3;

public class ReplacementTarget {
 public String formatMessage(String msg) {
 return "<h1>" + msg + "</h1>";
 }

 public String formatMessage(Object msg) {
 return "<h1>" + msg + "</h1>";
 }
}

You can replace any of the methods on the ReplacementTarget class by using Spring’s method
replacement functionality. In this example, we show you how to replace the formatMessage(String)
method, and we also compare the performance of the replaced method with that of the original.

To replace a method, you first need to create an implementation of the MethodReplacer interface; this is
shown in the following code sample:

package com.apress.prospring5.ch3;

import org.springframework.beans.factory.support.MethodReplacer;

import java.lang.reflect.Method;

public class FormatMessageReplacer
 implements MethodReplacer {

 @Override
 public Object reimplement(Object arg0, Method method, Object... args)
 throws Throwable {
 if (isFormatMessageMethod(method)) {
 String msg = (String) args0;
 return "<h2>" + msg + "</h2>";
 } else {
 throw new IllegalArgumentException("Unable to reimplement method "
 + method.getName());
 }
 }

Chapter 3 ■ Introducing IoC and DI in Spring

93

 private boolean isFormatMessageMethod(Method method) {
 if (method.getParameterTypes().length != 1) {
 return false;
 }

 if (!("formatMessage".equals(method.getName()))) {
 return false;
 }

 if (method.getReturnType() != String.class) {
 return false;
 }

 if (method.getParameterTypes()[0] != String.class) {
 return false;
 }

 return true;
 }
}

The MethodReplacer interface has a single method, reimplement(), that you must implement.
Three arguments are passed to reimplement(): the bean on which the original method was invoked, a
Method instance that represents the method that is being overridden, and the array of arguments passed
to the method. The reimplement() method should return the result of your reimplemented logic, and,
obviously, the type of the return value should be compatible with the return type of the method you are
replacing. In the previous code sample, FormatMessageReplacer first checks to see whether the method
that is being overridden is the formatMessage(String) method; if so, it executes the replacement logic
(in this case, surrounding the message with <h2> and </h2>) and returns the formatted message to the
caller. It is not necessary to check whether the message is correct, but this can be useful if you are using a
few MethodReplacers with similar arguments. Using a check helps prevent a situation in which a different
MethodReplacer with compatible arguments and return types is used accidentally.

In the configuration sample listed next, you can see an ApplicationContext instance that defines two
beans of type ReplacementTarget; one has the formatMessage(String) method replaced, and the other
does not (the file is named app-context-xml.xml):

<beans ...>

 <bean id="methodReplacer"
 class="com.apress.prospring5.ch3.FormatMessageReplacer"/>

 <bean id="replacementTarget"
 class="com.apress.prospring5.ch3.ReplacementTarget">
 <replaced-method name="formatMessage" replacer="methodReplacer">
 <arg-type>String</arg-type>
 </replaced-method>
 </bean>

 <bean id="standardTarget"
 class="com.apress.prospring5.ch3.ReplacementTarget"/>
</beans>

Chapter 3 ■ Introducing IoC and DI in Spring

94

As you can see, the MethodReplacer implementation is declared as a bean in ApplicationContext.
You then use the <replaced-method> tag to replace the formatMessage(String) method on
replacementTargetBean. The name attribute of the <replaced-method> tag specifies the name of the
method to replace, and the replacer attribute is used to specify the name of the MethodReplacer bean that
we want to replace the method implementation. In cases where there are overloaded methods such as in the
ReplacementTarget class, you can use the <arg-type> tag to specify the method signature to match. The
<arg-type> tag supports pattern matching, so String is matched to java.lang.String and also to java.
lang.StringBuffer.

The following code snippet shows a simple demo application that retrieves both the standardTarget
and replacement-Target beans from ApplicationContext, executes their formatMessage(String)
methods, and then runs a simple performance test to see which is faster.

package com.apress.prospring5.ch3;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.util.StopWatch;

public class MethodReplacementDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 ReplacementTarget replacementTarget = (ReplacementTarget) ctx
 .getBean("replacementTarget");
 ReplacementTarget standardTarget = (ReplacementTarget) ctx
 .getBean("standardTarget");

 displayInfo(replacementTarget);
 displayInfo(standardTarget);

 ctx.close();
 }

 private static void displayInfo(ReplacementTarget target) {
 System.out.println(target.formatMessage("Thanks for playing, try again!"));

 StopWatch stopWatch = new StopWatch();
 stopWatch.start("perfTest");

 for (int x = 0; x < 1000000; x++) {
 String out = target.formatMessage("No filter in my head");
 //commented to not pollute the console
 //System.out.println(out);
 }

 stopWatch.stop();

 System.out.println("1000000 invocations took: "
 + stopWatch.getTotalTimeMillis() + " ms");
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

95

You should be familiar with this code by now, so we won’t go into detail. On our machine, running this
example yields the following output:

<h2>Thanks for playing, try again!</h2>
1000000 invocations took: 188 ms

<h1>Thanks for playing, try again!</h1>
1000000 invocations took: 24 ms

As expected, the output from the replacementTarget bean reflects the overridden implementation
that the Method-Replacer provides. Interestingly, though, the dynamically replaced method is many times
slower than the statically defined method. Removing the check for a valid method in MethodReplacer made
a negligible difference across a number of executions, so we can conclude that most of the overhead is in the
CGLIB subclass.

When to Use Method Replacement
Method replacement can prove quite useful in a variety of circumstances, especially when you want to
override only a particular method for a single bean rather than all beans of the same type. With that said,
we still prefer using standard Java mechanisms for overriding methods rather than depending on runtime
bytecode enhancement.

If you are going to use method replacement as part of your application, we recommend you use
one Method-Replacer per method or group of overloaded methods. Avoid the temptation to use a single
MethodReplacer for lots of unrelated methods; this results in extra unnecessary String comparisons while
your code works out which method it should reimplement. We have found that performing simple checks
to ensure that MethodReplacer is working with the correct method is useful and doesn’t add too much
overhead to your code. If you are really concerned about performance, you can simply add a Boolean
property to your MethodReplacer, which allows you to turn the check on and off using dependency injection.

Understanding Bean Naming
Spring supports quite a complex bean-naming structure that allows you the flexibility to handle
many situations. Every bean must have at least one name that is unique within the containing
ApplicationContext. Spring follows a simple resolution process to determine what name is used for the
bean. If you give the <bean> tag an id attribute, the value of that attribute is used as the name. If no id
attribute is specified, Spring looks for a name attribute, and if one is defined, it uses the first name defined
in the name attribute. (We say the first name because it is possible to define multiple names within the name
attribute; this is covered in more detail shortly.) If neither the id nor the name attribute is specified, Spring
uses the bean’s class name as the name, provided, of course, that no other bean is using the same class
name. If multiple beans of the same type without an ID or name are declared, Spring will throw an exception
(of type org.springframework.beans.factory.NoSuchBeanDefinitionException) on injection during
ApplicationContext initialization. The following configuration sample configuration depicts all three
naming schemes (app-context-01.xml):

<beans ...>
 <bean id="string1" class="java.lang.String"/>
 <bean name="string2" class="java.lang.String"/>
 <bean class="java.lang.String"/>
</beans>

Chapter 3 ■ Introducing IoC and DI in Spring

96

Each of these approaches is equally valid from a technical point of view, but which is the best choice
for your application? To start with, avoid using the automatic name by class behavior. This doesn’t allow you
much flexibility to define multiple beans of the same type, and it is much better to define your own names.
That way, if Spring changes the default behavior in the future, your application continues to work. If you
want to see how Spring is naming the beans, using the previous configuration, run the following example:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

public class BeanNamingTest {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-01.xml");
 ctx.refresh();

 Map<String,String> beans = ctx.getBeansOfType(String.class);

 beans.entrySet().stream().forEach(b -> System.out.println(b.getKey()));

 ctx.close();
 }
}

ctx.getBeansOfType(String.class) is used to obtain a map with all beans of type String and their
IDs that exist within ApplicationContext. The keys of the map are the bean IDs that are printed using the
lambda expression in the previous code. With the mentioned configuration, this is the output:

string1
string2
java.lang.String#0

The last line in the previous output sample is the ID that Spring gave to the bean of type String that
was not named explicitly in the configuration. If the configuration were modified to add another String
unnamed bean, it would look like this:

<beans ...>
 <bean id="string1" class="java.lang.String"/>
 <bean name="string2" class="java.lang.String"/>
 <bean class="java.lang.String"/>
 <bean class="java.lang.String"/>
</beans>

The output would change to the following:

string1
string2
java.lang.String#0
java.lang.String#1

Chapter 3 ■ Introducing IoC and DI in Spring

97

Prior to Spring 3.1, the id attribute is the same as the XML identity (that is, xsd:ID), which places a
restriction in the characters you can use. As of Spring 3.1, Spring uses xsd:String for the id attribute, so the
previous restriction on the characters that you can use is gone. However, Spring will continue to ensure that
the id is unique across the entire ApplicationContext. As a general practice, you should give your bean
a name by using the id attribute and then associate the bean with other names by using name aliasing, as
discussed in the next section.

Bean Name Aliasing
Spring allows a bean to have more than one name. You can achieve this by specifying a space-, comma-, or
semicolon-separated list of names in the name attribute of the bean’s <bean> tag. You can do this in place
of, or in conjunction with, the id attribute. Besides using the name attribute, you can use the <alias> tag
for defining aliases for Spring bean names. The following configuration sample shows a simple <bean>
configuration that defines multiple names for a single bean (app-context-02.xml):

<beans ...>
 <bean id="john" name="john johnny,jonathan;jim" class="java.lang.String"/>
 <alias name="john" alias="ion"/>
</beans>

As you can see, we have defined six names: one using the id attribute and the other four as a list using
all allowed bean name delimiters in the name attribute (this is just for demonstration purposes and is not
recommended for real-life development). In real-life development, it’s recommended you standardize on
the delimiter to use for separating bean names’ declarations within your application. One more alias was
defined using the <alias> tag. The following code sample depicts a Java routine that grabs the same bean
from the ApplicationContext instance six times using different names and verifies that they are the same
bean. Also, it makes use of the previously introduced ctx.getBeansOfType(..) method to make sure there
is only one String bean in the context.

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.Map;

public class BeanNameAliasing {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-02.xml");
 ctx.refresh();

 String s1 = (String) ctx.getBean("john");
 String s2 = (String) ctx.getBean("jon");
 String s3 = (String) ctx.getBean("johnny");
 String s4 = (String) ctx.getBean("jonathan");
 String s5 = (String) ctx.getBean("jim");
 String s6 = (String) ctx.getBean("ion");

 System.out.println((s1 == s2));
 System.out.println((s2 == s3));
 System.out.println((s3 == s4));

Chapter 3 ■ Introducing IoC and DI in Spring

98

 System.out.println((s4 == s5));
 System.out.println((s5 == s6));

 Map<String,String> beans = ctx.getBeansOfType(String.class);

 if(beans.size() == 1) {
 System.out.println("There is only one String bean.");
 }

 ctx.close();
 }
}

Executing the previous code will print true five times and the “There is only one String bean” text,
verifying that the beans accessed using different names are, in fact, the same bean.

You can retrieve a list of the bean aliases by calling ApplicationContext.getAliases(String) and
passing in any of the beans’ names or IDs. The list of aliases, other than the one you specified, will then be
returned as a String array.

It was mentioned before that prior to Spring 3.1 the id attribute is the same as the XML identity (that
is, xsd:ID), which means bean IDs could not contain special characters like space-, comma-, or semicolon.
Starting with Spring 3.1, xsd:String is used for the id attribute, so the previous restriction on the characters
that you can use is gone. However, this does not mean you can use the following:

<bean name="jon johnny,jonathan;jim" class="java.lang.String"/>

instead of this:

<bean id="jon johnny,jonathan;jim" class="java.lang.String"/>

The name and id attribute values are treated differently by the Spring IoC. You can retrieve a list of the
bean aliases by calling ApplicationContext.getAliases(String) and passing in any one of the beans’
names or IDs. The list of aliases, other than the one you specified, will then be returned as a String array.
This means, in the first case, jon will become the id, and the rest of values will become aliases.

In the second case, when the same string is used as a value for the id attribute, the full string becomes a
unique identifier for the bean. This can be easily tested with a configuration like the one shown here (found
in file app-context-03.xml):

<beans ...>
 <bean name="jon johnny,jonathan;jim" class="java.lang.String"/>

 <bean id="jon johnny,jonathan;jim" class="java.lang.String"/>
</beans>

and a main class like the one shown in the following code sample:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.Arrays;
import java.util.Map;

Chapter 3 ■ Introducing IoC and DI in Spring

99

public class BeanCrazyNaming {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-03.xml");
 ctx.refresh();

 Map<String,String> beans = ctx.getBeansOfType(String.class);

 beans.entrySet().stream().forEach(b ->
 {
 System.out.println("id: " + b.getKey() +
 "\n aliases: " + Arrays.toString(ctx.getAliases(b.getKey())) +"\n");
 });

 ctx.close();
 }
}

When run, this will produce the following output:

id: jon
 aliases: jonathan, jim, johnny

id: jon johnny,jonathan;jim
 aliases:

As you can see, the map with String beans contains two beans, one with the jon unique identifier and
three aliases and one with the jon johnny,jonathan;jim unique identifier and no aliases.

Bean name aliasing is a strange beast because it is not something you tend to use when you are building
a new application. If you are going to have many other beans inject another bean, they may as well use the
same name to access that bean. However, as your application goes into production and maintenance work
gets carried out, modifications are made, and so on, bean name aliasing becomes more useful.

Consider the following scenario: you have an application in which 50 beans, configured using
Spring, all require an implementation of the Foo interface. Twenty-five of the beans use the StandardFoo
implementation with the bean name standardFoo, and the other 25 use the SuperFoo implementation with
the superFoo bean name. Six months after you put the application into production, you decide to move the
first 25 beans to the SuperFoo implementation. To do this, you have three options.

•	 The first is to change the implementation class of the standardFoo bean to SuperFoo.
The drawback of this approach is that you have two instances of the SuperFoo class
lying around when you really need only one. In addition, you now have two beans to
make changes to when the configuration changes.

•	 The second option is to update the injection configuration for the 25 beans that are
changing, which changes the beans’ names from standardFoo to superFoo. This
approach is not the most elegant way to proceed. You could perform a find and
replace, but then rolling back your changes when management isn’t happy means
retrieving an old version of your configuration from your version control system.

•	 The third, and most ideal, approach is to remove (or comment out) the definition
for the standardFoo bean and make standardFoo an alias to superFoo. This change
requires minimal effort, and restoring the system to its previous configuration is just
as simple.

Chapter 3 ■ Introducing IoC and DI in Spring

100

Bean Naming with Annotation Configurations
When bean definitions are declared using annotations, bean naming is a little different than XML, and
there are more interesting things you can do. Let’s start with the basics, though: declaring bean definitions
using stereotype annotations (@Component and all its specializations such as Service, Repository, and
Controller).

Consider the following Singer class:

package com.apress.prospring5.ch3.annotated;

import org.springframework.stereotype.Component;

@Component
public class Singer {

 private String lyric = "We found a message in a bottle we were drinking";

 public void sing() {
 System.out.println(lyric);
 }
}

This class contains the declaration of a singleton bean of type Singer written using the @Component
annotation. The @Component annotation does not have any arguments, so the Spring IoC container decides
a unique identifier for the bean. The convention followed in this case is to name the bean, as the class itself,
but downcasing the first letter. This means that the bean will be named singer. This convention is respected
by other stereotype annotations as well. To test this, the following class can be used:

package com.apress.prospring5.ch3.annotated;

import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.Arrays;

import java.util.Map;

public class AnnotatedBeanNaming {

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotated.xml");
 ctx.refresh();

 Map<String,Singer> beans =
 ctx.getBeansOfType(Singer.class);

 beans.entrySet().stream().forEach(b ->
 System.out.println("id: " + b.getKey()));
 ctx.close();
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

101

The app-context-annotated.xml configuration file contains only a component scanning declaration
for com.apress.prospring5.ch3.annotated so it won’t be shown again. When the previous class is run, the
following output is printed in the console:

id: singer

Thus, using @Component("singer") is equivalent to annotating the Singer class with @Component. If you
want to name the bean differently, the @Component annotation must receive the bean name as an argument.

package com.apress.prospring5.ch3.annotated;

import org.springframework.stereotype.Component;

@Component("johnMayer")
public class Singer {

 private String lyric = "Down there below us, under the clouds";

 public void sing() {
 System.out.println(lyric);
 }
}

As expected, if AnnotatedBeanNaming is run, the following output is produced:

id: johnMayer

But, what about aliases? As the argument for the @Component annotation becomes the unique
identifier for the bean, bean aliasing is not possible when declaring the bean in this way. This is where Java
configuration comes to the rescue. Let’s consider the following class, which contains a static configuration
class defined within it (yes, Spring allows this, and we are being practical here, keeping all the logic in the
same file):

package com.apress.prospring5.ch3.config;

import com.apress.prospring5.ch3.annotated.Singer;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.GenericApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.Arrays;
import java.util.Map;

public class AliasConfigDemo {

 @Configuration
 public static class AliasBeanConfig {
 @Bean
 public Singer singer(){

Chapter 3 ■ Introducing IoC and DI in Spring

102

 return new Singer();
 }
 }

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AliasBeanConfig.class);

 Map<String,Singer> beans = ctx.getBeansOfType(Singer.class);
 beans.entrySet().stream().forEach(b ->
 System.out.println("id: " + b.getKey()
 + "\n aliases: "
 + Arrays.toString(ctx.getAliases(b.getKey())) + "\n")
);

 ctx.close();
 }
}

This class contains a bean definition for a bean of type Singer declared by annotating the singer()
method with the @Bean annotation. When no argument is provided for this annotation, the bean unique
identifier, its id, becomes the method name. Thus, when the previous class is run, we get the following
output:

id: singer
 aliases:

To declare aliases, we make use of the name attribute of the @Bean annotation. This attribute is the
default one for this annotation, which means in this case declaring the bean by annotating the singer()
method with @Bean, @Bean("singer"), or @Bean(name="singer") will lead to the same result. The Spring IoC
container will create a bean of type Singer and with the singer ID.

If the value for this attribute is a string containing an alias-specific separator (space, comma,
semicolon), the string will become the ID of the bean. But, if the value for it is an array of strings, the first one
becomes the id and the others become aliases. Modify the bean configuration as shown here:

@Configuration
 public static class AliasBeanConfig {
 @Bean(name={"johnMayer","john","jonathan","johnny"})
 public Singer singer(){
 return new Singer();
 }
 }

When running the AliasConfigDemo class, the output will change to the following:

id: johnMayer
 aliases: jonathan, johnny, john

Chapter 3 ■ Introducing IoC and DI in Spring

103

When it comes to aliases, in Spring 4.2 the @AliasFor annotation was introduced. This annotation is
used to declare aliases for annotation attributes, and most Spring annotations make use of it. For example,
the @Bean annotation has two attributes, name and value, which are declared as aliases for each other. Using
this annotation, they are explicit aliases. The following code snippet is a snapshot of the @Bean annotation
code and is taken from the official Spring GitHub repository. The code and documentation that are not
relevant at the moment were skipped:4

package org.springframework.context.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import org.springframework.core.annotation.AliasFor;
...
@Target({ElementType.METHOD, ElementType.ANNOTATION_TYPE})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface Bean {
 @AliasFor("name")
 String value() default {};

 @AliasFor("value")
 String name() default {};

 ...
}

Here’s an example. Declare an annotation called @Award that can be used on Singer instances, of
course.

package com.apress.prospring5.ch3.annotated;

import org.springframework.core.annotation.AliasFor;

public @interface Award {

 @AliasFor("prize")
 String value() default {};

 @AliasFor("value")
 String prize() default {};
}

4You can look at the full implementation here: https://github.com/spring-projects/spring-framework/blob/
master/spring-core/src/main/java/org/springframework/core/annotation/AliasFor.java.

https://github.com/spring-projects/spring-framework/blob/master/spring-core/src/main/java/org/springframework/core/annotation/AliasFor.java
https://github.com/spring-projects/spring-framework/blob/master/spring-core/src/main/java/org/springframework/core/annotation/AliasFor.java

Chapter 3 ■ Introducing IoC and DI in Spring

104

Using this annotation, you can modify the Singer class like this:

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Component;

@Component("johnMayer")
@Award(prize = {"grammy", "platinum disk"})
public class Singer {

 private String lyric = "We found a message in a bottle we were drinking";

 public void sing() {
 System.out.println(lyric);
 }
}

The previous annotation is equivalent to @Award(value={"grammy", "platinum disk"}) and to
@Award({"grammy", "platinum disk"}).

But something more interesting can be done with the @AliasFor annotation: aliases for meta-annotation
attributes can be declared. In the following code snippet, we declare a specialization for the @Award
annotation that declares an attribute named name, which is an alias for the value attribute of the @Award
annotation. And we do this because we want to make it obvious that the argument is a unique bean identifier.

package com.apress.prospring5.ch3.annotated;

import org.springframework.core.annotation.AliasFor;

@Award
public @interface Trophy {

 @AliasFor(annotation = Award.class, attribute = "value")
 String name() default {};
}

Thus, instead of writing the Singer class like this:

package com.apress.prospring5.ch3.annotated;

import org.springframework.stereotype.Component;

@Component("johnMayer")
@Award(value={"grammy", "platinum disk"})
public class Singer {

 private String lyric = "We found a message in a bottle we were drinking";

 public void sing() {
 System.out.println(lyric);
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

105

we can write it like this:

package com.apress.prospring5.ch3.annotated;

@Component("johnMayer")
@Trophy(name={"grammy", "platinum disk"})
public class Singer {

 private String lyric = "We found a message in a bottle we were drinking";

 public void sing() {
 System.out.println(lyric);
 }
}

  Creating aliases for attributes of annotations using yet another annotation @AliasFor does have
limitations. @AliasFor cannot be used on any stereotype annotations (@Component and its specializations).
The reason is that the special handling of these value attributes was in place years before @AliasFor was
invented. Consequently, because of backward compatibility issues, it is simply not possible to use @AliasFor
with such value attributes. When writing code to do just so (aliasing value attributes in stereotype annotations),
no compile errors will be shown to you, and the code might even run, but any argument provided for the alias
will be ignored. The same goes for the
@Qualifier annotation as well.

Understanding Bean Instantiation Mode
By default, all beans in Spring are singletons. This means Spring maintains a single instance of the bean, all
dependent objects use the same instance, and all calls to ApplicationContext.getBean() return the same
instance. We demonstrated this in the previous section, where we were able to use identity comparison (==)
rather than the equals() comparison to check whether the beans were the same.

The term singleton is used interchangeably in Java to refer to two distinct concepts: an object that has
a single instance within the application and the Singleton design pattern. We refer to the first concept as
a singleton and to the Singleton pattern as Singleton. The Singleton design pattern was popularized in the
seminal Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma et al. (Addison-Wesley,
1994). The problem arises when people confuse the need for singleton instances with the need to apply the
Singleton pattern. The following code snippet shows a typical implementation of the Singleton pattern in Java:

package com.apress.prospring5.ch3;

public class Singleton {
 private static Singleton instance;

 static {
 instance = new Singleton();
 }

 public static Singleton getInstance() {
 return instance;
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

106

This pattern achieves its goal of allowing you to maintain and access a single instance of a class
throughout your application, but it does so at the expense of increased coupling. Your application code must
always have explicit knowledge of the Singleton class in order to obtain the instance—completely removing
the ability to code to interfaces.

In reality, the Singleton pattern is actually two patterns in one. The first, and desired, pattern involves
maintenance of a single instance of an object. The second, and less desirable, is a pattern for object lookup
that completely removes the possibility of using interfaces. Using the Singleton pattern also makes it difficult
to swap out implementations arbitrarily because most objects that require the Singleton instance access
the Singleton object directly. This can cause all kinds of headaches when you are trying to unit test your
application because you are unable to replace the Singleton with a mock for testing purposes.

Fortunately, with Spring you can take advantage of the singleton instantiation model without having to
work around the Singleton design pattern. All beans in Spring are, by default, created as Singleton instances,
and Spring uses the same instances to fulfill all requests for that bean. Of course, Spring is not just limited
to the use of the Singleton instance; it can still create a new instance of the bean to satisfy every dependency
and every call to getBean(). It does all of this without any impact on your application code, and for this
reason, we like to refer to Spring as being instantiation mode agnostic. This is a powerful concept. If you start
off with an object that is a singleton but then discover it is not really suited to multithread access, you can
change it to a nonsingleton (prototype) without affecting any of your application code.

 A lthough changing the instantiation mode of your bean won’t affect your application code, it does cause
some problems if you rely on Spring’s life-cycle interfaces. We cover this in more detail in Chapter 4.

Changing the instantiation mode from singleton to nonsingleton is simple. The following configuration
snippets present how this is done in XML and using annotations:

<!-- app-context-xml.xml -->
<beans ...>
 <bean id="nonSingleton" class="com.apress.prospring5.ch3.annotated.Singer"
 scope="prototype" c:_0="John Mayer"/>
 </beans>

\\Singer.java
package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Scope;
import org.springframework.stereotype.Component;

@Component("nonSingleton")
@Scope("prototype")
public class Singer {
 private String name = "unknown";

 public Singer(@Value("John Mayer") String name) {
 this.name = name;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

Chapter 3 ■ Introducing IoC and DI in Spring

107

In the XML configuration, the Singer class can be used as a type for a bean declared in XML.
If component scanning is not enabled, the annotations in the class will simply be ignored.

As you can see, the only difference between this bean declaration and any of the declarations you have
seen so far is that we add the scope attribute and set the value to prototype. Spring defaults the scope to the
value singleton. The prototype scope instructs Spring to instantiate a new instance of the bean every time a
bean instance is requested by the application. The following code snippet shows the effect this setting has on
your application:

package com.apress.prospring5.ch3;

import com.apress.prospring5.ch3.annotated.Singer;
import org.springframework.context.support.GenericXmlApplicationContext;
public class NonSingletonDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 Singer singer1 = ctx.getBean("nonSingleton", Singer.class);
 Singer singer2 = ctx.getBean("nonSingleton", Singer.class);

 System.out.println("Identity Equal?: " + (singer1 ==singer2));
 System.out.println("Value Equal:? " + singer1.equals(singer2));
 System.out.println(singer1);
 System.out.println(singer2);

 ctx.close();
 }
}

Running this example gives you the following output:

Identity Equal?: false
Value Equal:? false
John Mayer
John Mayer

You can see from this that although the values of the two String objects are clearly equal, the identities
are not, even though both instances were retrieved using the same bean name.

Choosing an Instantiation Mode
In most scenarios, it is quite easy to see which instantiation mode is suitable. Typically, you will find
that singleton is the default mode for your beans. In general, singletons should be used in the following
scenarios:

•	 Shared object with no state: You have an object that maintains no state and has many
dependent objects. Because you do not need synchronization if there is no state, you
do not need to create a new instance of the bean each time a dependent object needs
to use it for some processing.

Chapter 3 ■ Introducing IoC and DI in Spring

108

•	 Shared object with read-only state: This is similar to the previous point, but you have
some read-only state. In this case, you still do not need synchronization, so creating
an instance to satisfy each request for the bean is just adding overhead.

•	 Shared object with shared state: If you have a bean that has state that must be shared,
singleton is the ideal choice. In this case, ensure that your synchronization for state
writes is as granular as possible.

•	 High-throughput objects with writable state: If you have a bean that is used a great
deal in your application, you may find that keeping a singleton and synchronizing
all write access to the bean state allows for better performance than constantly
creating hundreds of instances of the bean. When using this approach, try to
keep the synchronization as granular as possible without sacrificing consistency.
You will find that this approach is particularly useful when your application creates
a large number of instances over a long period of time, when your shared object
has only a small amount of writable state, or when the instantiation of a new instance
is expensive.

You should consider using nonsingletons in the following scenarios:

•	 Objects with writable state: If you have a bean that has a lot of writable state, you
may find that the cost of synchronization is greater than the cost of creating a new
instance to handle each request from a dependent object.

•	 Objects with private state: Some dependent objects need a bean that has private
state so that they can conduct their processing separately from other objects that
depend on that bean. In this case, singleton is clearly not suitable, and you should
use nonsingleton.

The main positive you gain from Spring’s instantiation management is that your applications can
immediately benefit from the lower memory usage associated with singletons, with very little effort on your
part. Then, if you find that singleton mode does not meet the needs of your application, it is a trivial task to
modify your configuration to use non-singleton mode.

Implementing Bean Scopes
In addition to the singleton and prototype scopes, other scopes exist when defining a Spring bean for
more specific purposes. You can also implement your own custom scope and register it in Spring’s
ApplicationContext. The following bean scopes are supported as of version 4:

•	 Singleton: The default singleton scope. Only one object will be created per Spring IoC
container.

•	 Prototype: A new instance will be created by Spring when requested by the
application.

•	 Request: For web application use. When using Spring MVC for web applications,
beans with request scope will be instantiated for every HTTP request and then
destroyed when the request is completed.

•	 Session: For web application use. When using Spring MVC for web applications,
beans with session scope will be instantiated for every HTTP session and then
destroyed when the session is over.

•	 Global session: For portlet-based web applications. The global session scope beans can
be shared among all portlets within the same Spring MVC–powered portal application.

Chapter 3 ■ Introducing IoC and DI in Spring

109

•	 Thread: A new bean instance will be created by Spring when requested by a new
thread, while for the same thread, the same bean instance will be returned. Note that
this scope is not registered by default.

•	 Custom: Custom bean scope that can be created by implementing the interface
org.springframework.beans.factory.config.Scope and registering the custom
scope in Spring’s configuration (for XML, use the class org.springframework.
beans.factory.config.CustomScopeConfigurer).

Resolving Dependencies
During normal operation, Spring is able to resolve dependencies by simply looking at your configuration
file or annotations in your classes. In this way, Spring can ensure that each bean is configured in the correct
order so that each bean has its dependencies correctly configured. If Spring did not perform this and just
created the beans and configured them in any order, a bean could be created and configured before its
dependencies. This is obviously not what you want and would cause all sorts of problems within your
application.

Unfortunately, Spring is not aware of any dependencies that exist between beans in your code that are
not specified in the configuration. For instance, take one bean, called johnMayer, of type Singer, which
obtains an instance of another bean, called gopher, of type Guitar using ctx.getBean() and uses it when
the johnMayer.sing() method is called. In this method, you get an instance of type Guitar by calling
ctx.getBean("gopher"), without asking Spring to inject the dependency for you. In this case, Spring is
unaware that johnMayer depends on gopher, and, as a result, it may instantiate johnMayer before gopher.
You can provide Spring with additional information about your bean dependencies using the depends-on
attribute of the <bean> tag. The following configuration snippet (contained in a file named app-context-01.xml)
shows how the scenario for johnMayer and gopher would be configured:

<beans ...">
 <bean id="johnMayer" class="com.apress.prospring5.ch3.xml.Singer"
 depends-on="gopher"/>
 <bean id="gopher" class="com.apress.prospring5.ch3.xml.Guitar"/>
</beans>

In this configuration, we are asserting that bean johnMayer depends on bean gopher. Spring should take
this into consideration when instantiating the beans and ensure that gopher is created before johnMayer.
To do this, though, johnMayer needs to access ApplicationContext. Thus, we also have to tell Spring to
inject this reference, so when the johnMayer.sing() method will be called, it can be used to procure the
gopher bean. This is done by making the Singer bean implement the ApplicationContextAware interface.
This is a Spring-specific interface that forces an implementation of a setter for an ApplicationContext
object. It is automatically detected by the Spring IoC container, and the ApplicationContext that the bean
is created in is injected into it. This is done after the constructor of the bean is called, so obviously using
ApplicationContext in the constructor will lead to a NullPointerException. You can see the code of the
Singer class here:

package com.apress.prospring5.ch3.xml;

import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;

Chapter 3 ■ Introducing IoC and DI in Spring

110

public class Singer implements ApplicationContextAware {

 ApplicationContext ctx;

 @Override
 public void setApplicationContext(
 ApplicationContext applicationContext) throws BeansException {
 this.ctx = applicationContext;
 }

 private Guitar guitar;

 public Singer(){
 }

 public void sing() {
 guitar = ctx.getBean("gopher", Guitar.class);
 guitar.sing();
 }
}

The Guitar class is quite simple; it contains only the sing method and is shown here:

package com.apress.prospring5.ch3.xml;

public class Guitar {

 public void sing(){
 System.out.println("Cm Eb Fm Ab Bb");
 }
}

To test this example, you can use the following class:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

public class DependsOnDemo {

 public static void main(String... args) {
 GenericXmlApplicationContext
 ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-01.xml");
 ctx.refresh();

 Singer johnMayer = ctx.getBean("johnMayer", Singer.class);
 johnMayer.sing();

 ctx.close();
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

111

Of course, there is an annotation configuration equivalent to the previous XML configuration. Singer
and Guitar must be declared as beans using one of the stereotype annotations (in this case @Component will
be used). The novelty here is the @DependsOn annotation, which is placed on the Singer class. This is the
equivalent of the depends-on attribute from the XML configuration.

package com.apress.prospring5.ch3.annotated;

import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.DependsOn;
import org.springframework.stereotype.Component;

@Component("johnMayer")
@DependsOn("gopher")
public class Singer implements ApplicationContextAware{

 ApplicationContext applicationContext;

 @Override public void setApplicationContext(ApplicationContext
 applicationContext) throws BeansException {
 this.applicationContext = applicationContext;
 }

 private Guitar guitar;

 public Singer(){
 }

 public void sing() {
 guitar = applicationContext.getBean("gopher", Guitar.class);
 guitar.sing();
 }
}

All you have to do now is enable component scanning and then use, in the DependsOnDemo class,
application- context-02.xml, to create ApplicationContext.

<!-- application-context-02.xml -->
<beans...>
 <context:component-scan
 base-package="com.apress.prospring5.ch3.annotated"/>
</beans>

The example will run, and the output will be “Cm Eb Fm Ab Bb.”
When developing your applications, avoid designing them to use this feature; instead, define your

dependencies by means of setter and constructor injection contracts. However, if you are integrating Spring
with legacy code, you may find that the dependencies defined in the code require you to provide extra
information to the Spring Framework.

Chapter 3 ■ Introducing IoC and DI in Spring

112

Autowiring Your Bean
Spring supports five modes for autowiring.

•	 byName: When using byName autowiring, Spring attempts to wire each property to a
bean of the same name. So, if the target bean has a property named foo and a foo
bean is defined in ApplicationContext, the foo bean is assigned to the foo property
of the target.

•	 byType: When using byType autowiring, Spring attempts to wire each of the
properties on the target bean by automatically using a bean of the same type in
ApplicationContext.

•	 constructor: This functions just like byType wiring, except that it uses constructors
rather than setters to perform the injection. Spring attempts to match the
greatest numbers of arguments it can in the constructor. So, if your bean has two
constructors, one that accepts a String and one that accepts String and an Integer,
and you have both a String and an Integer bean in your ApplicationContext,
Spring uses the two-argument constructor.

•	 default: Spring will choose between the constructor and byType modes
automatically. If your bean has a default (no-arguments) constructor, Spring uses
byType; otherwise, it uses constructor.

•	 no: This is the default.

So, if you have a property of type String on the target bean and a bean of type String in
ApplicationContext, then Spring wires the String bean to the target bean’s String property. If you have
more than one bean of the same type, in this case String, in the same ApplicationContext instance,
then Spring is unable to decide which one to use for the autowiring and throws an exception (of type org.
springframework.beans.factory.NoSuchBeanDefinitionException).

The following configuration snippet shows a simple configuration that autowires three beans of the
same type by using each of the modes (app-context-03.xml):

<beans ...>

 <bean id="fooOne" class="com.apress.prospring5.ch3.xml.Foo"/>
 <bean id="barOne" class="com.apress.prospring5.ch3.xml.Bar"/>

 <bean id="targetByName" autowire="byName"
 class="com.apress.prospring5.ch3.xml.Target" lazy-init="true"/>

 <bean id="targetByType" autowire="byType"
 class="com.apress.prospring5.ch3.xml.Target" lazy-init="true"/>

 <bean id="targetConstructor" autowire="constructor"
 class="com.apress.prospring5.ch3.xml.Target" lazy-init="true"/>
</beans>

This configuration should look familiar to you now. Foo and Bar are empty classes. Notice that each of
the Target beans has a different value for the autowire attribute. Moreover, the lazy-init attribute is set to
true to inform Spring to instantiate the bean only when it is first requested, rather than at startup, so that
we can output the result in the correct place in the testing program. The following code sample shows a
simple Java application that retrieves each of the Target beans from ApplicationContext:

Chapter 3 ■ Introducing IoC and DI in Spring

113

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

public class Target {
 private Foo fooOne;
 private Foo fooTwo;
 private Bar bar;

 public Target() {
 }

 public Target(Foo foo) {
 System.out.println("Target(Foo) called");
 }

 public Target(Foo foo, Bar bar) {
 System.out.println("Target(Foo, Bar) called");
 }

 public void setFooOne(Foo fooOne) {
 this.fooOne = fooOne;
 System.out.println("Property fooOne set");
 }

 public void setFooTwo(Foo foo) {
 this.fooTwo = foo;
 System.out.println("Property fooTwo set");
 }

 public void setBar(Bar bar) {
 this.bar = bar;
 System.out.println("Property bar set");
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-03.xml");
 ctx.refresh();

 Target t = null;

 System.out.println("Using byName:\n");
 t = (Target) ctx.getBean("targetByName");

 System.out.println("\nUsing byType:\n");
 t = (Target) ctx.getBean("targetByType");

 System.out.println("\nUsing constructor:\n");
 t = (Target) ctx.getBean("targetConstructor");

 ctx.close();
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

114

In this code, you can see that the Target class has three constructors: a no-argument constructor, a
constructor that accepts a Foo instance, and a constructor that accepts a Foo and a Bar instance. In addition
to these constructors, the Target bean has three properties: two of type Foo and one of type Bar. Each of
these properties and constructors writes a message to console output when it is called. The main() method
simply retrieves each of the Target beans declared in ApplicationContext, triggering the autowire process.
Here is the output from running this example:

Using byName:

Property fooOne set

Using byType:

Property bar set
Property fooOne set
Property fooTwo set

Using constructor:

Target(Foo, Bar) called

From the output, you can see that when Spring uses byName, the only property that is set is foo because
this is the only property with a corresponding bean entry in the configuration file. When using byType,
Spring sets the value of all three properties. The fooOne and fooTwo properties are set by the fooOne bean,
and the bar property is set by the barOne bean. When using a constructor, Spring uses the two-argument
constructor, because Spring can provide beans for both arguments and does not need to fall back to another
constructor.

When autowiring by type, things gets complicated when bean types are related, and exceptions are
thrown when you have more classes that implement the same interface and the property requiring to be
autowired specifies the interface as the type, because Spring does not know which bean to inject. To create
such a scenario, we’ll transform Foo into an interface and declare two bean type implementing it, each with
its bean declaration. Let’s keep the default configuration as well, no extra naming.

package com.apress.prospring5.ch3.xml.complicated;

public interface Foo {
 // empty interface, used as a marker interface
}

public class FooImplOne implements Foo {
}

public class FooImplOne implements Foo {
}

If we were to add a new configuration file, named app-context-04.xml, it would contain the following
configuration:

<beans ...>

 <bean id="fooOne"
 class="com.apress.prospring5.ch3.xml.complicated.FooImplOne"/>

Chapter 3 ■ Introducing IoC and DI in Spring

115

 <bean id="fooTwo"
 class="com.apress.prospring5.ch3.xml.complicated.FooImplOne"/>

 <bean id="bar" class="com.apress.prospring5.ch3.xml.Bar"/>

 <bean id="targetByType" autowire="byType"
 class="com.apress.prospring5.ch3.xml.complicated.CTarget"
 lazy-init="true"/>

</beans>

For this more simple example, we also introduce the CTarget class. This is identical with the recently
introduced Target class; only the main() method differs. The code snippet is depicted here:

package com.apress.prospring5.ch3.xml.complicated;

import com.apress.prospring5.ch3.xml.*;
import org.springframework.context.support.GenericXmlApplicationContext;

public class CTarget {
 ...

 public static void main(String... args) {
 GenericXmlApplicationContext
 ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-04.xml");
 ctx.refresh();
 System.out.println("\nUsing byType:\n");
 CTarget t = (CTarget) ctx.getBean("targetByType");
 ctx.close();
 }

Running the previous class produces the following output:

Using byType:

Exception in thread "main"
 org.springframework.beans.factory.UnsatisfiedDependencyException:
 Error creating bean with name 'targetByType' defined in class path
 resource spring/app-context-04.xml:
 Unsatisfied dependency expressed through bean property 'foo';
 nested exception is
 org.springframework.beans.factory.NoUniqueBeanDefinitionException:
 No qualifying bean of type
 'com.apress.prospring5.ch3.xml.complicated.Foo' available:
 expected single matching bean but found 2: fooOne,fooTwo
 ...

Chapter 3 ■ Introducing IoC and DI in Spring

116

The console output is way bigger, but the first lines in the previous output reveal the problem
in quite a readable manner. When Spring does not know what bean to autowire, it throws an
UnsatisfiedDependencyException with an explicit message. It tells you what beans were found but that it
cannot choose which to use where. There are two ways to fix this problem. The first way is to use the primary
attribute in the bean definition that you want Spring to consider first for autowiring and set true as its value.

<beans ...>

 <bean id="fooOne"
 class="com.apress.prospring5.ch3.xml.complicated.FooImpl1"
 primary="true"/>
 <bean id="fooTwo"
 class="com.apress.prospring5.ch3.xml.complicated.FooImpl2"/>

 <bean id="bar" class="com.apress.prospring5.ch3.xml.Bar"/>

 <bean id="targetByType" autowire="byType"
 class="com.apress.prospring5.ch3.xml.complicated.CTarget"
 lazy-init="true"/>

</beans>

So, if the configuration is modified as presented before, when running the example, the following
output will be printed:

Using byType:

Property bar set
Property fooOne set
Property fooTwo set

So, it’s all back to normal. But still, the primary attribute is a solution only when there are just two
bean-related types. If there are more, using it will not get rid of the UnsatisfiedDependencyException.
What will do the job is the second way, which will give you full control over which bean gets injected where,
and this is to name your beans and configure them where to be injected via XML. The previous example
is quite a complex and dirty implementation and was conceived just to prove how each of the autowiring
types can be configured in XML. When switching to annotation, things change a bit. There is an annotation
equivalent to the lazy-init attribute; the @Lazy annotation is used at the class level to declare beans that
will be instantiated the first time they are accessed. Using stereotype annotations, we can create only one
configuration for a bean, so it seems pretty logical that the name of the beans does not really matter, as there
will be only one bean of each type. Thus, the default autowiring when using configuration via annotation is
byType. When there are bean-related types, it is useful to be able to specify that autowiring should be done
by name. This is done using the @Qualifier annotation, together with the @Autowired annotation, and
providing the name of the bean being injected as an argument for it.

Consider the following code:

package com.apress.prospring5.ch3.sandbox;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Lazy;
import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.stereotype.Component;

Chapter 3 ■ Introducing IoC and DI in Spring

117

@Component
@Lazy
public class TrickyTarget {

 Foo fooOne;
 Foo fooTwo;
 Bar bar;
 public TrickyTarget() {
 System.out.println("Target.constructor()");
 }

 public TrickyTarget(Foo fooOne) {
 System.out.println("Target(Foo) called");
 }

 public TrickyTarget(Foo fooOne, Bar bar) {
 System.out.println("Target(Foo, Bar) called");
 }

 @Autowired
 public void setFooOne(Foo fooOne) {
 this.fooOne = fooOne;
 System.out.println("Property fooOne set");
 }

 @Autowired
 public void setFooTwo(Foo foo) {
 this.fooTwo = foo;
 System.out.println("Property fooTwo set");
 }

 @Autowired
 public void setBar(Bar bar) {
 this.bar = bar;
 System.out.println("Property bar set");
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-04.xml");
 ctx.refresh();

 TrickyTarget t = ctx.getBean(TrickyTarget.class);

 ctx.close();
 }
}

Chapter 3 ■ Introducing IoC and DI in Spring

118

If Foo is a class as depicted here:

package com.apress.prospring5.ch3.sandbox;

@Component
public class Foo {

}

then when the TrickyTarget class is run, the following output is produced:

Property fooOne set
Property fooTwo set
Property bar set

The Bar class is just as simple.

package com.apress.prospring5.ch3.sandbox;

import org.springframework.stereotype.Component;

@Component
public class Bar {

}

If we were to modify the TrickyTarget class and give a name to the bean, as shown here:

@Component("gigi")
@Lazy
public class TrickyTarget {
...
}

then when running the class, the same output will be produced, as there is only one bean of type
Target, and when requested from the context using ctx.getBean(TrickyTarget.class), the context
returns the only bean of this type, regardless of its name. Also, if we were to provide a name for the bean of
type Bar:

package com.apress.prospring5.ch3.sandbox;

import org.springframework.stereotype.Component;

@Component("kitchen")
public class Bar {
}

then when running the example again, we would see the same output. This means that the default
autowiring type is byType.

Chapter 3 ■ Introducing IoC and DI in Spring

119

As mentioned, things get complicated when bean types are related. Let’s transform Foo into an interface
and declare two bean types implementing it, each one with its bean declaration. Let’s keep the default
configuration as well, with no extra naming.

package com.apress.prospring5.ch3.sandbox;

//Foo.java
public interface Foo {
 // empty interface, used as a marker interface
}

//FooImplOne.java
@Component
public class FooImplOne implements Foo {
}

//FooImplTwo.java
@Component
public class FooImplTwo implements Foo{
}

The TrickyTarget class remains unchanged, and when it’s run, we’ll see that the output changes to
something that looks probably a lot like this:

Property bar set
Exception in thread "main"
 org.springframework.beans.factory.UnsatisfiedDependencyException:
 Error creating bean with name 'gigi':
 Unsatisfied dependency expressed through method 'setFoo' parameter 0;
 nested exception is
 org.springframework.beans.factory.NoUniqueBeanDefinitionException:
 No qualifying bean of type 'com.apress.prospring5.ch3.sandbox.Foo' available:
 expected single matching bean but found 2: fooImplOne,fooImplTwo
...

There is a lot more output, but those are the first lines, and as you can see, Spring is really explicit.
It tells you that it does not know which bean to autowire through the method setFoo, and it also tells
you which selection of beans it has. The names of the beans are decided by Spring based on the class name,
by downcasing the first letter of the class name. Using this information, TrickyTarget can be fixed. There are
two ways to do this. The first way is to use the @Primary annotation (which is the equivalent of the primary
attribute introduced before) on the class defining a bean, which will tell Spring to prioritize this bean when
autowiring by type. We will annotate FooImplOne.

package com.apress.prospring5.ch3.sandbox;

import org.springframework.context.annotation.Primary;
import org.springframework.stereotype.Component;

@Component
@Primary
public class FooImplOne implements Foo {
}

Chapter 3 ■ Introducing IoC and DI in Spring

120

The @Primary annotation is a marker interface; it has no attributes. Its presence on a bean configuration
marks the bean as having priority when a bean of this type is needed to be autowired using byType. If you
run the TrickyTarget class, the expected output will be printed again.

Property fooOne set
Property fooTwo set
Property bar set

As in the case of the primary attribute, the @Primary annotation is useful only when you have exactly
two related bean types. For handling more related bean types, the Qualifier annotation is more suitable.
This is placed next to the @Autowired on the setters that are ambiguous: setFooOne() and setFooTwo().
(The code left unchanged is not shown anymore.)

@Component("gigi")
@Lazy
public class TrickyTarget {
 ...
 @Autowired
 @Qualifier("fooImplOne")
 public void setFoo(Foo foo) {
 this.foo = foo;
 System.out.println("Property fooOne set");
 }

 @Autowired
 @Qualifier("fooImplTwo")
 public void setFooTwo(Foo fooTwo) {
 this.fooTwo = fooTwo;
 System.out.println("Property fooTeo set");
 }
 ...
}

Now, if you run the example, the expected output will be printed again.

Property fooOne set
Property fooTwo set
Property bar set

When using Java configuration, the only thing that changes is the way the beans are defined. Because
instead of @Component on bean classes, @Bean annotations will be used on bean declaration methods in the
configuration class. Such an example is shown here:

package com.apress.prospring5.ch3.config;

import com.apress.prospring5.ch3.sandbox.*;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.GenericApplicationContext;

Chapter 3 ■ Introducing IoC and DI in Spring

121

public class TargetDemo {

 @Configuration
 static class TargetConfig {

 @Bean
 public Foo fooImplOne() {
 return new FooImplOne();
 }

 @Bean
 public Foo fooImplTwo() {
 return new FooImplTwo();
 }

 @Bean
 public Bar bar() {
 return new Bar();
 }

 @Bean
 public TrickyTarget trickyTarget() {
 return new TrickyTarget();
 }
 }

 public static void main(String args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(TargetConfig.class);
 TrickyTarget t = ctx.getBean(TrickyTarget.class);
 ctx.close();
 }
}

The existing classes from the com.apress.prospring5.ch3.sandbox package were reused here too,
to avoid code duplication, because as component scanning is not enabled, any bean declaration using
stereotype annotation will be ignored. If you run the previous class, you will notice that the same output
from the previous example is printed. If you remember, as mentioned earlier, the convention when
using bean declarations with @Bean is that the name of the method becomes the name of the bean, so
TrickyTarget configured with the @Qualifier annotation will still work as expected.

When to Use Autowiring
In most cases, the answer to the question of whether you should use autowiring is definitely no! Autowiring
can save you time in small applications, but in many cases, it leads to bad practices and is inflexible in
large applications. Using byName seems like a good idea, but it may lead you to give your classes artificial
property names so that you can take advantage of the autowiring functionality. The whole idea behind
Spring is that you can create your classes as you like and have Spring work for you, not the other way around.
You may be tempted to use byType until you realize that you can have only one bean for each type in your
ApplicationContext—a restriction that is problematic when you need to maintain beans with different
configurations of the same type. The same argument applies to the use of constructor autowiring.

Chapter 3 ■ Introducing IoC and DI in Spring

122

In some cases, autowiring can save you time, but it does not really take that much extra effort to define
your wiring explicitly, and you benefit from explicit semantics and full flexibility on property naming and on
how many instances of the same type you manage. For any nontrivial application, steer clear of autowiring at
all costs.

Setting Bean Inheritance
In some cases, you many need multiple definitions of beans that are the same type or implement a shared
interface. This can become problematic if you want these beans to share some configuration settings but not
others. The process of keeping the shared configuration settings in sync is quite error-prone, and on large
projects, doing so can be quite time-consuming. To get around this, Spring allows you to provide a <bean>
definition that inherits its property settings from another bean in the same ApplicationContext instance. You
can override the values of any properties on the child bean as required, which allows you to have full control,
but the parent bean can provide each of your beans with a base configuration. The following code sample
shows a simple configuration with two beans, one of which is the child of the other (app-context-xml.xml):

<beans ...>

 <bean id="parent" class="com.apress.prospring5.ch3.xml.Singer"
 p:name="John Mayer" p:age="39"/>

 <bean id="child" class="com.apress.prospring5.ch3.xml.Singer"
 parent="parent" p:age="0"/>
</beans>

In this code, you can see that the <bean> tag for the child bean has an extra attribute, parent, which
indicates that Spring should consider the parent bean the parent of the bean and inherit its configuration.
In case you don’t want a parent bean definition to become available for lookup from ApplicationContext,
you can add the attribute abstract="true" in the <bean> tag when declaring the parent bean. Because the
child bean has its own value for the age property, Spring passes this value to the bean. However, child has
no value for the name property, so Spring uses the value given to the inheritParent bean.

The Singer bean is quite simple.

package com.apress.prospring5.ch3.xml;

public class Singer {
 private String name;
 private int age;

 public void setName(String name) {
 this.name = name;
 }

 public void setAge(int age) {
 this.age = age;
 }

Chapter 3 ■ Introducing IoC and DI in Spring

123

 public String toString() {
 return "\tName: " + name + "\n\t" + "Age: " + age;
 }
}

To test it, you could write a simple class like this:

package com.apress.prospring5.ch3.xml;

import org.springframework.context.support.GenericXmlApplicationContext;

public class InheritanceDemo {

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 Singer parent = (Singer) ctx.getBean("parent");
 Singer child = (Singer) ctx.getBean("child");

 System.out.println("Parent:\n" + parent);
 System.out.println("Child:\n" + child);
 }
}

As you can see, the main() method of the Singer class grabs both the child and parent beans from
ApplicationContext and writes the contents of their properties to stdout. Here is the output from this
example:

Parent:
 Name: John Mayer
 Age: 39
Child:
 Name: John Mayer
 Age: 0

As expected, the inheritChild bean inherited the value for its name property from the inheritParent
bean but was able to provide its own value for the age property.

Child beans inherit both constructor arguments and property values from the parent beans, so you can
use both styles of injection with bean inheritance. This level of flexibility makes bean inheritance a powerful
tool for building applications with more than a handful of bean definitions. If you are declaring a lot of beans
of the same value with shared property values, avoid the temptation to use copy and paste to share the
values; instead, set up an inheritance hierarchy in your configuration.

When you are using inheritance, remember that bean inheritance does not have to match a Java
inheritance hierarchy. It is perfectly acceptable to use bean inheritance on five beans of the same type.
Think of bean inheritance as more like a templating feature than an inheritance feature. Be aware, however,
that if you are changing the type of the child bean, that type must extend the parent bean type.

Chapter 3 ■ Introducing IoC and DI in Spring

124

Summary
In this chapter, we covered a lot of ground with both Spring Core and IoC in general. We showed you
examples of the types of IoC and presented the pros and cons of using each mechanism in your applications.
We looked at which IoC mechanisms Spring provides and when (and when not) to use each within your
applications. While exploring IoC, we introduced the Spring BeanFactory, which is the core component
for Spring’s IoC capabilities, and then ApplicationContext, which extends BeanFactory and provides
additional functionalities. For ApplicationContext, we focused on GenericXmlApplicationContext,
which allows external configuration of Spring by using XML. Another method to declare DI requirements
for ApplicationContext, that is, using Java annotations, was also discussed. Some examples with
AnnotationConfigApplicationContext and Java configuration were also included, just to slowly introduce
this way of configuring beans.

This chapter also introduced you to the basics of Spring’s IoC feature set including setter
injection, constructor injection, Method Injection, autowiring, and bean inheritance. In the
discussion of configuration, we demonstrated how you can configure your bean properties with a
wide variety of values, including other beans, using both XML and annotation type configurations and
GenericXmlApplicationContext.

This chapter only scratched the surface of Spring and Spring’s IoC container. In the next chapter,
you’ll look at some IoC-related features specific to Spring, and you’ll take a more detailed look at other
functionality available in Spring Core.

125© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_4

CHAPTER 4

Spring Configuration in Detail
and Spring Boot

In the previous chapter, we presented a detailed look at the concept of inversion of control (IoC) and how it
fits into the Spring Framework. However, we have really only scratched the surface of what Spring Core can
do. Spring provides a wide array of services that supplement and extend its basic IoC capabilities. In this
chapter, you are going to explore these in detail. Specifically, you will be looking at the following:

•	 Managing the bean life cycle: So far, all the beans you have seen have been fairly
simple and completely decoupled from the Spring container. In this chapter, we
present some strategies you can employ to enable your beans to receive notifications
from the Spring container at various points throughout their life cycles. You can
do this either by implementing specific interfaces laid out by Spring, by specifying
methods that Spring can call via reflection, or by using JSR-250 JavaBeans life-cycle
annotations.

•	 Making your beans “Spring aware”: In some cases, you want a bean to be able to
interact with the ApplicationContext instance that configured it. For this reason,
Spring offers two interfaces, BeanNameAware and ApplicationContextAware
(introduced at the end of Chapter 3), that allow your bean to obtain its assigned
name and reference its ApplicationContext, respectively. This section of
the chapter covers implementing these interfaces and gives some practical
considerations for using them in your application.

•	 Using FactoryBeans: As its name implies, the FactoryBean interface is meant to be
implemented by any bean that acts as a factory for other beans. The FactoryBean
interface provides a mechanism by which you can easily integrate your own factories
with the Spring BeanFactory interface.

•	 Working with JavaBeans PropertyEditors: The PropertyEditor interface is a
standard interface provided in the java.beans package. PropertyEditors are
used to convert property values to and from String representations. Spring uses
PropertyEditors extensively, mainly to read values specified in the BeanFactory
configuration and convert them into the correct types. In this chapter, we discuss the
set of PropertyEditors supplied with Spring and how you can use them within your
application. We also take a look at implementing custom PropertyEditors.

https://doi.org/10.1007/978-1-4842-2808-1_4
http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

126

•	 Learning more about the Spring ApplicationContext: As we know,
ApplicationContext is an extension of BeanFactory intended for use in full
applications. The ApplicationContext interface provides a useful set of additional
functionality, including internationalized message support, resource loading,
and event publishing. In this chapter, we present a detailed look at the features in
addition to IoC that ApplicationContext offers. We also jump ahead of ourselves a
little to show you how ApplicationContext simplifies the use of Spring when you are
building web applications.

•	 Using Java classes for configuration: Prior to 3.0, Spring supported only the XML
base configuration with annotations for beans and dependency configuration.
Starting with 3.0, Spring offers another option for developers to configure the Spring
ApplicationContext interface using Java classes. We take a look at this new option
in Spring application configuration.

•	 Using Spring Boot: Spring application configuration is made even more practical
by using Spring Boot. This Spring project makes it easy to create stand-alone,
production-grade, Spring-based applications that you can “just run.”

•	 Using configuration enhancements: We present features that make application
configuration easier, such as profile management, environment and property source
abstraction, and so on. In this section, we cover those features and show how to use
them to address specific configuration needs.

•	 Using Groovy for configuration: New to Spring 4.0 is the ability to configure
bean definitions in the Groovy language, which can be used as an alternative or
supplement to the existing XML and Java configuration methods.

Spring’s Impact on Application Portability
Most of the features discussed in this chapter are specific to Spring and, in many cases, are not available
in other IoC containers. Although many IoC containers offer life-cycle management functionality, they
probably do so through a different set of interfaces than Spring. If the portability of your application between
different IoC containers is truly important, you might want to avoid using some of the features that couple
your application to Spring.

Remember, however, that by setting a constraint—meaning that your application is portable between
IoC containers—you are losing out on the wealth of functionality Spring offers. Because you are likely to be
making a strategic choice to use Spring, it makes sense that you use it to the best of its ability.

Be careful not to create a requirement for portability out of thin air. In many cases, the end users of
your application do not care whether the application can run on three different IoC containers; they just
want it to run. In our experience, it is often a mistake to try to build an application on the lowest common
denominator of features available in your chosen technology. Doing so often sets your application at a
disadvantage right from the get-go. However, if your application requires IoC container portability, do not
see this as a drawback—it is a true requirement and, therefore, one your application should fulfill. In Expert
One-on-One: J2EE Development without EJB (Wrox, 2004), Rod Johnson and Jürgen Höller describe these
types of requirements as phantom requirements and provide a much more detailed discussion of them and
how they can affect your project.

Although using these features may couple your application to the Spring Framework, in reality you
are increasing the portability of your application in the wider scope. Consider that you are using a freely
available, open source framework that has no particular vendor affiliation. An application built using
Spring’s IoC container runs anywhere Java runs. For Java enterprise applications, Spring opens up new
possibilities for portability. Spring provides many of the same capabilities as JEE and also provides classes to

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

127

abstract and simplify many other aspects of JEE. In many cases, it is possible to build a web application using
Spring that runs in a simple servlet container but with the same level of sophistication as an application
targeted at a full-blown JEE application server. By coupling to Spring, you can increase your application’s
portability by replacing many features that either are vendor-specific or rely on vendor-specific configuration
with equivalent features in Spring.

Bean Life-Cycle Management
An important part of any IoC container, Spring included, is that beans can be constructed in such a way that
they receive notifications at certain points in their life cycle. This enables your beans to perform relevant
processing at certain points throughout their life. In general, two life-cycle events are particularly relevant to
a bean: post-initialization and pre-destruction.

In the context of Spring, the post-initialization event is raised as soon as Spring finishes setting all the
property values on the bean and finishes any dependency checks that you configured it to perform. The pre-
destruction event is fired just before Spring destroys the bean instance. However, for beans with prototype
scope, the pre-destruction event will not be fired by Spring. The design of Spring is that the initialization
life-cycle callback methods will be called on objects regardless of bean scope, while for beans with prototype
scope, the destruction life-cycle callback methods will not be called. Spring provides three mechanisms a
bean can use to hook into each of these events and perform some additional processing: interface-based,
method-based, and annotation-based mechanisms.

Using the interface-based mechanism, your bean implements an interface specific to the type of
notification it wants to receive, and Spring notifies the bean via a callback method defined in the interface.
For the method-based mechanism, Spring allows you to specify, in your ApplicationContext configuration,
the name of a method to call when the bean is initialized and the name of a method to call when the bean
is destroyed. For the annotation mechanism, you can use JSR-250 annotations to specify the method that
Spring should call after construction or before destruction.

In the case of both events, the mechanisms achieve exactly the same goal. The interface mechanism
is used extensively throughout Spring so that you don’t have to remember to specify the initialization or
destruction each time you use one of Spring’s components. However, in your own beans, you may be better
served using the method-based or annotation mechanism because your beans do not need to implement
any Spring-specific interfaces. Although we stated that portability often isn’t as important a requirement as
many books lead you to believe, this does not mean you should sacrifice portability when a perfectly good
alternative exists. That said, if you are coupling your application to Spring in other ways, using the interface
method allows you to specify the callback once and then forget about it. If you are defining a lot of beans of
the same type that need to take advantage of the life-cycle notifications, then using the interface mechanism
can avoid the need for specifying the life-cycle callback methods for every bean in the XML configuration
file. Using JSR-250 annotations is also another viable option, since it’s a standard defined by the JCP and you
are also not coupled to Spring’s specific annotations. Just make sure that the IoC container you are running
your application on supports the JSR-250 standard.

Overall, the choice of which mechanism you use for receiving life-cycle notifications depends on your
application requirements. If you are concerned about portability or you are just defining one or two beans
of a particular type that need the callbacks, use the method-based mechanism. If you use annotation-type
configuration and are certain that you are using an IoC container that supports JSR-250, use the annotation
mechanism. If you are not too concerned about portability or you are defining many beans of the same
type that need the life-cycle notifications, using the interface-based mechanism is the best way to ensure
that your beans always receive the notifications they are expecting. If you plan to use a bean across many
different Spring projects, you almost certainly want the functionality of that bean to be as self-contained as
possible, so you should definitely use the interface-based mechanism.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

128

Hooking into Bean Creation
By being aware of when it is initialized, a bean can check whether all its required dependencies are satisfied.
Although Spring can check dependencies for you, it is pretty much an all-or-nothing approach, and it
doesn’t offer any opportunities for applying additional logic to the dependency resolution procedure.
Consider a bean that has four dependencies declared as setters, two of which are required and one of which
has a suitable default in the event that no dependency is provided. Using an initialization callback, your
bean can check for the dependencies it requires, throwing an exception or providing a default as needed.

A bean cannot perform these checks in its constructor because at this point, Spring has not had an
opportunity to provide values for the dependencies it can satisfy. The initialization callback in Spring is
called after Spring finishes providing the dependencies that it can and performs any dependency checks that
you ask of it.

You are not limited to using the initialization callback just to check dependencies; you can do
anything you want in the callback, but it is most useful for the purpose we have described. In many cases,
the initialization callback is also the place to trigger any actions that your bean must take automatically
in response to its configuration. For instance, if you build a bean to run scheduled tasks, the initialization
callback provides the ideal place to start the scheduler—after all, the configuration data is set on the bean.

  You will not have to write a bean to run scheduled tasks because this is something Spring can do
automatically through its built-in scheduling feature or via integration with the Quartz scheduler. We cover this
in more detail in Chapter 11.

Executing a Method When a Bean Is Created
As we mentioned previously, one way to receive the initialization callback is to designate a method on your
bean as an initialization method and tell Spring to use this method as an initialization method. As discussed,
this callback mechanism is useful when you have only a few beans of the same type or when you want to
keep your application decoupled from Spring. Another reason for using this mechanism is to enable your

Figure 4-1.  Spring beans life cycle

Figure 4-1 shows a high-level overview of how Spring manages the life cycle of the beans within its
container.

http://dx.doi.org/10.1007/978-1-4842-2808-1_11

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

129

Spring application to work with beans that were built previously or were provided by third-party vendors.
Specifying a callback method is simply a case of specifying the name in the init-method attribute of a bean’s
<bean> tag. The following code sample shows a basic bean with two dependencies:

package com.apress.prospring5.ch4;

import org.springframework.beans.factory.BeanCreationException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class Singer {
 private static final String DEFAULT_NAME = "Eric Clapton";

 private String name;
 private int age = Integer.MIN_VALUE;

 public void setName(String name) {
 this.name = name;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public void init() {
 System.out.println("Initializing bean");

 if (name == null) {
 System.out.println("Using default name");
 name = DEFAULT_NAME;
 }

 if (age == Integer.MIN_VALUE) {
 throw new IllegalArgumentException(
 "You must set the age property of any beans of type " + Singer.class);
 }
 }

 public String toString() {
 return "\tName: " + name + "\n\tAge: " + age;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 getBean("singerOne", ctx);
 getBean("singerTwo", ctx);
 getBean("singerThree", ctx);

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

130

 ctx.close();
 }

 public static Singer getBean(String beanName,
 ApplicationContext ctx) {
 try {
 Singer bean = (Singer) ctx.getBean(beanName);
 System.out.println(bean);
 return bean;
 } catch (BeanCreationException ex) {
 System.out.println("An error occured in bean configuration: "
 + ex.getMessage());
 return null;
 }
 }
}

Notice that we have defined a method, init(), to act as the initialization callback. The init() method
checks whether the name property has been set, and if it has not, it uses the default value stored in the
DEFAULT_NAME constant. The init() method also checks whether the age property is set and throws
IllegalArgumentException if it is not.

The main() method of the SimpleBean class attempts to obtain three beans from
GenericXmlApplicationContext, all of type Singer, using its own getBean() method. Notice that in the
getBean() method, if the bean is obtained successfully, its details are written to console output. If an
exception is thrown in the init() method, as will occur in this case if the age property is not set, then Spring
wraps that exception in BeanCreationException. The getBean() method catches these exceptions and
writes a message to the console output informing us of the error, as well as returns a null value.

The following configuration snippet shows an ApplicationContext configuration that defines the
beans used in the previous code snippet (app-context-xml.xml):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd"
 default-lazy-init="true">

 <bean id="singerOne"
 class="com.apress.prospring5.ch4.Singer"
 init-method="init" p:name="John Mayer" p:age="39"/>

 <bean id="singerTwo"
 class="com.apress.prospring5.ch4.Singer"
 init-method="init" p:age="72"/>

 <bean id="singerThree"
 class="com.apress.prospring5.ch4.Singer"
 init-method="init" p:name="John Butler"/>
</beans>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

131

As you can see, the <bean> tag for each of the three beans has an init-method attribute that tells Spring
that it should invoke the init() method as soon as it finishes configuring the bean. The singerOne bean
has values for both the name and age properties, so it passes through the init() method with absolutely no
changes. The singerTwo bean has no value for the name property, meaning that in the init() method, the
name property is given the default value. Finally, the singerThree bean has no value for the age property.
The logic defined in the init() method treats this as an error, so IllegalArgumentException is thrown.
Also note that in the <beans> tag, we added the attribute default-lazy-init="true" to instruct Spring
to instantiate the beans defined in the configuration file only when the bean was requested from the
application. If we do not specify it, Spring will try to initialize all the beans during the bootstrapping of
ApplicationContext, and it will fail during the initialization of singerThree.

When all the beans in a configuration file have the same init-method configuration, the file can
be simplified, by setting the default-init-method attribute on the <beans> element. The beans can be
of different types; the only condition for them is to have a method named as the default-init-method
attribute value. So, the previous configuration can be written like this as well:

<beans ...
 default-lazy-init="true" default-init-method="init">

 <bean id="singerOne"
 class="com.apress.prospring5.ch4.Singer"
 p:name="John Mayer" p:age="39"/>

 <bean id="singerTwo"
 class="com.apress.prospring5.ch4.Singer"
 p:age="72"/>

 <bean id="singerThree"
 class="com.apress.prospring5.ch4.Singer"
 p:name="John Butler"/>
</beans>

Running the previous example yields the following output:

Initializing bean
 Name: John Mayer
 Age: 39
Initializing bean
Using default name
 Name: Eric Clapton
 Age: 72
Initializing bean
An error occured in bean configuration: Error creating bean
with name 'singerThree' defined in class path
resource spring/app-context-xml.xml: Invocation of init method failed;
nested exception is java.lang.IllegalArgumentException:
You must set the age property of any beans of type class
 com.apress.prospring5.ch4.Singer

From this output, you can see that singerOne was configured correctly with the values that we specified
in the configuration file. For singerTwo, the default value for the name property was used because no value
was specified in the configuration. Finally, for singerThree, no bean instance was created because the
init() method raised an error because of the lack of a value for the age property.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

132

As you can see, using the initialization method is an ideal way to ensure that your beans are configured
correctly. By using this mechanism, you can take full advantage of the benefits of IoC without losing any of
the control you get from manually defining dependencies. The only constraint on your initialization method
is that it cannot accept any arguments. You can define any return type, although it is ignored by Spring, and
you can even use a static method, but the method must accept no arguments.

The benefits of this mechanism are negated when using a static initialization method, because you
cannot access any of the bean’s state to validate it. If your bean is using static state as a mechanism for saving
memory and you are using a static initialization method to validate this state, then you should consider
moving the static state to instance state and using a nonstatic initialization method. If you use Spring’s
singleton management capabilities, the end effect is the same, but you have a bean that is much simpler to
test, and you also have the increased effect of being able to create multiple instances of the bean with their
own state when necessary. Of course, in some instances, you need to use static state shared across multiple
instances of a bean, in which case you can always use a static initialization method.

Implementing the InitializingBean Interface
The InitializingBean interface defined in Spring allows you to define inside your bean code that you
want the bean to receive notification that Spring has finished configuring it. In the same way as when you
are using an initialization method, this gives you the opportunity to check the bean configuration to ensure
that it is valid, providing any default values along the way. The InitializingBean interface defines a single
method, afterPropertiesSet(), that serves the same purpose as the init() method introduced in the
previous section. The following code snippet shows a reimplementation of the previous example using the
InitializingBean interface in place of the initialization method:

package com.apress.prospring5.ch4;

import org.springframework.beans.factory.BeanCreationException;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class SingerWithInterface implements InitializingBean {
 private static final String DEFAULT_NAME = "Eric Clapton";

 private String name;
 private int age = Integer.MIN_VALUE;

 public void setName(String name) {
 this.name = name;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public void afterPropertiesSet() throws Exception {
 System.out.println("Initializing bean");

 if (name == null) {
 System.out.println("Using default name");
 name = DEFAULT_NAME;
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

133

 if (age == Integer.MIN_VALUE) {
 throw new IllegalArgumentException(
 "You must set the age property of any beans of type "
 + SingerWithInterface.class);
 }
 }

 public String toString() {
 return "\tName: " + name + "\n\tAge: " + age;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 getBean("singerOne", ctx);
 getBean("singerTwo", ctx);
 getBean("singerThree", ctx);

 ctx.close();
 }

 private static SingerWithInterface getBean(String beanName,
 ApplicationContext ctx) {
 try {
 SingerWithInterface bean =
 (SingerWithInterface) ctx.getBean(beanName);
 System.out.println(bean);
 return bean;
 } catch (BeanCreationException ex) {
 System.out.println("An error occured in bean configuration: "
 + ex.getMessage());
 return null;
 }
 }
}

As you can see, not much in this example has changed. Aside from the obvious class name change, the
only differences are that this class implements InitializingBean and that the initialization logic has moved
into the afterPropertiesSet() method. In the following snippet, you can see the configuration for this
example (app-context- xml.xml):

<beans ... default-lazy-init="true">

 <bean id="singerOne"
 class="com.apress.prospring5.ch4.SingerWithInterface"
 p:name="John Mayer" p:age="39"/>

 <bean id="singerTwo"
 class="com.apress.prospring5.ch4.SingerWithInterface"
 p:age="72"/>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

134

 <bean id="singerThree"
 class="com.apress.prospring5.ch4.SingerWithInterface"
 p:name="John Butler"/>
</beans>

Again, there’s not much difference between the configuration code introduced here and the
configuration code in the previous section. The noticeable difference is the omission of the init-method
attribute. Because the SimpleBeanWithInterface class implements the InitializingBean interface,
Spring knows which method to call as the initialization callback, thus removing the need for any additional
configuration. The output from this example is shown here:

Initializing bean
 Name: John Mayer
 Age: 39
Initializing bean
Using default name
 Name: Eric Clapton
 Age: 72
Initializing bean
An error occured in bean configuration: Error creating bean with name 'singerThree'
 defined in class path resource spring/app-context-xml.xml: Invocation of
 init method failed; nested exception is java.lang.IllegalArgumentException:
 You must set the age property of any beans of type class
 com.apress.prospring5.ch4.SingerWithInterface

Using the JSR-250 @PostConstruct Annotation
Another method that can achieve the same purpose is to use the JSR-250 life-cycle annotation,
@PostConstruct. Starting from Spring 2.5, JSR-250 annotations are also supported to specify the method
that Spring should call if the corresponding annotation relating to the bean’s life cycle exists in the class.
The following code sample shows the program with the @PostConstruct annotation applied:

package com.apress.prospring5.ch4;

import javax.annotation.PostConstruct;
import org.springframework.beans.factory.BeanCreationException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class SingerWithJSR250 {
 private static final String DEFAULT_NAME = "Eric Clapton";

 private String name;
 private int age = Integer.MIN_VALUE;

 public void setName(String name) {
 this.name = name;
 }

 public void setAge(int age) {
 this.age = age;
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

135

 @PostConstruct
 public void init() throws Exception {
 System.out.println("Initializing bean");

 if (name == null) {
 System.out.println("Using default name");
 name = DEFAULT_NAME;
 }

 if (age == Integer.MIN_VALUE) {
 throw new IllegalArgumentException(
 "You must set the age property of any beans of type " +
 SingerWithJSR250.class);
 }
 }

 public String toString() {
 return "\tName: " + name + "\n\tAge: " + age;
 }

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();

 getBean("singerOne", ctx);
 getBean("singerTwo", ctx);
 getBean("singerThree", ctx);

 ctx.close();
 }

 public static SingerWithJSR250 getBean(String beanName,
 ApplicationContext ctx) {
 try {
 SingerWithJSR250 bean =
 (SingerWithJSR250) ctx.getBean(beanName);
 System.out.println(bean);
 return bean;
 } catch (BeanCreationException ex) {
 System.out.println("An error occured in bean configuration: "
 + ex.getMessage());
 return null;
 }
 }
}

The program is the same as using the init-method approach; just apply the @PostConstruct annotation
before the init() method. Note that you can assign any name to the method. In terms of configuration,
since we are using annotations, we need to add the <context:annotation-driven> tag from the context
namespace into the configuration file.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

136

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd"
 default-lazy-init="true">

 <context:annotation-config/>
 <bean id="singerOne"
 class="com.apress.prospring5.ch4.SingerWithJSR250"
 p:name="John Mayer" p:age="39"/>

 <bean id="singerTwo"
 class="com.apress.prospring5.ch4.SingerWithJSR250"
 p:age="72"/>

 <bean id="singerThree"
 class="com.apress.prospring5.ch4.SingerWithJSR250"
 p:name="John Butler"/>
</beans>

Run the program and you will see the same output as other mechanisms.

Initializing bean
 Name: John Mayer
 Age: 39
Initializing bean
Using default name
 Name: Eric Clapton
 Age: 72
Initializing bean
An error occurred in bean configuration: Error creating bean with name 'singerThree':
 Invocation of init method failed; nested exception is
 java.lang.IllegalArgumentException: You must set the age property of any beans
 of type class com.apress.prospring5.ch4.SingerWithJSR250

All three approaches have their benefits and drawbacks. Using an initialization method, you have the
benefit of keeping your application decoupled from Spring, but you have to remember to configure the
initialization method for every bean that needs it. Using the InitializingBean interface, you have the
benefit of being able to specify the initialization callback once for all instances of your bean class, but you
have to couple your application to do so. Using annotations, you need to apply the annotation to the method
and make sure that the IoC container supports JSR-250. In the end, you should let the requirements of your
application drive the decision about which approach to use. If portability is an issue, use the initialization or
annotation method; otherwise, use the InitializingBean interface to reduce the amount of configuration
your application needs and the chance of errors creeping into your application because of misconfiguration.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

137

  When configuring initialization with init-method or @PostConstruct, there is the advantage of
declaring the initialization method with a different access right. Initialization methods should be called only
once by the Spring IoC, at bean creation time. Subsequent calls will lead to unexpected results or even failures.
External additional calls can be prohibited by making the initialization method private. The Spring IoC will be
able to call it via reflection, but any additional calls in the code won’t be permitted.

Declaring an Initialization Method Using @Bean
Another way to declare the initialization method for a bean is to specify the initMethod attribute for the
@Bean annotation and set the initialization method name as its value. This annotation is used to declare
beans in Java configuration classes. Although Java configuration is covered a bit later in this chapter,
the bean initialization part belongs here. For this example, the initial Singer class is used because the
configuration is external, just like using the init-method attribute. We’ll just write a configuration class and a
new main() method to test it. Also, default-lazy-init="true" will be replaced by the @Lazy annotation on
each bean declaration.

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.Singer;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Lazy;
import org.springframework.context.support.GenericApplicationContext;

import static com.apress.prospring5.ch4.Singer.getBean;

public class SingerConfigDemo {

 @Configuration
 static class SingerConfig{

 @Lazy
 @Bean(initMethod = "init")
 Singer singerOne() {
 Singer singerOne = new Singer();
 singerOne.setName("John Mayer");
 singerOne.setAge(39);
 return singerOne;
 }

 @Lazy
 @Bean(initMethod = "init")
 Singer singerTwo() {
 Singer singerTwo = new Singer();
 singerTwo.setAge(72);
 return singerTwo;
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

138

 @Lazy
 @Bean(initMethod = "init")
 Singer singerThree() {
 Singer singerThree = new Singer();
 singerThree.setName("John Butler");
 return singerThree;
 }
 }

 public static void main(String args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(SingerConfig.class);

 getBean("singerOne", ctx);
 getBean("singerTwo", ctx);
 getBean("singerThree", ctx);

 ctx.close();
 }

}

Running this code will produce the same result observed so far, shown here:

Initializing bean
 Name: John Mayer
 Age: 39
Initializing bean
Using default name
 Name: Eric Clapton
 Age: 72
Initializing bean
An error occurred in bean configuration: Error creating bean with name 'singerThree'
 defined in com.apress.prospring5.ch4.config.SingerConfigDemo$SingerConfig:
 Invocation of init method failed; nested exception is
 java.lang.IllegalArgumentException: You must set the age property of any beans
 of type class com.apress.prospring5.ch4.Singer

Understanding Order of Resolution
All initialization mechanisms can be used on the same bean instance. In this case, Spring invokes the
method annotated with @PostConstruct first and then afterPropertiesSet(), followed by the initialization
method specified in the configuration file. There is a technical reason for this order, and by following the
path in Figure 4-1, we can notice the following steps in the bean creation process:

	 1.	 The constructor is called first to create the bean.

	 2.	 The dependencies are injected (setters are called).

	 3.	 Now that the beans exist and the dependencies were provided, the pre-
initialization BeanPostProcessor infrastructure beans are consulted
to see whether they want to call anything from this bean. These are
Spring-specific infrastructure beans that perform bean modifications
after they are created. The @PostConstruct annotation is registered by

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

139

CommonAnnotationBeanPostProcessor, so this bean will call the method found
annotated with @PostConstruct. This method is executed right after the bean
has been constructed and before the class is put into service,1 before the actual
initialization of the bean (before afterPropertiesSet and init-method).

	 4.	 The InitializingBean’s afterPropertiesSet is executed right after the
dependencies are injected. The afterPropertiesSet() method is invoked by
a BeanFactory after it has set all the bean properties supplied and has satisfied
BeanFactoryAware and ApplicationContextAware.

	 5.	 The init-method attribute is executed last because this is the actual initialization
method of the bean.

Understanding the order of different types of bean initialization can be useful if you have an existing
bean that performs some initialization in a specific method but you need to add some more initialization
code when you use Spring.

Hooking into Bean Destruction
When using an ApplicationContext implementation that wraps the DefaultListableBeanFactory interface
(such as GenericXmlApplicationContext, via the getDefaultListableBeanFactory() method), you can
signal to BeanFactory that you want to destroy all singleton instances with a call to ConfigurableBeanFactory.
destroySingletons(). Typically, you do this when your application shuts down, and it allows you to clean up
any resources that your beans might be holding open, thus allowing your application to shut down gracefully.
This callback also provides the perfect place to flush any data you are storing in memory to persistent storage
and to allow your beans to end any long-running processes they may have started.

To allow your beans to receive notification that destroySingletons() has been called, you have three
options, all similar to the mechanisms available for receiving an initialization callback. The destruction
callback is often used in conjunction with the initialization callback. In many cases, you create and configure
a resource in the initialization callback and then release the resource in the destruction callback.

Executing a Method When a Bean Is Destroyed
To designate a method to be called when a bean is destroyed, you simply specify the name of the method
in the destroy-method attribute of the bean’s <bean> tag. Spring calls it just before it destroys the singleton
instance of the bean (Spring will not call this method for those beans with prototype scope). The following
code snippet provides an example of using a destroy-method callback:

package com.apress.prospring5.ch4;

import java.io.File;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBean implements InitializingBean {
 private File file;
 private String filePath;

 public void afterPropertiesSet() throws Exception {
 System.out.println("Initializing Bean");

1Check out this snippet from JEE official Javadoc: http://docs.oracle.com/javaee/7/api/javax/annotation/
PostConstruct.html.

http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

140

 if (filePath == null) {
 throw new IllegalArgumentException(
 "You must specify the filePath property of"
 + DestructiveBean.class);
 }

 this.file = new File(filePath);
 this.file.createNewFile();

 System.out.println("File exists: " + file.exists());
 }

 public void destroy() {
 System.out.println("Destroying Bean");

 if(!file.delete()) {
 System.err.println("ERROR: failed to delete file.");
 }

 System.out.println("File exists: " + file.exists());
 }

 public void setFilePath(String filePath) {
 this.filePath = filePath;
 }

 public static void main(String... args) throws Exception {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 DestructiveBean bean = (DestructiveBean) ctx.getBean("destructiveBean");

 System.out.println("Calling destroy()");
 ctx.destroy();
 System.out.println("Called destroy()");
 }
}

This code defines a destroy() method, in which the file that was created gets deleted. The main() method
retrieves a bean of type DestructiveBean from GenericXmlApplicationContext and then invokes its destroy()
method (which will, in turn, invoke the ConfigurableBeanFactory.destroySingletons() that was wrapped by
the ApplicationContext), instructing Spring to destroy all the singletons managed by it. Both the initialization
and destruction callbacks write a message to console output informing us that they have been called. In the
following snippet, you can see the configuration for the destructiveBean bean (app-context-xml.xml):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

141

 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="destructiveBean"
 class="com.apress.prospring5.ch4.DestructiveBean"
 destroy-method="destroy"
 p:filePath=
 "#{systemProperties'java.io.tmpdir'}#{systemProperties'file.separator'}test.txt"/>
</beans>

Notice that we have specified the destroy() method as the destruction callback by using the destroy-
method attribute. The filePath attribute value is built by using an SpEL expression, concatenating the system
properties java.io.tmpdir and file.separator before the file name test.txt to ensure cross-platform
compatibility. Running this example yields the following output:

Initializing Bean
File exists: true
Calling destroy()
Destroying Bean
File exists: false
Called destroy()

As you can see, Spring first invokes the initialization callback, and the DestructiveBean instance creates
the File instance and stores it. Next, during the call to destroy(), Spring iterates over the set of singletons it
is managing, in this case just one, and invokes any destruction callbacks that are specified. This is where the
DestructiveBean instance deletes the created file and logs messages to the screen indicating it no longer exists.

Implementing the DisposableBean Interface
As with initialization callbacks, Spring provides an interface, in this case DisposableBean, that can be
implemented by your beans as a mechanism for receiving destruction callbacks. The DisposableBean
interface defines a single method, destroy(), which is called just before the bean is destroyed. Using this
mechanism is orthogonal to using the InitializingBean interface to receive initialization callbacks. The
following code snippet shows a modified implementation of the DestructiveBean class that implements the
DisposableBean interface:

package com.apress.prospring5.ch4;

import java.io.File;
import org.springframework.beans.factory.DisposableBean;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBeanWithInterface implements InitializingBean, DisposableBean {
 private File file;
 private String filePath;

 @Override
 public void afterPropertiesSet() throws Exception {
 System.out.println("Initializing Bean");

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

142

 if (filePath == null) {
 throw new IllegalArgumentException(
 "You must specify the filePath property of " +
 DestructiveBeanWithInterface.class);
 }

 this.file = new File(filePath);
 this.file.createNewFile();

 System.out.println("File exists: " + file.exists());
 }

 @Override
 public void destroy() {
 System.out.println("Destroying Bean");

 if(!file.delete()) {
 System.err.println("ERROR: failed to delete file.");
 }

 System.out.println("File exists: " + file.exists());
 }
 public void setFilePath(String filePath) {
 this.filePath = filePath;
 }

 public static void main(String... args) throws Exception {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 DestructiveBeanWithInterface bean =
 (DestructiveBeanWithInterface) ctx.getBean("destructiveBean");

 System.out.println("Calling destroy()");
 ctx.destroy();
 System.out.println("Called destroy()");
 }
}

There is not much difference between the code that uses the callback method mechanism and the
code that uses the callback interface mechanism. In this case, we even used the same method names.
The configuration for this example is depicted here (app-context-xml.xml):

<beans ...>

 <bean id="destructiveBean"
 class="com.apress.prospring5.ch4.DestructiveBeanWithInterface"
 p:filePath=
 "#{systemProperties'java.io.tmpdir'}#{systemProperties'file.separator'}test.txt"/>
</beans>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

143

Aside from the different class name, the only difference is the omission of the destroy-method attribute.
Running this example yields the following output:

Initializing Bean
File exists: true
Calling destroy()
Destroying Bean
File exists: false
Called destroy()

Using the JSR-250 @PreDestroy Annotation
The third way to define a method to be called before a bean is destroyed is to use the JSR-250 life-cycle
@PreDestroy annotation, which is the inverse of the @PostConstruct annotation. The following code snippet
is a version of DestructiveBean that uses both @PostConstruct and @PreDestroy in the same class to
perform program initialization and destroy actions:

package com.apress.prospring5.ch4;

import java.io.File;
import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBeanWithJSR250 {
 private File file;
 private String filePath;

 @PostConstruct
 public void afterPropertiesSet() throws Exception {
 System.out.println("Initializing Bean");

 if (filePath == null) {
 throw new IllegalArgumentException(
 "You must specify the filePath property of " +
 DestructiveBeanWithJSR250.class);
 }

 this.file = new File(filePath);
 this.file.createNewFile();

 System.out.println("File exists: " + file.exists());
 }

 @PreDestroy
 public void destroy() {
 System.out.println("Destroying Bean");

 if(!file.delete()) {
 System.err.println("ERROR: failed to delete file.");
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

144

 System.out.println("File exists: " + file.exists());
 }

 public void setFilePath(String filePath) {
 this.filePath = filePath;
 }

 public static void main(String... args) throws Exception {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();
 DestructiveBeanWithJSR250 bean =
 (DestructiveBeanWithJSR250) ctx.getBean("destructiveBean");

 System.out.println("Calling destroy()");
 ctx.destroy();
 System.out.println("Called destroy()");
 }
}

In the following snippet, you can see the configuration file for this bean, which makes use of the
<context:annotation-config> tag (app-context-annotation.xml).

<beans ...>

 <context:annotation-config/>

 <bean id="destructiveBean"
 class="com.apress.prospring5.ch4.DestructiveBeanWithJSR250"
 p:filePath=
 "#{systemProperties'java.io.tmpdir'}#{systemProperties'file.separator'}test.txt"/>
</beans>

Declaring a Destroy Method Using @Bean
Another way to declare the destroy method for a bean is to specify the destroyMethod attribute for the
@Bean annotation and set the destroy method name as its value. This annotation is used to declare beans
in Java configuration classes. Although Java configuration is covered a bit later in this chapter, the bean
destruction part belongs here. For this example, the initial DestructiveBeanWithJSR250 class is used, as
the configuration is external, just like using the destroy-method attribute. We’ll just write a configuration
class and a new main() method to test it. Also, default-lazy-init="true" will be replaced by the @Lazy
annotation on each bean declaration.

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.DestructiveBeanWithJSR250;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

145

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Lazy;
import org.springframework.context.support.GenericApplicationContext;

/**
 * Created by iuliana.cosmina on 2/27/17.
 */
public class DestructiveBeanConfigDemo {

 @Configuration
 static class DestructiveBeanConfig {

 @Lazy
 @Bean(initMethod = "afterPropertiesSet", destroyMethod = "destroy")
 DestructiveBeanWithJSR250 destructiveBean() {
 DestructiveBeanWithJSR250 destructiveBean =
 new DestructiveBeanWithJSR250();
 destructiveBean.setFilePath(System.getProperty("java.io.tmpdir") +
 System.getProperty("file.separator") + "test.txt");
 return destructiveBean;
 }

 }

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(DestructiveBeanConfig.class);

 ctx.getBean(DestructiveBeanWithJSR250.class);
 System.out.println("Calling destroy()");
 ctx.destroy();
 System.out.println("Called destroy()");
 }
}

The @PostConstruct annotation is used as well in the bean configuration; thus, running this code will
produce the same result observed so far.

Initializing Bean
File exists: true
Calling destroy()
Destroying Bean
File exists: false
Called destroy()

The destruction callback is an ideal mechanism for ensuring that your applications shut down
gracefully and do not leave resources open or in an inconsistent state. However, you still have to decide
whether to use the destruction method callback, the DisposableBean interface, the @PreDestroy annotation,
the XML destroy-attribute attribute, or the destroyMethod. Again, let the requirements of your
application drive your decision in this respect; use the method callback where portability is an issue, and use
the DisposableBean interface or a JSR-250 annotation to reduce the amount of configuration required.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

146

Understanding Order of Resolution
As with the case of bean creation, you can use all mechanisms on the same bean instance for bean
destruction. In this case, Spring invokes the method annotated with @PreDestroy first and then
DisposableBean.destroy(), followed by your destroy method configured in your XML definition.

Using a Shutdown Hook
The only drawback of the destruction callbacks in Spring is that they are not fired automatically; you need
to remember to call AbstractApplicationContext.destroy() before your application is closed. When
your application runs as a servlet, you can simply call destroy() in the servlet’s destroy() method.
However, in a stand-alone application, things are not quite so simple, especially if you have multiple
exit points out of your application. Fortunately, there is a solution. Java allows you to create a shutdown
hook, which is a thread that is executed just before the application shuts down. This is the perfect way to
invoke the destroy() method of your AbstractApplicationContext (which was being extended by all
concrete ApplicationContext implementations). The easiest way to take advantage of this mechanism
is to use AbstractApplicationContext’s registerShutdownHook() method. The method automatically
instructs Spring to register a shutdown hook of the underlying JVM runtime. The bean declaration and
configuration stay the same as before; the only thing that changes is the main method: the call of ctx.
registerShutdownHook is added, and calls to ctx.destroy() or close() will be removed.

...
public class DestructiveBeanWithHook {

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(
 DestructiveBeanConfig.class);

 ctx.getBean(DestructiveBeanWithJSR250.class);
 ctx.registerShutdownHook();
 }
}

Running this code will produce the same result observed so far.

Initializing Bean
File exists: true
Destroying Bean
File exists: false

As you can see, the destroy() method is invoked, even though we didn’t write any code to invoke it
explicitly as the application was shutting down.

Making Your Beans “Spring Aware”
One of the biggest selling points of dependency injection over dependency lookup as a mechanism for
achieving inversion of control is that your beans do not need to be aware of the implementation of the
container that is managing them. To a bean that uses constructor or setter injection, the Spring container is
the same as the container provided by Google Guice or PicoContainer. However, in certain circumstances,

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

147

you may need a bean that is using dependency injection to obtain its dependencies so it can interact with
the container for some other reason. An example of this may be a bean that automatically configures a
shutdown hook for you, and thus it needs access to ApplicationContext. In other cases, a bean may want to
know what its name is (that is, the bean name that was assigned within the current ApplicationContext) so
it can perform some additional processing based on this name.

That said, this feature is really intended for internal Spring use. Giving the bean name some kind of
business meaning is generally a bad idea and can lead to configuration problems as bean names have to
be artificially manipulated to support their business meaning. However, we have found that being able to
have a bean find out its name at runtime is really useful for logging. Say you have many beans of the same
type running under different configurations. The bean name can be included in log messages to help you
differentiate between the one that is generating errors and the ones that are working fine when something
goes wrong.

Using the BeanNameAware Interface
The BeanNameAware interface, which can be implemented by a bean that wants to obtain its own name,
has a single method: setBeanName(String). Spring calls the setBeanName() method after it has finished
configuring your bean but before any life-cycle callbacks (initialization or destroy) are called (refer to
Figure 4-1). In most cases, the implementation of the setBeanName() interface is just a single line that
stores the value passed in by the container in a field for use later. The following code snippet shows a
simple bean that obtains its name by using BeanNameAware and then later uses this bean name to print
to the console:

package com.apress.prospring5.ch4;

import org.springframework.beans.factory.BeanNameAware;

public class NamedSinger implements BeanNameAware {
 private String name;

 /** @Implements {@link BeanNameAware#setBeanName(String)} */
 public void setBeanName(String beanName) {
 this.name = beanName;
 }

 public void sing() {
 System.out.println("Singer " + name + " - sing()");
 }
}

This implementation is fairly trivial. Remember that BeanNameAware.setBeanName() is called before
the first instance of the bean is returned to your application via a call to ApplicationContext.getBean(),
so there is no need to check whether the bean name is available in the sing() method. Here you can see the
configuration contained in the app-context-xml.xml file used in this example:

<beans ...>
 <bean id="johnMayer"
 class="com.apress.prospring5.ch4.NamedSinger"/>
</beans>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

148

As you can see, no special configuration is required to take advantage of the BeanNameAware interface.
In the following code snippet, you can see a simple example application that retrieves the Singer instance
from ApplicationContext and then calls the sing() method:

package com.apress.prospring5.ch4;

import org.springframework.context.support.GenericXmlApplicationContext;

public class NamedSingerDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 NamedSinger bean = (NamedSinger) ctx.getBean("johnMayer");
 bean.sing();

 ctx.close();
 }
}

This example generates the following log output; notice the inclusion of the bean name in the log
message for the call to sing():

Singer johnMayer - sing()

Using the BeanNameAware interface is really quite simple, and it is put to good use when you are
improving the quality of your log messages. Avoid being tempted to give your bean names business meaning
just because you can access them; by doing so, you are coupling your classes to Spring for a feature that
brings negligible benefit. If your beans need some kind of name internally, have them implement an
interface such as Nameable (which is specific to your application) with a method setName() and then
give each bean a name by using dependency injection. This way, you can keep the names you use for
configuration concise, and you won’t need to manipulate your configuration unnecessarily to give your
beans names with business meaning.

Using the ApplicationContextAware Interface
ApplicationContextAware was introduced at the end of Chapter 3 to show how Spring can be used to deal
with beans that require other beans to function that are not injected using constructors or setters in the
configuration (the depends-on example).

Using the ApplicationContextAware interface, it is possible for your beans to get a reference to the
ApplicationContext instance that configured them. The main reason this interface was created is to allow a
bean to access Spring’s ApplicationContext in your application, for example, to acquire other Spring beans
programmatically, using getBean(). You should, however, avoid this practice and use dependency injection
to provide your beans with their collaborators. If you use the lookup-based getBean() approach to obtain
dependencies when you can use dependency injection, you are adding unnecessary complexity to your
beans and coupling them to the Spring Framework without good reason.

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

149

Of course, ApplicationContext isn’t used just to look up beans; it performs a great many other
tasks. As you saw previously, one of these tasks is to destroy all singletons, notifying each of them in
turn before doing so. In the previous section, you saw how to create a shutdown hook to ensure that
ApplicationContext is instructed to destroy all singletons before the application shuts down. By using the
ApplicationContextAware interface, you can build a bean that can be configured in ApplicationContext to
create and configure a shutdown hook bean automatically. The following configuration shows the code for
this bean:

package com.apress.prospring5.ch4;

import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.support.GenericApplicationContext;

public class ShutdownHookBean implements ApplicationContextAware {
 private ApplicationContext ctx;

 /** @Implements {@link ApplicationContextAware#s
 etApplicationContext(ApplicationContext)} }*/
 public void setApplicationContext(ApplicationContext ctx)
 throws BeansException {

 if (ctx instanceof GenericApplicationContext) {
 ((GenericApplicationContext) ctx).registerShutdownHook();
 }
 }
}

Most of this code should seem familiar to you by now. The ApplicationContextAware interface
defines a single method, setApplicationContext(ApplicationContext), that Spring calls to pass
your bean a reference to its ApplicationContext. In the previous code snippet, the ShutdownHookBean
class checks whether ApplicationContext is of type GenericApplicationContext, meaning
it supports the registerShutdownHook() method; if it does, it will register a shutdown hook to
ApplicationContext. The following configuration snippet shows how to configure this bean to work with
the DestructiveBeanWithInterface bean (app-context-annotation.xml):

<beans ...">

 <context:annotation-config/>

 <bean id="destructiveBean"
 class="com.apress.prospring5.ch4.DestructiveBeanWithInterface"
 p:filePath=
 "#{systemProperties'java.io.tmpdir'}#{systemProperties'file.separator'}test.txt"/>

 <bean id="shutdownHook"
 class="com.apress.prospring5.ch4.ShutdownHookBean"/>
</beans>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

150

Notice that no special configuration is required. The following code snippet shows a simple example
application that uses ShutdownHookBean to manage the destruction of singleton beans:

package com.apress.prospring5.ch4;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import java.io.File;
import org.springframework.context.support.GenericXmlApplicationContext;

public class DestructiveBeanWithInterface {
 private File file;
 private String filePath;

 @PostConstruct
 public void afterPropertiesSet() throws Exception {
 System.out.println("Initializing Bean");

 if (filePath == null) {
 throw new IllegalArgumentException(
 "You must specify the filePath property of " +
 DestructiveBeanWithInterface.class);
 }

 this.file = new File(filePath);
 this.file.createNewFile();

 System.out.println("File exists: " + file.exists());
 }

 @PreDestroy
 public void destroy() {
 System.out.println("Destroying Bean");

 if(!file.delete()) {
 System.err.println("ERROR: failed to delete file.");
 }

 System.out.println("File exists: " + file.exists());
 }

 public void setFilePath(String filePath) {
 this.filePath = filePath;
 }

 public static void main(String... args) throws Exception {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.registerShutdownHook();
 ctx.refresh();

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

151

 ctx.getBean("destructiveBean",
 DestructiveBeanWithInterface.class);
 }
}

This code should seem quite familiar to you. When Spring bootstraps ApplicationContext and
destructiveBean is defined in the configuration, Spring passes the reference of ApplicationContext to the
shutdownHook bean for registering the shutdown hook. Running this example yields the following output, as
expected:

Initializing Bean
File exists: true
Destroying Bean
File exists: false

As you can see, even though no calls to destroy() are in the main application, ShutdownHookBean is
registered as a shutdown hook, and it calls destroy() just before the application shuts down.

Use of FactoryBeans
One of the problems that you will face when using Spring is how to create and then inject dependencies
that cannot be created simply by using the new operator. To overcome this problem, Spring provides the
FactoryBean interface that acts as an adapter for objects that cannot be created and managed using the
standard Spring semantics. Typically, you use FactoryBeans to create beans that you cannot create by using
the new operator, such as those you access through static factory methods, although this is not always the
case. Simply put, a FactoryBean is a bean that acts as a factory for other beans. FactoryBeans are configured
within your ApplicationContext like any normal bean, but when Spring uses the FactoryBean interface to
satisfy a dependency or lookup request, it does not return FactoryBean; instead, it invokes the FactoryBean.
getObject() method and returns the result of that invocation.

FactoryBeans are used to great effect in Spring; the most noticeable uses are the creation of
transactional proxies, which we cover in Chapter 9, and the automatic retrieval of resources from a JNDI
context. However, FactoryBeans are useful not just for building the internals of Spring; you’ll find them really
useful when you build your own applications because they allow you to manage many more resources by
using IoC than would otherwise be available.

FactoryBean Example: The MessageDigestFactoryBean
Often the projects that we work on require some kind of cryptographic processing; typically, this
involves generating a message digest or hash of a user’s password to be stored in a database. In Java, the
MessageDigest class provides functionality for creating a digest of any arbitrary data. MessageDigest itself is
abstract, and you obtain concrete implementations by calling MessageDigest.getInstance() and passing
in the name of the digest algorithm you want to use. For instance, if we want to use the MD5 algorithm to
create a digest, we use the following code to create the MessageDigest instance:

MessageDigest md5 = MessageDigest.getInstance("MD5");

http://dx.doi.org/10.1007/978-1-4842-2808-1_9

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

152

If we want to use Spring to manage the creation of the MessageDigest object, the best we can do
without a FactoryBean is have a property, algorithmName, on your bean and then use an initialization
callback to call MessageDigest.getInstance(). Using a FactoryBean, we can encapsulate this logic inside a
bean. Then any beans that require a MessageDigest instance can simply declare a property, messageDigest,
and use the FactoryBean to obtain the instance. The following code snippet shows an implementation of
FactoryBean that does just this:

package com.apress.prospring5.ch4;

import java.security.MessageDigest;
import org.springframework.beans.factory.FactoryBean;
import org.springframework.beans.factory.InitializingBean;

public class MessageDigestFactoryBean implements
 FactoryBean<MessageDigest>, InitializingBean {
 private String algorithmName = "MD5";

 private MessageDigest messageDigest = null;

 public MessageDigest getObject() throws Exception {
 return messageDigest;
 }

 public Class<MessageDigest> getObjectType() {
 return MessageDigest.class;
 }

 public boolean isSingleton() {
 return true;
 }

 public void afterPropertiesSet() throws Exception {
 messageDigest = MessageDigest.getInstance(algorithmName);
 }

 public void setAlgorithmName(String algorithmName) {
 this.algorithmName = algorithmName;
 }
}

Spring calls the getObject() method to retrieve the object created by the FactoryBean. This is the actual
object that is passed to other beans that use the FactoryBean as a collaborator. In the code snippet, you can
see that MessageDigestFactoryBean passes a clone of the stored MessageDigest instance that is created in
the InitializingBean.afterPropertiesSet() callback.

The getObjectType() method allows you to tell Spring what type of object your FactoryBean will
return. This can be null if the return type is unknown in advance (for example, the FactoryBean creates
different types of objects depending on the configuration, which will be determined only after the
FactoryBean is initialized), but if you specify a type, Spring can use it for autowiring purposes. We return
MessageDigest as our type (in this case, a class, but try to return an interface type and have the FactoryBean
instantiate the concrete implementation class, unless necessary). The reason is that we do not know what
concrete type will be returned (not that it matters, because all beans will define their dependencies by using
MessageDigest anyway).

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

153

The isSingleton() property allows you to inform Spring whether the FactoryBean is managing a
singleton instance. Remember that by setting the singleton attribute of the FactoryBean’s <bean> tag, you
tell Spring about the singleton status of the FactoryBean itself, not the objects it is returning. Now let’s see
how the FactoryBean is employed in an application. In the following code snippet, you can see a simple
bean that maintains two MessageDigest instances and then displays the digests of a message passed to its
digest() method:

package com.apress.prospring5.ch4;

import java.security.MessageDigest;
public class MessageDigester {
 private MessageDigest digest1;
 private MessageDigest digest2;

 public void setDigest1(MessageDigest digest1) {
 this.digest1 = digest1;
 }

 public void setDigest2(MessageDigest digest2) {
 this.digest2 = digest2;
 }

 public void digest(String msg) {
 System.out.println("Using digest1");
 digest(msg, digest1);

 System.out.println("Using digest2");
 digest(msg, digest2);
 }

 private void digest(String msg, MessageDigest digest) {
 System.out.println("Using alogrithm: " + digest.getAlgorithm());
 digest.reset();
 byte[] bytes = msg.getBytes();
 byte[] out = digest.digest(bytes);
 System.out.println(out);
 }
}

The following configuration snippet shows an example configuration for two
MessageDigestFactoryBean classes, one for the SHA1 algorithm and the other using the default (MD5)
algorithm (app-context-xml.xml):

<beans ...>

 <bean id="shaDigest"
 class="com.apress.prospring5.ch4.MessageDigestFactoryBean"
 p:algorithmName="SHA1"/>

 <bean id="defaultDigest"
 class="com.apress.prospring5.ch4.MessageDigestFactoryBean"/>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

154

 <bean id="digester"
 class="com.apress.prospring5.ch4.MessageDigester"
 p:digest1-ref="shaDigest"
 p:digest2-ref="defaultDigest"/>
</beans>

As you can see, not only we have configured the two MessageDigestFactoryBean classes, but we have
also configured a MessageDigester, using the two MessageDigestFactoryBean classes, to provide values for
the digest1 and digest2 properties. For the defaultDigest bean, since the algorithmName property was
not specified, no injection will happen, and the default algorithm (MD5) that was coded in the class will be
used. In the following code sample, you see a basic example class that retrieves the MessageDigester bean
from the BeanFactory and creates the digest of a simple message:

package com.apress.prospring5.ch4;

import org.springframework.context.support.GenericXmlApplicationContext;

public class MessageDigestDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 MessageDigester digester = ctx.getBean("digester",
 MessageDigester.class);
 digester.digest("Hello World!");

 ctx.close();
 }
}

Running this example gives the following output:

Using digest1
Using alogrithm: SHA1
[B@130f889
Using digest2
Using alogrithm: MD5
[B@1188e820

As you can see, the MessageDigest bean is provided with two MessageDigest implementations, SHA1
and MD5, even though no MessageDigest beans are configured in the BeanFactory. This is the FactoryBean
at work.

FactoryBeans are the perfect solution when you are working with classes that cannot be created by
using the new operator. If you work with objects that are created by using a factory method and you want to
use these classes in a Spring application, create a FactoryBean to act as an adapter, allowing your classes to
take full advantage of Spring’s IoC capabilities.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

155

Using FactoryBeans is different when configuration via Java configuration is used, because in this
case there is a restriction from the compiler to set the property with the proper type; thus, the getObject()
method must be called explicitly. In the following code snippet, you can see an example of configuring the
same beans as in the previous example, but using Java configuration:

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.MessageDigestFactoryBean;
import com.apress.prospring5.ch4.MessageDigester;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.GenericApplicationContext;

public class MessageDigesterConfigDemo {
 @Configuration
 static class MessageDigesterConfig {

 @Bean
 public MessageDigestFactoryBean shaDigest() {
 MessageDigestFactoryBean factoryOne =
 new MessageDigestFactoryBean();
 factoryOne.setAlgorithmName("SHA1");
 return factoryOne;
 }

 @Bean
 public MessageDigestFactoryBean defaultDigest() {
 return new MessageDigestFactoryBean();
 }

 @Bean
 MessageDigester digester() throws Exception {
 MessageDigester messageDigester = new MessageDigester();
 messageDigester.setDigest1(shaDigest().getObject());
 messageDigester.setDigest2(defaultDigest().getObject());
 return messageDigester;
 }
 }

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(MessageDigesterConfig.class);

 MessageDigester digester = (MessageDigester) ctx.getBean("digester");
 digester.digest("Hello World!");
 ctx.close();
 }
}

If you run this class, the same output as before is printed.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

156

Accessing a FactoryBean Directly
Given that Spring automatically satisfies any references to a FactoryBean by the objects produced
by that FactoryBean, you may be wondering whether you can actually access the FactoryBean directly.
The answer is yes.

Accessing FactoryBean is simple: you prefix the bean name with an ampersand in the call to getBean(),
as shown in the following code sample:

package com.apress.prospring5.ch4;

import org.springframework.context.support.GenericXmlApplicationContext;

import java.security.MessageDigest;

public class AccessingFactoryBeans {

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();
 ctx.getBean("shaDigest", MessageDigest.class);

 MessageDigestFactoryBean factoryBean =
 (MessageDigestFactoryBean) ctx.getBean("&shaDigest");
 try {
 MessageDigest shaDigest = factoryBean.getObject();
 System.out.println(shaDigest.digest("Hello world".getBytes()));
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 ctx.close();
 }
}

Running this program generates the following output:

[B@130f889

This feature is used in a few places in the Spring code, but your application should really have no reason
to use it. The intention of FactoryBean is to be used as a piece of supporting infrastructure to allow you to
use more of your application’s classes in an IoC setting. Avoid accessing FactoryBean directly and invoking
its getObject() manually, and let Spring do it for you; if you do this manually, you are making extra work for
yourself and are unnecessarily coupling your application to a specific implementation detail that could quite
easily change in the future.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

157

Using the factory-bean and factory-method Attributes
Sometimes you need to instantiate JavaBeans that were provided by a non-Spring-powered third-party
application. You don’t know how to instantiate that class, but you know that the third-party application
provides a class that can be used to get an instance of the JavaBean that your Spring application needs.
In this case, Spring bean’s factory-bean and factory-method attributes in the <bean> tag can be used.

To take a look at how it works, the following code snippet shows another version of the
MessageDigestFactory that provides a method to return a MessageDigest bean:

package com.apress.prospring5.ch4;

import java.security.MessageDigest;

public class MessageDigestFactory {
 private String algorithmName = "MD5";

 public MessageDigest createInstance() throws Exception {
 return MessageDigest.getInstance(algorithmName);
 }

 public void setAlgorithmName(String algorithmName) {
 this.algorithmName = algorithmName;
 }
}

The following configuration snippet shows how to configure the factory method for getting the
corresponding MessageDigest bean instance (app-context-xml.xml):

<beans...>

 <bean id="shaDigestFactory"
 class="com.apress.prospring5.ch4.MessageDigestFactory"
 p:algorithmName="SHA1"/>

 <bean id="defaultDigestFactory"
 class="com.apress.prospring5.ch4.MessageDigestFactory"/>

 <bean id="shaDigest"
 factory-bean="shaDigestFactory"
 factory-method="createInstance">
 </bean>

 <bean id="defaultDigest"
 factory-bean="defaultDigestFactory"
 factory-method="createInstance"/>

 <bean id="digester"
 class="com.apress.prospring5.ch4.MessageDigester"
 p:digest1-ref="shaDigest"
 p:digest2-ref="defaultDigest"/>
</beans>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

158

Notice that two digest factory beans were defined, one using SHA1 and the other using the default
algorithm. Then for the beans shaDigest and defaultDigest, we instructed Spring to instantiate the beans
by using the corresponding message digest factory bean via the factory-bean attribute, and we specified
the method to use to obtain the bean instance via the factory-method attribute. The following code snippet
depicts the testing class:

package com.apress.prospring5.ch4;

import org.springframework.context.support.GenericXmlApplicationContext;

public class MessageDigestFactoryDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 MessageDigester digester = ctx.getBean("digester",
 MessageDigester.class);
 digester.digest("Hello World!");

 ctx.close();
 }
}

Running the program generates the following output:

Using digest1
Using alogrithm: SHA1
[B@77a57272
Using digest2
Using alogrithm: MD5
[B@7181ae3f

JavaBeans PropertyEditors
If you are not entirely familiar with JavaBeans concepts, a PropertyEditor is an interface that converts a
property’s value to and from its native type representation into a String. Originally, this was conceived as a
way to allow property values to be entered, as String values, into an editor and have them transformed into
the correct type. However, because PropertyEditors are inherently lightweight classes, they have found
uses in many settings, including Spring.

Because a good portion of property values in a Spring-based application start life in the BeanFactory
configuration file, they are essentially Strings. However, the property that these values are set on may not
be String-typed. So, to save you from having to create a load of String-typed properties artificially, Spring
allows you to define PropertyEditors to manage the conversion of String-based property values into the
correct types. Figure 4-2 shows the full list of PropertyEditors that are part of the spring-beans package;
you can see this list with any smart Java editor.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

159

They all extend java.beans.PropertyEditorSupport and can be used for implicit conversion of String
literals into property values to be injected in beans; thus, they are preregistered with BeanFactory.

Using the Built-in PropertyEditors
The following code snippet shows a simple bean that declares 14 properties, one for each of the types
supported by the built-in PropertyEditor implementations:

package com.apress.prospring5.ch4;

import java.io.File;
import java.io.InputStream;
import java.net.URL; import java.util.Date; import java.util.List; import java.util.Locale;
import java.util.Properties; import java.util.regex.Pattern; import java.text.
SimpleDateFormat;
import org.springframework.beans.PropertyEditorRegistrar;
import org.springframework.beans.PropertyEditorRegistry;

Figure 4-2.  Spring PropertyEditors

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

160

import org.springframework.beans.propertyeditors.CustomDateEditor;
import org.springframework.beans.propertyeditors.StringTrimmerEditor;

import org.springframework.context.support.GenericXmlApplicationContext;

public class PropertyEditorBean {

)

 private byte[] bytes; // ByteArrayPropertyEditor

)

 private Character character; //CharacterEditor
 private Class cls; // ClassEditor
 private Boolean trueOrFalse; // CustomBooleanEditor
 private List<String> stringList; // CustomCollectionEditor
 private Date date; // CustomDateEditor
 private Float floatValue; // CustomNumberEditor
 private File file; // FileEditor
 private InputStream stream; // InputStreamEditor
 private Locale locale; // LocaleEditor
 private Pattern pattern; // PatternEditor
 private Properties properties; // PropertiesEditor
 private String trimString; // StringTrimmerEditor
 private URL url; // URLEditor

 public void setCharacter(Character character) {
 System.out.println("Setting character: " + character);
 this.character = character;
 }

 public void setCls(Class cls) {
 System.out.println("Setting class: " + cls.getName());
 this.cls = cls;
 }

 public void setFile(File file) {
 System.out.println("Setting file: " + file.getName());
 this.file = file;
 }

 public void setLocale(Locale locale) {
 System.out.println("Setting locale: " + locale.getDisplayName());
 this.locale = locale;
 }

 public void setProperties(Properties properties) {
 System.out.println("Loaded " + properties.size() + " properties");
 this.properties = properties;
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

161

 public void setUrl(URL url) {
 System.out.println("Setting URL: " + url.toExternalForm());
 this.url = url;
 }

 public void setBytes(byte... bytes) {
 System.out.println("Setting bytes: " + Arrays.toString(bytes));
 this.bytes = bytes;
 }

 public void setTrueOrFalse(Boolean trueOrFalse) {
 System.out.println("Setting Boolean: " + trueOrFalse);
 this.trueOrFalse = trueOrFalse;
 }

 public void setStringList(List<String> stringList) {
 System.out.println("Setting string list with size: "
 + stringList.size());

 this.stringList = stringList;

 for (String string: stringList) {
 System.out.println("String member: " + string);
 }
 }

 public void setDate(Date date) {
 System.out.println("Setting date: " + date);
 this.date = date;
 }

 public void setFloatValue(Float floatValue) {
 System.out.println("Setting float value: " + floatValue);
 this.floatValue = floatValue;
 }

 public void setStream(InputStream stream) {
 System.out.println("Setting stream: " + stream);
 this.stream = stream;
 }

 public void setPattern(Pattern pattern) {
 System.out.println("Setting pattern: " + pattern);
 this.pattern = pattern;
 }

 public void setTrimString(String trimString) {
 System.out.println("Setting trim string: " + trimString);
 this.trimString = trimString;
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

162

 public static class CustomPropertyEditorRegistrar
 implements PropertyEditorRegistrar {
 @Override
 public void registerCustomEditors(PropertyEditorRegistry registry) {
 SimpleDateFormat dateFormatter = new SimpleDateFormat("MM/dd/yyyy");
 registry.registerCustomEditor(Date.class,
 new CustomDateEditor(dateFormatter, true));

 registry.registerCustomEditor(String.class, new StringTrimmerEditor(true));
 }
 }

 public static void main(String... args) throws Exception {
 File file = File.createTempFile("test", "txt");
 file.deleteOnExit();

 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-01.xml");
 ctx.refresh();

 PropertyEditorBean bean =
 (PropertyEditorBean) ctx.getBean("builtInSample");

 ctx.close();
 }
}

In the following configuration sample, you can see the configuration used to declare a bean of type
PropertyEditorBean with values being specified for all the previous properties (app-config-01.xml):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd">

 <bean id="customEditorConfigurer"
 class="org.springframework.beans.factory.config.CustomEditorConfigurer"
 p:propertyEditorRegistrars-ref="propertyEditorRegistrarsList"/>

 <util:list id="propertyEditorRegistrarsList">
 <bean class="com.apress.prospring5.ch4.PropertyEditorBean$
 CustomPropertyEditorRegistrar"/>
 </util:list>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

163

 <bean id="builtInSample"
 class="com.apress.prospring5.ch4.PropertyEditorBean"
 p:character="A"
 p:bytes="John Mayer"
 p:cls="java.lang.String"
 p:trueOrFalse="true"
 p:stringList-ref="stringList"
 p:stream="test.txt"
 p:floatValue="123.45678"
 p:date="05/03/13"
 p:file="#{systemProperties'java.io.tmpdir'}
 #{systemProperties'file.separator'}test.txt"
 p:locale="en_US"
 p:pattern="a*b"
 p:properties="name=Chris age=32"
 p:trimString=" String need trimming "
 p:url="https://spring.io/"
 />

 <util:list id="stringList">
 <value>String member 1</value>
 <value>String member 2</value>
 </util:list>
</beans>

As you can see, although all the properties on the PropertyEditorBean are not Strings, the values
for the properties are specified as simple Strings. Also note that we registered the CustomDateEditor
and StringTrimmerEditor, since those two editors were not registered by default in Spring. Running this
example yields the following output:

Setting bytes: [74, 111, 104, 110, 32, 77, 97, 121, 101, 114]
Setting character: A
Setting class: java.lang.String
Setting date: Wed May 03 00:00:00 EET 13
Setting file: test.txt
Setting float value: 123.45678
Setting locale: English (United States)
Setting pattern: a*b
Loaded 1 properties
Setting stream: java.io.BufferedInputStream@42e25b0b
Setting string list with size: 2
String member: String member 1
String member: String member 2
Setting trim string: String need trimming
Setting Boolean: true
Setting URL: https://spring.io/

As you can see, Spring has, using the built-in PropertyEditors, converted the String representations
of the various properties to the correct types. Table 4-1 lists the most important built-in PropertyEditors
available in Spring.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

164

This set of PropertyEditors provides a good base for working with Spring and makes configuring your
application with common components such as files and URLs much simpler.

Creating a Custom PropertyEditor
Although the built-in PropertyEditors cover some of the standard cases of property type conversion, there
may come a time when you need to create your own PropertyEditor to support a class or a set of classes
you are using in your application. Spring has full support for registering custom PropertyEditors; the
only downside is that the java.beans.PropertyEditor interface has a lot of methods, many of which are
irrelevant to the task at hand, which is converting property types. Thankfully, JDK 5 or newer provides the
PropertyEditorSupport class, which your own PropertyEditors can extend, leaving you to implement
only a single method: setAsText(). Let’s consider a simple example to see implementing a custom property
editor in action. Suppose we have a FullName class with just two properties, firstName and lastName,
defined as shown here:

Table 4-1.  Spring PropertyEditors

PropertyEditor Description

ByteArrayPropertyEditor Converts String values to their corresponding byte representations.

CharacterEditor Populates a property of type Character or char from a String value.

ClassEditor Converts from a fully qualified class name into a Class instance.
When using this PropertyEditor, be careful not to include
any extraneous spaces on either side of the class name when
using GenericXmlApplicationContext because this results in a
ClassNotFoundException.

CustomBooleanEditor Converts a string into a Java Boolean type.

CustomCollectionEditor Converts a source collection (e.g., represented by the util namespace in
Spring) into the target Collection type.

CustomDateEditor Converts a string representation of a date into a java.util.Date value.
You need to register the CustomDateEditor implementation in Spring’s
ApplicationContext with the desired date format.

FileEditor Converts a String file path into a File instance. Spring does not check
whether the file exists.

InputStreamEditor Converts a string representation of a resource (e.g., file resource using
file:D:/temp/test.txt or classpath:test.txt) into an input stream
property.

LocaleEditor Converts the String representation of a locale, such as en-GB, into a java.
util.Locale instance.

PatternEditor Converts a string into the JDK Pattern object or the other way around.

PropertiesEditor Converts a String in the format key1=value1 key2=value2 keyn=valuen
into an instance of java.util.Properties with the corresponding
properties configured.

StringTrimmerEditor Performs trimming on the string values before injection. You need to
explicitly register this editor.

URLEditor Converts a String representation of a URL into an instance of java.net.URL.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

165

package com.apress.prospring5.ch4.custom;

public class FullName {
 private String firstName;
 private String lastName;

 public FullName(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String toString() {
 return "First name: " + firstName + " - Last name: " + lastName;
 }
}

To simplify the application configuration, let’s develop a custom editor that converts a string with a
space separator into the FullName class’s first name and last name, respectively. The following code snippet
depicts the custom property editor implementation:

package com.apress.prospring5.ch4.custom;

import java.beans.PropertyEditorSupport;

public class NamePropertyEditor extends PropertyEditorSupport {
 @Override
 public void setAsText(String text) throws IllegalArgumentException {
 String[] name = text.split("\\s");

 setValue(new FullName(name[0], name[1]));
 }
}

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

166

The editor is simple. It extends JDK’s PropertyEditorSupport class and implements the setAsText()
method. In the method, we simply split the String into a string array with a space as the delimiter.
Afterward, an instance of the FullName class is instantiated, passing in the String before the space
character as the first name and passing the String after the space character as the last name. Finally, the
converted value is returned by calling the setValue() method with the result. To use NamePropertyEditor
in your application, we need to register the editor in Spring’s ApplicationContext. The following
configuration sample shows an ApplicationContext configuration of a CustomEditorConfigurer and the
NamePropertyEditor (app-context-02.xml):

<beans ...>

 <bean name="customEditorConfigurer"
 class="org.springframework.beans.factory.config.CustomEditorConfigurer">
 <property name="customEditors">
 <map>
 <entry key="com.apress.prospring5.ch4.custom.FullName"
 value="com.apress.prospring5.ch4.custom.NamePropertyEditor"/>
 </map>
 </property>
 </bean>

 <bean id="exampleBean"
 class="com.apress.prospring5.ch4.custom.CustomEditorExample"
 p:name="John Mayer"/>
</beans>

You should notice two things in this configuration. First, custom PropertyEditors get injected into the
CustomEditorConfigurer class by using the Map-typed customEditors property. Second, each entry in the
Map represents a single PropertyEditor, with the key of the entry being the name of the class for which the
PropertyEditor is used. As you can see, the key for NamePropertyEditor is com.apress.prospring4.ch4.
FullName, which signifies that this is the class for which the editor should be used. The following code snippet
shows the code for the CustomEditorExample class that is registered as a bean in the previous configuration:

package com.apress.prospring5.ch4.custom;

import org.springframework.context.support.GenericXmlApplicationContext;

public class CustomEditorExample {
 private FullName name;

 public FullName getName() {
 return name;
 }

 public void setName(FullName name) {
 this.name = name;
 }
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-02.xml");

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

167

 ctx.refresh();

 CustomEditorExample bean =
 (CustomEditorExample) ctx.getBean("exampleBean");

 System.out.println(bean.getName());

 ctx.close();
 }
}

The previous code is nothing special. Run the example, and you will see the following output:

First name: John - Last name: Mayer

This is the output from the toString() method we implemented in the FullName class, and you can
see that the first name and last name of the FullName object were correctly populated by Spring by using the
configured NamePropertyEditor. Starting from version 3, Spring introduced the Type Conversion API and
the Field Formatting Service Provider Interface (SPI), which provide a simpler and well-structured API to
perform type conversion and field formatting. It’s especially useful for web application development. Both
the Type Conversion API and the Field Formatting SPI are discussed in detail in Chapter 10.

More Spring ApplicationContext Configuration
So far, although we are discussing Spring’s ApplicationContext, most of the features that we have
covered mainly surround the BeanFactory interface wrapped by ApplicationContext. In Spring, various
implementations of the BeanFactory interface are responsible for bean instantiation, providing dependency
injection and life-cycle support for beans managed by Spring. However, as stated earlier, being an extension
of the BeanFactory interface, ApplicationContext provides other useful functionalities as well. The main
function of ApplicationContext is to provide a much richer framework on which to build your applications.
ApplicationContext is much more aware of the beans (compared to BeanFactory) that you configure within it,
and in the case of many of the Spring infrastructure classes and interfaces, such as BeanFactoryPostProcessor,
it interacts with them on your behalf, reducing the amount of code you need to write in order to use Spring.

The biggest benefit of using ApplicationContext is that it allows you to configure and manage Spring
and Spring-managed resources in a completely declarative way. This means that wherever possible, Spring
provides support classes to load ApplicationContext into your application automatically, thus removing
the need for you to write any code to access ApplicationContext. In practice, this feature is currently
available only when you are building web applications with Spring, which allows you to initialize Spring’s
ApplicationContext in the web application deployment descriptor. When using a stand-alone application,
you can also initialize Spring’s ApplicationContext by simple coding.

In addition to providing a model that is focused more on declarative configuration,
ApplicationContext supports the following features:

•	 Internationalization

•	 Event publication

•	 Resource management and access

•	 Additional life-cycle interfaces

•	 Improved automatic configuration of infrastructure components

In the following sections, we discuss some of the most important features in ApplicationContext
besides DI.

http://dx.doi.org/10.1007/978-1-4842-2808-1_10

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

168

Internationalization with the MessageSource
One area where Spring really excels is in support for internationalization (i18n). Using the MessageSource
interface, your application can access String resources, called messages, stored in a variety of languages.
For each language you want to support in your application, you maintain a list of messages that are keyed
to correspond to messages in other languages. For instance, if you wanted to display “The quick brown fox
jumped over the lazy dog” in English and in Czech, you would create two messages, both keyed as msg; the
one for English would read “The quick brown fox jumped over the lazy dog,” and the one for German would
read “Der schnelle braune Fuchs sprang über den faulen Hund.”

Although you don’t need to use ApplicationContext to use MessageSource, the ApplicationContext
interface extends MessageSource and provides special support for loading messages and for making them
available in your environment. The automatic loading of messages is available in any environment, but
automatic access is provided only in certain Spring-managed scenarios, such as when you are using Spring’s
MVC framework to build a web application. Although any class can implement ApplicationContextAware
and thus access the automatically loaded messages, we suggest a better solution later in this chapter, in the
section “Using MessageSource in Stand-Alone Applications.”

Before continuing, if you are unfamiliar with i18n support in Java, we suggest you at least check out the
Javadocs (http://download.java.net/jdk8/docs/api/index.html).

Internationalization with the MessageSource
Aside from ApplicationContext, Spring provides three MessageSource implementations.

•	 ResourceBundleMessageSource

•	 ReloadableResourceBundleMessageSource

•	 StaticMessageSource

The StaticMessageSource implementation should not be used in a production application because
you can’t configure it externally, and this is generally one of the main requirements when you are adding
i18n capabilities to your application.

ResourceBundleMessageSource loads messages by using a Java ResourceBundle. ReloadableResource
BundleMessageSource is essentially the same, except it supports scheduled reloading of the underlying
source files.

All three MessageSource implementations also implement another interface called
HierarchicalMessageSource, which allows for many MessageSource instances to be nested. This is key to
the way ApplicationContext works with MessageSource instances.

To take advantage of ApplicationContext’s support for MessageSource, you must define a bean in your
configuration of type MessageSource and with the name messageSource. ApplicationContext takes this
MessageSource and nests it within itself, allowing you to access the messages by using ApplicationContext.
This can be hard to visualize, so take a look at the following example. The following code sample shows a
simple application that accesses a set of messages for both the English and German locales:

package com.apress.prospring5.ch4;
import java.util.Locale;

import org.springframework.context.support.GenericXmlApplicationContext;

public class MessageSourceDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

http://download.java.net/jdk8/docs/api/index.html

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

169

 Locale english = Locale.ENGLISH;
 Locale german = new Locale("de", "DE");

 System.out.println(ctx.getMessage("msg", null, english));
 System.out.println(ctx.getMessage("msg", null, german));

 System.out.println(ctx.getMessage("nameMsg", new Object[]
 { "John", "Mayer" }, english));
 System.out.println(ctx.getMessage("nameMsg", new Object[]
 { "John", "Mayer" }, german));

 ctx.close();
 }
}

Don’t worry about the calls to getMessage() just yet; we will return to those shortly. For now, just know
that they retrieve a keyed message for the locale specified. In the following configuration snippet, you can
see the configuration used by this application (app-context-xml.xml):

<beans ...>

 <bean id="messageSource"
 class="org.springframework.context.support.ResourceBundleMessageSource"
 p:basenames-ref="basenames"/>

 <util:list id="basenames">
 <value>buttons</value>
 <value>labels</value>
 </util:list>
</beans>

Here we define a ResourceBundleMessageSource bean with the name messageSource as required
and configure it with a set of names to form the base of its file set. A Java ResourceBundle, which is used by
ResourceBundleMessageSource, works on a set of properties files that are identified by base names. When
looking for a message for a particular Locale, the ResourceBundle looks for a file that is named as a combination
of the base name and the locale name. For instance, if the base name is foo and we are looking for a message in
the en-GB (British English) locale, ResourceBundle looks for a file called foo_en_GB.properties.

For the previous example, the content of the properties files for English (labels_en.properties) and
German (labels_de_DE.properties) is shown here:

#labels_en.properties
msg=My stupid mouth has got me in trouble
nameMsg=My name is {0} {1}
#labels_de_DE.properties
msg=Mein dummer Mund hat mich in Schwierigkeiten gebracht
nameMsg=Mein Name ist {0} {1}

Now this example just raises even more questions. What do those calls to getMessage() mean? Why
did we use ApplicationContext.getMessage() rather than access the ResourceBundleMessageSource bean
directly? We’ll answer each of these questions in turn.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

170

Using the getMessage() Method
The MessageSource interface defines three overloads for the getMessage() method. These are described in
Table 4-2.

Why Use ApplicationContext As a MessageSource?
To answer this question, we need to jump a little ahead of ourselves and look at the web application support
in Spring. The answer, in general, is that you shouldn’t use ApplicationContext as a MessageSource
because doing so couples your bean to ApplicationContext unnecessarily (this is discussed in more detail
in the next section). You should use ApplicationContext when you are building a web application by using
Spring’s MVC framework.

The core interface in Spring MVC is Controller. Unlike frameworks such as Struts that require you to
implement your controllers by inheriting from a concrete class, Spring simply requires that you implement
the Controller interface (or annotate your controller class with the @Controller annotation). Having said
that, Spring provides a collection of useful base classes that you will use to implement your own controllers.
Each of these base classes is a subclass (directly or indirectly) of the ApplicationObjectSupport class,
which is a convenient superclass for any application objects that want to be aware of ApplicationContext.
Remember that in a web application setting, ApplicationContext is loaded automatically.

ApplicationObjectSupport accesses this ApplicationContext, wraps it in a MessageSourceAccessor
object, and makes that available to your controller via the protected getMessageSourceAccessor() method.
MessageSourceAccessor provides a wide array of convenient methods for working with MessageSource instances.
Provides a wide array of convenient methods for working with MessageSource instances. This form of auto-
injection is quite beneficial; it removes the need for all of your controllers to expose a MessageSource property.

Table 4-2.  Overloads for MessageSource.getMessage()

Method signature Description

getMessage
(String, Object[], Locale)

This is the standard getMessage() method. The String argument is
the key of the message corresponding to the key in the properties file.
In the previous code sample, the first call to getMessage() used msg as
the key, and this corresponded to the following entry in the properties
file for the en locale: msg=The quick brown fox jumped over the
lazy dog. The Object[] array argument is used for replacements
in the message. In the third call to getMessage(), we passed in an
array of two Strings. The message keyed as nameMsg was My name
is {0} {1}. The numbers in braces are placeholders, and each one
is replaced with the corresponding entry in the argument array. The
final argument, Locale, tells ResourceBundleMessageSource which
properties file to look in. Even though the first and second calls to
getMessage() in the example used the same key, they returned
different messages that correspond to the Locale setting that was
passed in to getMessage().

getMessage
(String, Object[], String,
Locale)

This overload works in the same way as getMessage(String,
Object[], Locale), other than the second String argument, which
allows we to pass in a default value in case a message for the supplied
key is not available for the supplied Locale.

getMessage
(MessageSourceResolvable,
Locale)

This overload is a special case. We discuss it in further detail in the
section “The MessageSourceResolvable Interface.”

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

171

However, this is not the best reason for using ApplicationContext as a MessageSource in your web
application. The main reason to use ApplicationContext rather than a manually defined MessageSource
bean is that Spring does, where possible, expose ApplicationContext, as a MessageSource, to the view
tier. This means when you are using Spring’s JSP tag library, the <spring:message> tag automatically reads
messages from ApplicationContext, and when you are using JSTL, the <fmt:message> tag does the same.

All of these benefits mean that it is better to use the MessageSource support in ApplicationContext
when you are building a web application, rather than manage an instance of MessageSource separately. This
is especially true when you consider that all you need to do to take advantage of this feature is to configure a
MessageSource bean with the name messageSource.

Using MessageSource in Stand-Alone Applications
When you are using MessageSource in stand-alone applications, where Spring offers no additional
support other than to nest the MessageSource bean automatically in ApplicationContext, it is best
to make the MessageSource available by using dependency injection. You can opt to make your bean
ApplicationContextAware, but doing so precludes its use in a BeanFactory context. Add to this that you
complicate testing without any discernible benefit, and it is clear that you should stick to using dependency
injection to access MessageSource objects in a stand-alone setting.

The MessageSourceResolvable Interface
You can use an object that implements MessageSourceResolvable in place of a key and a set of arguments
when you are looking up a message from a MessageSource. This interface is most widely used in the Spring
validation libraries to link Error objects to their internationalized error messages.

Application Events
Another feature of ApplicationContext not present in BeanFactory is the ability to publish and receive
events by using ApplicationContext as a broker. In this section, you will take a look at its usage.

Using Application Events
An event is a class derived from ApplicationEvent, which itself derives from java.util.EventObject. Any
bean can listen for events by implementing the ApplicationListener<T> interface; ApplicationContext
automatically registers any bean that implements this interface as a listener when it is configured. Events are
published using the ApplicationEventPublisher.publishEvent() method, so the publishing class must
have knowledge of ApplicationContext (which extends the ApplicationEventPublisher interface). In a
web application, this is simple because many of your classes are derived from Spring Framework classes
that allow access to ApplicationContext through a protected method. In a stand-alone application, you can
have your publishing bean implement ApplicationContextAware to enable it to publish events.

The following code sample shows an example of a basic event class:

package com.apress.prospring5.ch4;
import org.springframework.context.ApplicationEvent;

public class MessageEvent extends ApplicationEvent {
 private String msg;

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

172

 public MessageEvent(Object source, String msg) {
 super(source);
 this.msg = msg;
 }

 public String getMessage() {
 return msg;
 }
}

This code is quite basic; the only point of note is that ApplicationEvent has a single constructor that
accepts a reference to the source of the event. This is reflected in the constructor for MessageEvent. Here,
you can see the code for the listener:

package com.apress.prospring5.ch4;

import org.springframework.context.ApplicationListener;

public class MessageEventListener
 implements ApplicationListener<MessageEvent> {
 @Override
 public void onApplicationEvent(MessageEvent event) {
 MessageEvent msgEvt = (MessageEvent) event;
 System.out.println("Received: " + msgEvt.getMessage());
 }
}

The ApplicationListener interface defines a single method, onApplicationEvent, that is called
by Spring when an event is raised. MessageEventListener shows its interest only in events of type
MessageEvent (or its subclasses) by implementing the strongly typed ApplicationListener interface. If a
MessageEvent was received, it writes the message to stdout. Publishing events is simple; it is just a matter of
creating an instance of the event class and passing it to the ApplicationEventPublisher.publishEvent()
method, as shown here:

package com.apress.prospring5.ch4;

import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Publisher implements ApplicationContextAware {
 private ApplicationContext ctx;

 public void setApplicationContext(ApplicationContext applicationContext)
 throws BeansException {
 this.ctx = applicationContext;
 }

 public void publish(String message) {
 ctx.publishEvent(new MessageEvent(this, message));
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

173

 public static void main(String... args) {
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "classpath:spring/app-context-xml.xml");

 Publisher pub = (Publisher) ctx.getBean("publisher");
 pub.publish("I send an SOS to the world... ");
 pub.publish("... I hope that someone gets my...");
 pub.publish("... Message in a bottle");
 }
}

Here you can see that the Publisher class retrieves an instance of itself from ApplicationContext
and then, using the publish() method, publishes two MessageEvent instances to ApplicationContext.
The Publisher bean instance accesses the ApplicationContext instance by implementing
ApplicationContextAware. Here is the configuration for this example (app-context-xml.xml):

<beans ...>

 <bean id="publisher"
 class="com.apress.prospring5.ch4.Publisher"/>

 <bean id="messageEventListener"
 class="com.apress.prospring5.ch4.MessageEventListener"/>
</beans>

Notice that you do not need special configuration to register MessageEventListener with
ApplicationContext; it is picked up automatically by Spring. Running this example results in the following
output:

Received: I send an SOS to the world...
Received: ... I hope that someone gets my...
Received: ... Message in a bottle

Considerations for Event Usage
In many cases in an application, certain components need to be notified of certain events. Often you do this
by writing code to notify each component explicitly or by using a messaging technology such as JMS. The
drawback of writing code to notify each component in turn is that you are coupling those components to the
publisher, in many cases unnecessarily.

Consider a situation whereby you cache product details in your application to avoid trips to the
database. Another component allows product details to be modified and persisted to the database. To avoid
making the cache invalid, the update component explicitly notifies the cache that the user details have
changed. In this example, the update component is coupled to a component that, really, has nothing to do
with its business responsibility. A better solution would be to have the update component publish an event
every time a product’s details are modified and then have interested components, such as the cache, listen
for that event. This has the benefit of keeping the components decoupled, which makes it simple to remove
the cache if needed or to add another listener that is interested in knowing when a product’s details change.

Using JMS in this case would be overkill because the process of invalidating the product’s entry in the
cache is quick and is not business critical. The use of the Spring event infrastructure adds very little overhead
to your application.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

174

Typically, we use events for reactionary logic that executes quickly and is not part of the main
application logic. In the previous example, the invalidation of a product in cache happens in reaction to the
updating of product details, it executes quickly (or it should), and it is not part of the main function of the
application. For processes that are long running and form part of the main business logic, it is recommended
to use JMS or similar messaging systems such as RabbitMQ. The main benefits of using JMS are that it is
more suited to long-running processes, and as the system grows, you can, if necessary, factor the JMS-driven
processing of messages containing business information onto a separate machine.

Accessing Resources
Often an application needs to access a variety of resources in different forms. You might need to access some
configuration data stored in a file in the file system, some image data stored in a JAR file on the classpath, or
maybe some data on a server elsewhere. Spring provides a unified mechanism for accessing resources in a
protocol-independent way. This means your application can access a file resource in the same way, whether
it is stored in the file system, in the classpath, or on a remote server.

At the core of Spring’s resource support is the org.springframework.core.io.Resource interface. The
Resource interface defines ten self-explanatory methods: contentLength(), exists(), getDescription(),
getFile(), getFileName(), getURI(), getURL(), isOpen(), isReadable(), and lastModified(). In addition to
these ten methods, there is one that is not quite so self-explanatory: createRelative(). The createRelative()
method creates a new Resource instance by using a path that is relative to the instance on which it is invoked.
You can provide your own Resource implementations, although that is outside the scope of this chapter, but in
most cases, you use one of the built-in implementations for accessing a file (the FileSystemResource class),
a classpath (the ClassPathResource class), or URL resources (the UrlResource class). Internally, Spring uses
another interface, ResourceLoader, and the default implementation, DefaultResourceLoader, to locate and
create Resource instances. However, you generally won’t interact with DefaultResourceLoader, instead using
another ResourceLoader implementation, called ApplicationContext. Here is a sample application that
accesses three resources by using ApplicationContext:

package com.apress.prospring5.ch4;

import java.io.File;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
import org.springframework.core.io.Resource;

public class ResourceDemo {
 public static void main(String... args) throws Exception{
 ApplicationContext ctx = new ClassPathXmlApplicationContext();

 File file = File.createTempFile("test", "txt");
 file.deleteOnExit();

 Resource res1 = ctx.getResource("file://" + file.getPath());
 displayInfo(res1);

 Resource res2 = ctx.getResource("classpath:test.txt");
 displayInfo(res2);

 Resource res3 = ctx.getResource("http://www.google.com");
 displayInfo(res3);
 }

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

175

 private static void displayInfo(Resource res) throws Exception{
 System.out.println(res.getClass());
 System.out.println(res.getURL().getContent());
 System.out.println("");
 }
}

Notice that in each call to getResource(), we pass in a URI for each resource. You will recognize the
common file: and http: protocols that we pass in for res1 and res3. The classpath: protocol we use
for res2 is Spring-specific and indicates that ResourceLoader should look in the classpath for the resource.
Running this example results in the following output:

class org.springframework.core.io.UrlResource
java.io.BufferedInputStream@3567135c

class org.springframework.core.io.ClassPathResource
sun.net.www.content.text.PlainTextInputStream@90f6bfd

class org.springframework.core.io.UrlResource
sun.net.www.protocol.http.HttpURLConnection$HttpInputStream@735b5592

Notice that for both the file: and http: protocols, Spring returns a UrlResource instance. Spring
does include a FileSystemResource class, but the DefaultResourceLoader does not use this class at all.
It’s because Spring’s default resource-loading strategy treats the URL and file as the same type of resource
with difference protocols (file: and http:). If an instance of FileSystemResource is required, use
FileSystemResourceLoader. Once a Resource instance is obtained, you are free to access the contents as you
see fit, using getFile(), getInputStream(), or getURL(). In some cases, such as when you are using the http:
protocol, the call to getFile() results in a FileNotFoundException. For this reason, we recommend that you
use getInputStream() to access resource contents because it is likely to function for all possible resource types.

Configuration Using Java Classes
Besides XML and property file configuration, you can use Java classes to configure Spring’s
ApplicationContext. Code samples were introduced here and there, until now, to make you comfortable
with the annotations-style configuration. Spring JavaConfig used to be a separate project, but starting
with Spring 3.0, its major features for configuration using Java classes was merged into the core Spring
Framework. In this section, we show how to use Java classes to configure Spring’s ApplicationContext and
its equivalent when using XML configuration.

ApplicationContext Configuration in Java
Let’s see how Spring’s ApplicationContext can be configured by using Java classes; we’ll reference the same
example for message provider and renderer that we presented in Chapter 2 and Chapter 3. The following
code recaps the message provider interface and a configurable message provider:2

//chapter02/hello-world/src/main/java/com/apress/prospring5/
// ch2/decoupled/MessageProvider.java
package com.apress.prospring5.ch2.decoupled;

2The classes are not created again in the com.apress.prospring5.ch4 package, but projects where they are defined are
used as dependencies for the java-config project.

http://dx.doi.org/10.1007/978-1-4842-2808-1_2
http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

176

public interface MessageProvider {
 String getMessage();
}

//chapter03/constructor-injection/src/main/java/com/apress/prospring5/
// ch3/xml/ConfigurableMessageProvider.java
package com.apress.prospring5.ch3.xml;

import com.apress.prospring5.ch2.decoupled.MessageProvider;

public class ConfigurableMessageProvider implements MessageProvider {
 private String message = "Default message";

 public ConfigurableMessageProvider() {

 }

 public ConfigurableMessageProvider(String message) {
 this.message = message;
 }

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

The following code snippet shows the MessageRenderer interface and the StandardOutMessage
Renderer implementation:

//chapter02/hello-world/src/main/java/com/apress/prospring5/
// ch2/decoupled/MessageRenderer.java
package com.apress.prospring5.ch2.decoupled;

public interface MessageRenderer {
 void render();
 void setMessageProvider(MessageProvider provider);
 MessageProvider getMessageProvider();
}

//chapter02/hello-world/src/main/java/com/apress/prospring5/
// ch2/decoupled/StandardOutMessageRenderer.java
package com.apress.prospring5.ch2.decoupled;

public class StandardOutMessageRenderer
 implements MessageRenderer {

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

177

 private MessageProvider messageProvider;

 public StandardOutMessageRenderer(){
 System.out.println(" -->
 StandardOutMessageRenderer: constructor called");
 }
 @Override
 public void render() {
 if (messageProvider == null) {
 throw new RuntimeException(
 "You must set the property messageProvider of class:"
 + StandardOutMessageRenderer.class.getName());
 } System.out.println(messageProvider.getMessage());
 }

 @Override
 public void setMessageProvider(MessageProvider provider) {
 System.out.println(" -->
 StandardOutMessageRenderer: setting the provider");
 this.messageProvider = provider;
 }

 @Override
 public MessageProvider getMessageProvider() {
 return this.messageProvider;
 }
}

The following configuration snippet depicts the XML configuration (app-context-xml.xml):

<beans ...>

 <bean id="messageRenderer"
 class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
 p:messageProvider-ref="messageProvider"/>

 <bean id="messageProvider"
 class="com.apress.prospring5.ch3.xml.ConfigurableMessageProvider"
 c:message="This is a configurable message"/>
</beans>

The class to test this might look pretty familliar as well, as shown here:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class JavaConfigXMLExample {

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

178

 public static void main(String... args) {
 ApplicationContext ctx = new ClassPathXmlApplicationContext("
 classpath:spring/app-context-xml.xml");

 MessageRenderer renderer =
 ctx.getBean("messageRenderer", MessageRenderer.class);
 renderer.render();
 }
}

Running this program produces the following output:

--> StandardOutMessageRenderer: constructor called
--> StandardOutMessageRenderer: setting the provider
This is a configurable message

To get rid of the XML configuration, the app-context-xml.xml file must be replaced by a special class,
called a configuration class, that will be annotated with @Configuration. The @Configuration annotation is
used to inform Spring that this is a Java-based configuration file. This class will contain methods annotated
with @Bean definitions that represent the bean declarations. The @Bean annotation is used to declare a Spring
bean and the DI requirements. The @Bean annotation is equivalent to the <bean> tag, the method name is
equivalent to the id attribute within the <bean> tag, and when instantiating the MessageRender bean, setter
injection is achieved by calling the corresponding method to get the message provider, which is the same
as using the <ref> attribute in the XML configuration. These annotations and this type of configuration
were introduced in previous chapters to make you familiar with them, but they were not covered in detail
until now. The following code snippet depicts the AppConfig contents that are equivalent to the XML
configuration previously introduced:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import com.apress.prospring5.ch3.xml.ConfigurableMessageProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class AppConfig {
 @Bean
 public MessageProvider messageProvider() {
 return new ConfigurableMessageProvider();
 }

 @Bean
 public MessageRenderer messageRenderer() {
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(messageProvider());

 return renderer;
 }
}

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

179

The following code snippet shows how to initialize the ApplicationContext instance from the Java
configuration file:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class JavaConfigExampleOne {
 public static void main(String... args) {
 ApplicationContext ctx = new
 AnnotationConfigApplicationContext(AppConfig.class);

 MessageRenderer renderer =
 ctx.getBean("messageRenderer", MessageRenderer.class);

 renderer.render();
 }
}

From the previous listing, we use the AnnotationConfigApplicationContext class, passing in the
configuration class as the constructor argument (you can pass multiple configuration classes to it via the
JDK varargs feature). Afterward, you can use ApplicationContext returned as usual. Sometimes for testing
purposes, the configuration class can be declared as a static internal class, as depicted here:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import com.apress.prospring5.ch3.xml.ConfigurableMessageProvider;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

public class JavaConfigSimpleExample {

 @Configuration
 static class AppConfigOne {
 @Bean
 public MessageProvider messageProvider() {
 return new ConfigurableMessageProvider();
 }

 @Bean
 public MessageRenderer messageRenderer() {
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(messageProvider());

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

180

 return renderer;
 }
 }

 public static void main(String... args) {
 ApplicationContext ctx = new
 AnnotationConfigApplicationContext(AppConfig.class);

 MessageRenderer renderer =
 ctx.getBean("messageRenderer", MessageRenderer.class);

 renderer.render();
 }
}

The ApplicationContext instance returned can be used as usual, and the output will be the same as in
the case of the XML configured application.

 --> StandardOutMessageRenderer: constructor called
 --> StandardOutMessageRenderer: setting the provider
Default message

Having seen the basic usage of a Java configuration class, let’s proceed to more configuration options.
For the message provider, let’s say we want to externalize the message into a properties file (message.
properties) and then inject it into ConfigurableMessageProvider by using constructor injection. The
content of message.properties is as follows:

message=Only hope can keep me together

Let’s see the revised testing program, which loads the properties files by using the @PropertySource
annotation and then injects them into the message provider implementation.

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.core.env.Environment;

@Configuration
@PropertySource(value = "classpath:message.properties")
public class AppConfigOne {

 @Autowired
 Environment env;

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

181

 @Bean
 public MessageProvider messageProvider() {
 return new ConfigurableMessageProvider(env.getProperty("message"));
 }

 @Bean(name = "messageRenderer")
 public MessageRenderer messageRenderer() {
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(messageProvider());
 return renderer;
 }
}

Configuration classes were introduced in Chapter 3 to show equivalents for XML elements and
attributes. Bean declarations can be annotated with other annotations related to bean scopes, loading type,
and dependencies. In the following code snippet, the AppConfigOne configuration class is enriched with
annotations on bean declarations:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.*;
import org.springframework.core.env.Environment;

@Configuration
@PropertySource(value = "classpath:message.properties")
public class AppConfig {

 @Autowired
 Environment env;

 @Bean
 @Lazy
 public MessageProvider messageProvider() {
 return new ConfigurableMessageProvider(env.getProperty("message"));
 }

 @Bean(name = "messageRenderer")
 @Scope(value="prototype")
 @DependsOn(value="messageProvider")
 public MessageRenderer messageRenderer() {
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(messageProvider());
 return renderer;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

182

In the previous code sample, a few annotations were introduced that are explained in Table 4-3. Beans
that are defined using a stereotype annotation like @Component, @Service, and others can be used in a Java
configuration class, by enabling component scanning and autowiring them where needed. In the following
example, we declare ConfigurableMessageProvider as a service bean.

package com.apress.prospring5.ch4.annotated;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.stereotype.Service;

@Service("provider")
public class ConfigurableMessageProvider implements MessageProvider {

 private String message;

 public ConfigurableMessageProvider(
 @Value("Love on the weekend")String message) {
 this.message = message;
 }

 @Override
 public String getMessage() {
 return this.message;
 }
}

Table 4-3.  Java Configuration Annotations Table

Annotation Description

@PropertySource This annotation is used to load properties files into Spring’s ApplicationContext,
which accepts the location as the argument (more than one location can be
provided). For XML, <context:property-placeholder> serves the same purpose.

@Lazy This annotation instructs Spring to instantiate the bean only when requested (same
as lazy-init="true" in XML). This annotation has a default value attribute that is
true by default; thus, using @Lazy(value=true) is equivalent to using @Lazy.

@Scope This is used to define the bean scope, when the desired scope is other than
singleton.

@DependsOn This annotation tells Spring that a certain bean depends on some other beans, so
Spring will make sure that those beans are instantiated first.

@Autowired This annotation is used here on the env variable, which is of Environment type.
This is the Environment abstraction feature that Spring provides. We discuss it later
in this chapter.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

183

Here you can see the configuration class

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.*;

@Configuration
@ComponentScan(basePackages={"com.apress.prospring5.ch4.annotated"})
public class AppConfigTwo {

 @Autowired
 MessageProvider provider;

 @Bean(name = "messageRenderer")
 public MessageRenderer messageRenderer() {
 MessageRenderer renderer =
 new StandardOutMessageRenderer();
 renderer.setMessageProvider(provider);
 return renderer;
 }
}

@ComponentScan defines the packages that Spring should scan for annotations for bean definitions. It’s
the same as the <context:component-scan> tag in the XML configuration. Execute the code in the following
example:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

public class JavaConfigExampleTwo {
 public static void main(String... args) {
 ApplicationContext ctx = new
 AnnotationConfigApplicationContext(AppConfigTwo.class);

 MessageRenderer renderer =
 ctx.getBean("messageRenderer", MessageRenderer.class);

 renderer.render();
 }
}

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

184

You will get the following result:

 --> StandardOutMessageRenderer: constructor called
 --> StandardOutMessageRenderer: setting the provider
Love on the weekend

An application can also have multiple configuration classes, which can be used decouple configuration
and organize beans by purpose (for example, one class can be dedicated to DAO beans declaration, one for
the Service beans declaration, and so forth). Let’s define the provider bean using another configuration
class named AppConfigFour. The bean can be accessed from another configuration class by importing the
beans defined by this class. This is achieved by annotating the target configuration class AppConfigThree
with @Import.

//AppConfigFour.java
package com.apress.prospring5.ch4.multiple;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan(basePackages={"com.apress.prospring5.ch4.annotated"})
public class AppConfigFour { }

package com.apress.prospring5.ch4.multiple;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;

@Configuration
@Import(AppConfigFour.class)
public class AppConfigThree {
 @Autowired
 MessageProvider provider;

 @Bean(name = "messageRenderer")
 public MessageRenderer messageRenderer() {
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(provider);
 return renderer;
 }
}

If in the main method in class JavaConfigExampleTwo you replace the class AppConfigTwo with
AppConfigThree, then when the example is run, the same output is printed.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

185

Spring Mixed Configuration
But Spring can do so much more than that. Spring allows mixing XML and Java configuration classes. This
is useful when applications come with legacy code that cannot be changed for some reason. To import bean
declarations from an XML file, the @ImportResource annotation can be used. In the following configuration
snippet, you can see the provider bean declared in an XML file named app-context-xml-01.xml:

<beans ...>

 <bean id="provider"
 class="com.apress.prospring5.ch4.ConfigurableMessageProvider"
 p:message="Love on the weekend" />

</beans>

The next code sample depicts class AppConfigFive where the beans declared in the XML file are
imported. If in the main method in classJavaConfigExampleTwo we replace class AppConfigTwo with
AppConfigFive, then when the example is run, the same output is printed.

package com.apress.prospring5.ch4.mixed;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.ImportResource;

@Configuration
@ImportResource(value="classpath:spring/app-context-xml-01.xml")
public class AppConfigFive {
 @Autowired
 MessageProvider provider;

 @Bean(name = "messageRenderer")
 public MessageRenderer messageRenderer() {
 MessageRenderer renderer = new StandardOutMessageRenderer();
 renderer.setMessageProvider(provider);
 return renderer;
 }

}

Also, the reverse can be done as well: beans defined in Java configuration classes can be imported into
XML configuration files. In the next example, the messageRenderer bean is defined in the XML file, and its
dependency, the provider bean, is defined in configuration class AppConfigSix. The contents of the XML
configuration file, app-context-xml-02.xml, are depicted here:

<beans ...>

 <context:annotation-config/>

 <bean class="com.apress.prospring5.ch4.mixed.AppConfigSix"/>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

186

 <bean id="messageRenderer"
 class="com.apress.prospring5.ch2.decoupled.StandardOutMessageRenderer"
 p:messageProvider-ref="provider"/>

</beans>

A bean of the configuration class type must be declared, and support for annotated methods must
be enabled using <context:annotation-config/>. This enables for beans declared in the class to be
configured as dependencies for beans declared in the XML file. The configuration class AppConfigSix is
pretty simple.

package com.apress.prospring5.ch4.mixed;

import com.apress.prospring5.ch2.decoupled.MessageProvider;
import com.apress.prospring5.ch4.annotated.ConfigurableMessageProvider;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class AppConfigSix {

 @Bean
 public MessageProvider provider() {
 return new ConfigurableMessageProvider("Love on the weekend");
 }
}

Creating an ApplicationContext instance is done using ClassPathXmlApplicationContext, which has
been used a lot until now.

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch2.decoupled.MessageRenderer;
import com.apress.prospring5.ch4.mixed.AppConfigFive;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

public class JavaConfigExampleThree {
 public static void main(String... args) {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext
 ("classpath:spring/app-context-xml-02.xml");

 MessageRenderer renderer =
 ctx.getBean("messageRenderer", MessageRenderer.class);

 renderer.render();
 }
}

Running the previous code yields the same output that was depicted previously.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

187

 A pplication infrastructure services can also be defined in Java configuration classes. For example,
@EnableTransactionManagement defines that we will use Spring’s transaction management feature, which
is discussed further in Chapter 9, and @EnableWebSecurity and @EnableGlobalMethodSecurity are used to
enable a Spring Security context, which will be discussed more in Chapter 16.

Java or XML Configuration?
As you already saw, using Java classes can achieve the same level of ApplicationContext configuration as
XML. So, which one should you use? The consideration is quite like the one of whether to use XML or Java
annotations for DI configuration. Each approach has its own pros and cons. However, the recommendation
is the same; that is, when you and your team decide on the approach to use, stick to it and keep the
configuration style persistent, instead of scattered around between Java classes and XML files. Using one
approach will make the maintenance work much easier.

Profiles
Another interesting feature that Spring provides is the concept of configuration profiles. Basically, a profile
instructs Spring to configure only the ApplicationContext instance that was defined when the specified
profile was active. In this section, we demonstrate how to use profiles in a simple program.

An Example of Using the Spring Profiles Feature
Let’s say there is a service called FoodProviderService that is responsible for providing food to schools,
including kindergarten and high school. The FoodProviderService interface has only one method called
provideLunchSet(), which produces the lunch set to each student for the calling school. A lunch set is a list
of Food objects, which is a simple class that has only a name attribute. The following code snippet shows the
Food class:

package com.apress.prospring5.ch4;

public class Food {
 private String name;

 public Food() {
 }

 public Food(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

http://dx.doi.org/10.1007/978-1-4842-2808-1_9
http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

188

 public void setName(String name) {
 this.name = name;
 }
}

And here is the FoodProviderService interface:

package com.apress.prospring5.ch4;

import java.util.List;

public interface FoodProviderService {
 List<Food> provideLunchSet();
}

Now suppose that there are two providers for the lunch set, one for kindergarten and one for high school.
The lunch set produced by them is different, although the service they provide is the same, that is, to provide
lunch to students. So, now let’s create two implementations of FoodProviderService, using the same name but
putting them into different packages to identify their target school. The two classes are shown here:

//chapter04/profiles/src/main/java/com/apress/prospring5/ch4/
 highschool/FoodProviderServiceImpl.java
package com.apress.prospring5.ch4.highschool;

import java.util.ArrayList;
import java.util.List;

import com.apress.prospring5.ch4.Food;
import com.apress.prospring5.ch4.FoodProviderService;

public class FoodProviderServiceImpl implements FoodProviderService {
 @Override
 public List<Food> provideLunchSet() {
 List<Food> lunchSet = new ArrayList<>();
 lunchSet.add(new Food("Coke"));
 lunchSet.add(new Food("Hamburger"));
 lunchSet.add(new Food("French Fries"));

 return lunchSet;
 }
}

//chapter04/profiles/src/main/java/com/apress/prospring5/ch4/
 kindergarten/FoodProviderServiceImpl.java
package com.apress.prospring5.ch4.kindergarten;

import java.util.ArrayList;
import java.util.List;

import com.apress.prospring5.ch4.Food;
import com.apress.prospring5.ch4.FoodProviderService;

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

189

public class FoodProviderServiceImpl implements FoodProviderService {
 @Override
 public List<Food> provideLunchSet() {
 List<Food> lunchSet = new ArrayList<>();
 lunchSet.add(new Food("Milk"));
 lunchSet.add(new Food("Biscuits"));

 return lunchSet;
 }
}

From the previous listings, you can see that the two implementations provide the same
FoodProviderService interface but produce different combinations of food in the lunch set. So, now
suppose a kindergarten wants the provider to deliver the lunch set for their students; let’s see how we can
use Spring’s profile configuration to achieve this. We will run through the XML configuration first. We will
create two XML configuration files, one for the kindergarten profile and the other for the high-school profile.
The following configuration snippet depicts the two profile configurations:

<!-- highschool-config.xml -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd"
 profile="highschool">

 <bean id="foodProviderService"
 class="com.apress.prospring5.ch4.highschool.FoodProviderServiceImpl"/>
</beans>

<!-- kindergarten-config.xml -->
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd"
 profile="kindergarten">

 <bean id="foodProviderService"
 class="com.apress.prospring5.ch4.kindergarten.FoodProviderServiceImpl"/>
</beans>

In the previous two configurations, notice the usage of profile="kindergarten" and profile=
"highschool", respectively, within the <beans> tag. It actually tells Spring that those beans in the file should
be instantiated only when the specified profile is active. Now let’s see how to activate the correct profile
when using Spring’s ApplicationContext in a stand-alone application. The following code snippet shows
the testing program:

package com.apress.prospring5.ch4;

import java.util.List;
import org.springframework.context.support.GenericXmlApplicationContext;

public class ProfileXmlConfigExample {

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

190

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/*-config.xml");
 ctx.refresh();

 FoodProviderService foodProviderService =
 ctx.getBean("foodProviderService", FoodProviderService.class);

 List<Food> lunchSet = foodProviderService.provideLunchSet();

 for (Food food: lunchSet) {
 System.out.println("Food: " + food.getName());
 }

 ctx.close();
 }
}

The ctx.load() method will load both kindergarten-config.xml and highschool-config.xml, since
we pass the method the wildcard as the prefix. In this example, only the beans in the file kindergarten-
config.xml will be instantiated by the Spring based on the profile attribute, which is activated by passing
the JVM argument -Dspring.profiles.active="kindergarten". Running the program with this JVM
argument produces the following output:

Food: Milk
Food: Biscuits

This is exactly what the implementation of the kindergarten provider will produce for the lunch
set. Now change the profile argument from the previous listing to high school (-Dspring.profiles.
active="highschool"), and the output will change to the following:

Food: Coke
Food: Hamburger
Food: French Fries

You can also programmatically set the profile to use in your code by calling ctx.getEnvironment().set
ActiveProfiles("kindergarten"). Additionally, you can register classes to be enabled by profiles using
Java Config by simply adding the @Profile annotation to your class.

Spring Profiles Using Java Configuration
Of course, there is a way to configure Spring profiles using Java configuration because developers who do
not like XML configuration should get satisfaction as well. The XML files declared in the previous section
have to be replaced with the equivalent Java configuration classes. This is how the configuration class for a
kindergarten profile looks:

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.FoodProviderService;
import com.apress.prospring5.ch4.kindergarten.FoodProviderServiceImpl;
import org.springframework.context.annotation.Bean;

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

191

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;

@Configuration
@Profile("kindergarten")
public class KindergartenConfig {

 @Bean
 public FoodProviderService foodProviderService(){
 return new FoodProviderServiceImpl();
 }
}

As you can see, a foodProviderService bean is defined using the @Bean annotation. The class is marked
as specific to the kindergarten profile using the @Profile annotation. The class specific to the highschool
profile is identical, except for the bean type, the profile name, and the class name, obviously.

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.FoodProviderService;
import com.apress.prospring5.ch4.highschool.FoodProviderServiceImpl;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;

@Configuration
@Profile("highschool")
public class HighschoolConfig {

 @Bean
 public FoodProviderService foodProviderService(){
 return new FoodProviderServiceImpl();
 }
}

These classes are used in the same way the XML files are. A context is declared to use both of them, and
only one of them will actually be used to create the ApplicationContext instance depending on the value of
the -Dspring.profiles.active JVM option.

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.Food;
import com.apress.prospring5.ch4.FoodProviderService;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

public class ProfileJavaConfigExample {

 public static void main(String... args) {

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

192

 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(
 KindergartenConfig.class,
 HighschoolConfig.class);

 FoodProviderService foodProviderService =
 ctx.getBean("foodProviderService",
 FoodProviderService.class);

 List<Food> lunchSet = foodProviderService.provideLunchSet();
 for (Food food : lunchSet) {
 System.out.println("Food: " + food.getName());
 }
 ctx.close();
 }
}

By running the previous example with kindergarten as the value for the -Dspring.profiles.active
JVM option, the expected output is printed.

Food: Milk
Food: Biscuits

There is also an annotation for configuring used profiles that replaces the -Dspring.profiles.active
JVM option, but this can be used only on test classes. As testing Spring applications is covered in Chapter 13,
it won’t be covered in detail here. But some sample code is included.

package com.apress.prospring5.ch4.config;

import com.apress.prospring5.ch4.FoodProviderService;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ActiveProfiles;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes={KindergartenConfig.class,
 HighschoolConfig.class})
@ActiveProfiles("kindergarten")
public class ProfilesJavaConfigTest {

 @Autowired FoodProviderService foodProviderService;

 @Test
 public void testProvider(){

http://dx.doi.org/10.1007/978-1-4842-2808-1_13

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

193

 assertTrue(foodProviderService.provideLunchSet() != null);
 assertFalse(foodProviderService.provideLunchSet().isEmpty());

 assertEquals(2, foodProviderService.provideLunchSet().size());
 }

}

As you have probably figured out yourself, the annotation that specifies which profile is used to run this
test is @ActiveProfiles("kindergarten"). In complex applications, usually there is more than one profile,
and more of them can be used to compose the context configuration for a test. This class can be run in any
Java smart editor and is automatically run when executing gradle clean build.

Considerations for Using Profiles
The profiles feature in Spring creates another way for developers to manage the application’s running
configuration, which used to be done in build tools (for example, Maven’s profile support). Build tools rely on
the arguments passed into the tool to pack the correct configuration/property files into the Java archive (JAR or
WAR, depending on the application type) and then deploy to the target environment. Spring’s profile feature lets
us as an application developer define the profiles by yourself and activate them either programmatically or by
passing in the JVM argument. By using Spring’s profile support, you can now use the same application archive
and deploy to all environments by passing in the correct profiles as an argument during JVM startup. For example,
you can have applications with different profiles such as (dev, hibernate), (prd, jdbc), and so on, with each
combination representing the running environment (development or production) and the data access library to
use (Hibernate or JDBC). It brings application profile management into the programming side.

But this approach also has its drawbacks. For example, some may argue that putting all the
configurations for different environments into application configuration files or Java classes and bundling
them together will be error prone if not handled carefully (for example, the administrator may forget to set
the correct JVM argument in the application server environment). Packing files for all profiles together will
also make the package a bit larger than usual. Again, let the application and configuration requirements
drive you to select the approach that best fits your project.

Environment and PropertySource Abstraction
To set the active profile, we need to access the Environment interface. The Environment interface is an
abstraction layer that serves to encapsulate the environment of the running Spring application.

Besides the profile, other key pieces of information encapsulated by the Environment interface are
properties. Properties are used to store the application’s underlying environment configuration, such as the
location of the application folder, database connection information, and so on.

The Environment and PropertySource abstraction features in Spring assist developers in accessing
various configuration information from the running platform. Under the abstraction, all system properties,
environment variables, and application properties are served by the Environment interface, which Spring
populates when bootstrapping ApplicationContext. The following code snippet shows a simple example:

package com.apress.prospring5.ch4;

import java.util.HashMap;
import java.util.Map;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.core.env.ConfigurableEnvironment;

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

194

import org.springframework.core.env.MapPropertySource;
import org.springframework.core.env.MutablePropertySources;

public class EnvironmentSample {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.refresh();

 ConfigurableEnvironment env = ctx.getEnvironment();
 MutablePropertySources propertySources = env.getPropertySources();

 Map<String,Object> appMap = new HashMap<>();
 appMap.put("user.home", "application_home");

 propertySources.addLast(new MapPropertySource("prospring5_MAP", appMap));

 System.out.println("user.home: " + System.getProperty("user.home"));
 System.out.println("JAVA_HOME: " + System.getenv("JAVA_HOME"));

 System.out.println("user.home: " + env.getProperty("user.home"));
 System.out.println("JAVA_HOME: " + env.getProperty("JAVA_HOME"));

 ctx.close();
 }
}

In the previous code snippet, after the ApplicationContext initialization, we get a reference to the
ConfigurableEnvironment interface. Via the interface, a handle to MutablePropertySources (a default
implementation of the PropertySources interface, which allows manipulation of the contained property
sources) is obtained. Afterward, we construct a map, put the application properties into the map, and then
construct a MapPropertySource class (a PropertySource subclass that reads keys and values from a Map
instance) with the map. Finally, the MapPropertySource class is added to MutablePropertySources via the
addLast() method. Run the program, and the following prints:

user.home: /home/jules
JAVA_HOME: /home/jules/bin/java
user.home: /home/jules
JAVA_HOME: /home/jules/bin/java
application.home: application_home

For the first two lines, the JVM system property user.home and the environment variable JAVA_HOME
are retrieved, as before (by using the JVM’s System class). However, for the last three lines, you can see
that all the system properties, environment variables, and application properties can be accessed via the
Environment interface. You can see how the Environment abstraction can help us manage and access all the
various properties within the application’s running environment.

For the PropertySource abstraction, Spring will access the properties in the following default order:

•	 System properties for the running JVM

•	 Environment variables

•	 Application-defined properties

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

195

So, for example, suppose we define the same application property, user.home, and add it to the
Environment interface via the MutablePropertySources class. If you run the program, you will still see that
user.home is retrieved from the JVM properties, not yours. However, Spring allows you to control the order in
which Environment retrieves the properties. The following code snippet shows the revised version:

package com.apress.prospring5.ch4;

import java.util.HashMap;
import java.util.Map;

import org.springframework.context.support.GenericXmlApplicationContext;
import org.springframework.core.env.ConfigurableEnvironment;
import org.springframework.core.env.MapPropertySource;
import org.springframework.core.env.MutablePropertySources;

public class EnvironmentSample {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.refresh();

 ConfigurableEnvironment env = ctx.getEnvironment();
 MutablePropertySources propertySources = env.getPropertySources();

 Map<String,Object> appMap = new HashMap<>();
 appMap.put("application.home", "application_home");

 propertySources.addFirst(new MapPropertySource("prospring5_MAP", appMap));

 System.out.println("user.home: " + System.getProperty("user.home"));
 System.out.println("JAVA_HOME: " + System.getenv("JAVA_HOME"));

 System.out.println("user.home: " + env.getProperty("user.home"));
 System.out.println("JAVA_HOME: " + env.getProperty("JAVA_HOME"));

 ctx.close();
 }
}

In the previous code sample, we have defined an application property also called user.home and added
it as the first one to search for via the addFirst() method of the MutablePropertySources class. When you
run the program, you will see the following output:

user.home: /home/jules
JAVA_HOME: /home/jules/bin/java
user.home: application_home
JAVA_HOME: /home/jules/bin/java

The first two lines remain the same because we still use the getProperty() and getenv() methods
of the JVM System class to retrieve them. However, when using the Environment interface, you will see
that the user.home property we defined takes precedence since we defined it as the first one to search for
property values.

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

196

In real life, you seldom need to interact directly with the Environment interface but will use a property
placeholder in the form of ${} (for example, ${application.home}) and inject the resolved value into Spring
beans. Let’s see this in action. Suppose we had a class to store all the application properties loaded from a
property file. The following shows the AppProperty class:

package com.apress.prospring5.ch4;

public class AppProperty {
 private String applicationHome;
 private String userHome;

 public String getApplicationHome() {
 return applicationHome;
 }

 public void setApplicationHome(String applicationHome) {
 this.applicationHome = applicationHome;
 }

 public String getUserHome() {
 return userHome;
 }

 public void setUserHome(String userHome) {
 this.userHome = userHome;
 }
}

Here you can see the contents of the application.properties file:

application.home=application_home
user.home=/home/jules-new

Note that the property file also declares the user.home property. Let’s take a look at the Spring XML
configuration; see the following code (app-context-xml.xml):

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <context:property-placeholder
 location="classpath:application.properties"/>

 <bean id="appProperty" class="com.apress.prospring5.ch4.AppProperty"
 p:applicationHome="${application.home}"
 p:userHome="${user.home}"/>
</beans>

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

197

We use the <context:property-placeholder> tag to load the properties into Spring’s Environment,
which is wrapped into the ApplicationContext interface. We also use the SpEL placeholders to inject
the values into the AppProperty bean. The following code snippet shows the testing program:

package com.apress.prospring5.ch4;

import org.springframework.context.support.GenericXmlApplicationContext;
public class PlaceHolderDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 AppProperty appProperty = ctx.getBean("appProperty",
 AppProperty.class);

 System.out.println("application.home: " +
 appProperty.getApplicationHome());
 System.out.println("user.home: " +
 appProperty.getUserHome());

 ctx.close();
 }
}

Let’s run the program, and you will see the following output:

application.home: application_home
user.home: /Users/jules

You will see the application.home placeholder is properly resolved, while the user.home property
is still retrieved from the JVM properties, which is correct because it’s the default behavior for the
PropertySource abstraction. To instruct Spring to give precedence for the values in the application.
properties file, we add the attribute local-override="true" to the <context:property-placeholder>
tag.

<context:property-placeholder local-override="true"
 location="classpath:env/application.properties"/>

The local-override attribute instructs Spring to override the existing properties with the properties
defined in this placeholder. Run the program, and you will see that now the user.home property from the
application.properties file is retrieved.

application.home: application_home
user.home: /home/jules-new

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

198

Configuration Using JSR-330 Annotations
As we discussed in Chapter 1, JEE 6 provides support for JSR-330 (Dependency Injection for Java), which is
a collection of annotations for expressing an application’s DI configuration within a JEE container or other
compatible IoC framework. Spring also supports and recognizes those annotations, so although you may
not be running your application in a JEE 6 container, you can still use JSR-330 annotations within Spring.
Using JSR-330 annotations can help you ease the migration to the JEE 6 container or other compatible IoC
container (for example, Google Guice) away from Spring.

Again, let’s take the message renderer and message provider as an example and implement it using JSR-330
annotations. To support JSR-330 annotations, you need to add the javax.inject3 dependency to the project.

The following code snippet shows the MessageProvider and ConfigurableMessageProvider
implementation:

 //chapter04/jsr330/src/main/java/com/apress/prospring5/
 ch4/MessageProvider.java
package com.apress.prospring5.ch4;

public interface MessageProvider {
 String getMessage();
}
//chapter04/jsr330/src/main/java/com/apress/prospring5/
 ch4/ConfigurableMessageProvider.java
package com.apress.prospring5.ch4;

import javax.inject.Inject;
import javax.inject.Named;

@Named("messageProvider")
public class ConfigurableMessageProvider
 implements MessageProvider {
 private String message = "Default message";

 public ConfigurableMessageProvider() {
 }

 @Inject
 @Named("message")
 public ConfigurableMessageProvider(String message) {
 this.message = message;
 }

 public void setMessage(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }
}

3You can find dependency characteristics, like group IDs and latest versions, on the Maven public repository. For example,
this is the dedicated page for java.inject: https://mvnrepository.com/artifact/javax.inject/javax.inject.

http://dx.doi.org/10.1007/978-1-4842-2808-1_1
https://mvnrepository.com/artifact/javax.inject/javax.inject

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

199

You will notice that all annotations belong to the javax.inject package, which is the JSR-330
standard. This class used @Named in two places. First, it can be used to declare an injectable bean (the
same as the @Component annotation or other stereotype annotations in Spring). In the listing, the
@Named("messageProvider") annotation specifies that ConfigurableMessageProvider is an injectable
bean and gives it the name messageProvider, which is the same as the name attribute in Spring’s <bean>
tag. Second, we use constructor injection by using the @Inject annotation before the constructor that
accepts a string value. Then, we use @Named to specify that we want to inject the value that had the name
message assigned. Let’s move on to see the MessageRenderer interface and StandardOutMessageRenderer
implementation.

 //chapter04/jsr330/src/main/java/com/apress/prospring5/
 ch4/MessageRenderer.java
package com.apress.prospring5.ch4;

public interface MessageRenderer {
 void render();
 void setMessageProvider(MessageProvider provider);
 MessageProvider getMessageProvider();
}
//chapter04/jsr330/src/main/java/com/apress/prospring5/
 ch4/StandardOutMessageRenderer.java
package com.apress.prospring5.ch4;

import javax.inject.Inject;
import javax.inject.Named;
import javax.inject.Singleton;

@Named("messageRenderer")
@Singleton
public class StandardOutMessageRenderer
 implements MessageRenderer {

 @Inject
 @Named("messageProvider")
 private MessageProvider messageProvider = null;

 public void render() {
 if (messageProvider == null) {
 throw new RuntimeException(
 "You must set the property messageProvider of class:"
 + StandardOutMessageRenderer.class.getName());
 }

 System.out.println(messageProvider.getMessage());
 }

 public void setMessageProvider(MessageProvider provider) {
 this.messageProvider = provider;
 }
 public MessageProvider getMessageProvider() {
 return this.messageProvider;
 }
}

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

200

In the previous code snippet, we used @Named to define that it’s an injectable bean. Notice the
@Singleton annotation. It’s worth noting that in the JSR-330 standard, a bean’s default scope is
nonsingleton, which is like Spring’s prototype scope. So, in a JSR-330 environment, if you want your bean
to be a singleton, you need to use the @Singleton annotation. However, using this annotation in Spring
actually doesn’t have any effect because Spring’s default scope for bean instantiation is already singleton.
We just put it here for a demonstration, and it’s worth noting the difference between Spring and other JSR-
330–compatible containers.

For the messageProvider property, we use @Inject for setter injection this time and specify that a bean
with the name messageProvider should be used for injection. The following configuration snippet defines a
simple Spring XML configuration for the application (app-context-annotation.xml):

<beans ...>

 <context:component-scan
 base-package="com.apress.prospring5.ch4"/>

 <bean id="message" class="java.lang.String">
 <constructor-arg value="Gravity is working against me"/>
 </bean>
</beans>

You don’t need any special tags to use JSR-330; just configure your application like a normal Spring
application. We use <context:component-scan> to instruct Spring to scan for the DI-related annotations,
and Spring will recognize those JSR-330 annotations. We also declare a Spring bean called message for
constructor injection into the ConfigurableMessageProvider class. The following code snippet shows the
testing program:

package com.apress.prospring5.ch4;

import org.springframework.context.support.GenericXmlApplicationContext;

public class Jsr330Demo {

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-annotation.xml");
 ctx.refresh();

 MessageRenderer renderer = ctx.getBean("messageRenderer",
 MessageRenderer.class);
 renderer.render();

 ctx.close();
 }
}

Running the program yields the following output:

Gravity is working against me

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

201

By using JSR-330, you can ease the migration into other JSR-330–compatible IoC containers (for
example, JEE 6–compatible application servers or other DI containers such as Google Guice). However,
Spring’s annotations are much more feature rich and flexible than JSR-330 annotations. Some main
differences are highlighted here:

•	 When using Spring’s @Autowired annotation, you can specify a required attribute
to indicate that the DI must be fulfilled (you can also use Spring’s @Required
annotation to declare this requirement), while for JSR-330’s @Inject annotation,
there is no such equivalent. Moreover, Spring provides the @Qualifier annotation,
which allows more fine-grained control for Spring to perform autowiring of
dependencies based on qualifier name.

•	 JSR-330 supports only singleton and nonsingleton bean scopes, while Spring
supports more scopes, which is useful for web applications.

•	 In Spring, you can use the @Lazy annotation to instruct Spring to instantiate the bean
only when requested by the application. There’s no such equivalent in JSR-330.

You can also mix and match Spring and JSR-330 annotations in the same application. However, it is
recommended that you settle on either one to maintain a consistent style for your application. One possible
way is to use JSR-330 annotations as much as possible and use Spring annotations when required. However,
this brings you fewer benefits, because you still need to do quite a bit of work in migrating to another DI
container. In conclusion, Spring’s annotations approach is recommended over JSR-330 annotations, because
Spring’s annotations are much more powerful, unless there is a requirement that your application should be
IoC container independent.

Configuration Using Groovy
New to Spring Framework 4.0 is the ability to configure your bean definitions and ApplicationContext
by using the Groovy language. This provides developers with another choice in configuration
to either replace or supplement XML and/or annotation-based bean configuration. A Spring
ApplicationContext can be created directly in a Groovy script or loaded from Java, both by way of the
GenericGroovyApplicationContext class. First let’s dive into the details by showing how to create bean
definitions from an external Groovy script and loading them from Java. In previous sections and chapters,
we introduced various bean classes, and to promote some code reusability, we will use in this example the
Singer class introduced in Chapter 3. The following code snippet shows the content of this class:

package com.apress.prospring5.ch3.xml;

public class Singer {
 private String name;
 private int age;

 public void setName(String name) {
 this.name = name;
 }

 public void setAge(int age) {
 this.age = age;
 }

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

202

 public String toString() {
 return "\tName: " + name + "\n\t" + "Age: " + age;
 }
}

As you can see, this is just a Java class with a couple of properties describing a singer. We use this simple
Java class here to show that just because you configure your beans in Groovy doesn’t mean your entire code
base needs to be rewritten in Groovy. Not only that, but Java classes can be imported from dependencies and
used within Groovy scripts. Now, let’s create the Groovy script (beans.groovy) that will be used to create the
bean definition, as shown in the previous code snippet:

package com.apress.prospring5.ch4

import com.apress.prospring5.ch3.xml.Singer

beans {
 singer(Singer, name: 'John Mayer', age: 39)
}

This Groovy script starts with a top-level closure called beans, which provides bean definitions to
Spring. First, we specify the bean name (singer), and then as arguments we provide the class type (Singer)
followed by the property names and values that we would like to set. Next, let’s create a simple test driver in
Java, loading bean definitions from the Groovy script, as shown here:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch3.xml.Singer;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.GenericGroovyApplicationContext;

public class GroovyBeansFromJava {
 public static void main(String... args) {
 ApplicationContext context =
 new GenericGroovyApplicationContext("classpath:beans.groovy");
 Singer singer = context.getBean("singer", Singer.class);
 System.out.println(singer);
 }
}

As you can see, the creation of ApplicationContext is carried out in typical fashion, but it’s done by
using the GenericGroovyApplicationContext class and providing your Groovy script that builds the bean
definitions.

Before you can run the samples in this section, you need to add a dependency to this project: the
groovy-all library. The build.gradle configuration file content for the project groovy-config-java is
shown here:

apply plugin: 'groovy'

dependencies {
 compile misc.groovy
 compile project(':chapter03:bean-inheritance')
}

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

203

The compile project(':chapter03:bean-inheritance') line specifies that the Chapter 3 bean-
inheritance project must be compiled and used as a dependency for this project. This is the project
containing the Singer class.

Gradle configuration files use Groovy syntax, and misc.groovy references the groovy property of
the misc array defined in the build.gradle file of the parent project. A snippet of the content of this file
(configurations related to Groovy) is shown here:

ext {
 springVersion = '5.0.0.M4'
 groovyVersion = '2.4.5'
...

 misc = [
 ...
 groovy: "org.codehaus.groovy:groovy-all:$groovyVersion"
]
...
}

Running the GroovyBeansFromJava class yields the following output:

Name: John Mayer
Age: 39

Now that you have seen how to load bean definitions from Java via an external Groovy script, how can
we go about creating the ApplicationContext and bean definitions from a Groovy script alone? Let’s take a
look at the Groovy code (GroovyConfig.groovy) listed here:

package com.apress.prospring5.ch4

import com.apress.prospring5.ch3.xml.Singer
import org.springframework.context.support.GenericApplicationContext
import org.springframework.beans.factory.groovy.GroovyBeanDefinitionReader

def ctx = new GenericApplicationContext()
def reader = new GroovyBeanDefinitionReader(ctx)

reader.beans {
 singer(Singer, name: 'John Mayer', age: 39)
}

ctx.refresh()

println ctx.getBean("singer")

When we run this sample, we get same output as before. This time we create an instance of a
typical GenericApplicationContext but use GroovyBeanDefinitionReader, which will be used to pass
bean definitions to. Then, as in the previous sample, we create a bean from your simple POJO, refresh
ApplicationContext, and print the string representation of the Singer bean. It doesn’t get any easier
than that!

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

204

As you probably can tell, we are only scratching the surface of what can be done with the Groovy
support in Spring. Since you have the full power of the Groovy language, you can do all sorts of interesting
things when creating bean definitions. As you have full access to ApplicationContext, not only can you
configure beans, but you can also work with profile support, property files, and so on. Just keep in mind, with
great power comes great responsibility.

Spring Boot
Until now you’ve learned more than one way to configure a Spring application. Whether it is XML,
annotations, Java configuration classes, Groovy scripts, or a mix of all these, now you should have a basic
idea of how it’s done. But what if we tell you there is something even cooler than all that?

The Spring Boot project aims to simplify the getting-started experience of building an application by
using Spring. Spring Boot takes the guesswork out of manually gathering dependencies and provides some
of the most common features needed by most applications, such as metrics and health checks.

Spring Boot takes an “opinionated” approach to achieve the goal of developer simplification by way of
providing starter projects for various types of applications that already contain the proper dependencies and
versions, which means less time spent to get started. For those who may be looking to get away from XML
completely, Spring Boot does not require any configuration to be written in XML.

In this example, we will create the traditional Hello World web application with a twist. You may
be surprised to see the minimal amount of code required to do so as compared to your typical Java web
application setup. Typically, we have started off samples by defining the dependencies we need to add to
your project. Part of Spring Boot’s simplification model is to prepare all the dependencies for you, and when
using Maven, for example, you as the developer utilize a parent POM to obtain this functionality. When
using Gradle, things become even simpler. There is no parent needed, except a Gradle plug-in and a starter
dependency. In the following example, we will create a Spring application that lists all the beans in the
context, and then the helloWorld bean is accessed. The Gradle configuration of the boot-simple project is
depicted here:

buildscript {
 repositories {
 mavenLocal()
 mavenCentral()
 maven { url "http://repo.spring.io/release" }
 maven { url "http://repo.spring.io/milestone" }
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/libs-snapshot" }
 }
 dependencies {
 classpath boot.springBootPlugin
 }
}

apply plugin: 'org.springframework.boot'

dependencies {
 compile boot.starter
}

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

205

The boot.springBootPlugin line references the springBootPlugin property of the boot array defined
in the build.gradle file of the parent project. A snippet of the content of this file (configurations related to
Spring Boot only) is depicted here:

ext {
 bootVersion = '2.0.0.BUILD-SNAPSHOT'
 ...
 boot = [
 springBootPlugin:
 "org.springframework.boot:spring-boot-gradle-plugin:$bootVersion", starter :
 "org.springframework.boot:spring-boot-starter:$bootVersion", starterWeb :
 "org.springframework.boot:spring-boot-starter-web:$bootVersion"
]
 ...
}

At the time of this writing, Spring Boot version 2.0.0 has not been released yet. That is why the version
is 2.0.0.BUILD-SNAPSHOT and we need to add the Spring Snapshot repository, https://repo.spring.
io/ libs-snapshot, in the configuration. It is quite possible that after this book, an official version will be
released.

Each release of Spring Boot provides a curated list of dependencies it supports. The versions of the
necessary libraries are selected so the API matches perfectly, and this is handled by Spring Boot. Therefore,
the manual configuration of dependencies versions is not necessary. Upgrading Spring Boot will ensure that
those dependencies are upgraded as well. With the previous configuration, a set of dependencies will be
added to the project, each with the proper versions so that their API will be compatible. In a smart editor like
IntelliJ IDEA, there is a Gradle Projects view, where you can expand each module and inspect the available
tasks and dependencies, as shown in Figure 4-3.

Figure 4-3.  Gradle Projects view of the boot-simple project

https://repo.spring.io/
https://repo.spring.io/
https://repo.spring.io/libs-snapshot

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

206

Now that the setup is in place, let’s create the classes. The HelloWorld class is shown here:

package com.apress.prospring5.ch4;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

@Component
public class HelloWorld {

 private static Logger logger =
 LoggerFactory.getLogger(HelloWorld.class);

 public void sayHi() {
 logger.info("Hello World!");
 }
}

There is nothing special or complicated about this; it’s just a class with a method and a bean
declaration annotation on it. Let’s see how to build a Spring application using Spring Boot and create an
ApplicationContext that contains this bean:

package com.apress.prospring5.ch4;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

import java.util.Arrays;

@SpringBootApplication
public class Application {

 private static Logger logger = LoggerFactory.getLogger(Application.class);

 public static void main(String args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 assert (ctx != null);
 logger.info("The beans you were looking for:");

 // listing all bean definition names
 Arrays.stream(ctx.getBeanDefinitionNames()).forEach(logger::info);

 HelloWorld hw = ctx.getBean(HelloWorld.class);
 hw.sayHi();

 System.in.read();
 ctx.close();
 }
}

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

207

That is all. Really. And this class could have been smaller, but we wanted to show you how to do some
extra things. Let’s cover them all.

•	 Check that we have a context: The assert statement is used to test your assumption
that ctx is not null.

•	 Set up logging: Spring Boot comes with a set of logging libraries, so we only have to
put under the resources directory the configuration for the one we want to use. In
our case, we chose logback.

•	 List all bean definitions in the context: Using Java 8 lambda expressions, you can list
all bean definitions in the context in one line. So, we added that line so you can see
what beans are autoconfigured for you out of the box by Spring Boot. In the list you
will find the helloWorld bean too.

•	 Confirm exit: Without the System.in.read(); method, the application prints
the beans names, prints HelloWorld, and then exits. We added that call so the
application will wait for the developer to press a key and then exit.

The novelty here is the @SpringBootApplication annotation. This annotation is a top-level annotation
designed to be used only at the class level. It a convenience annotation that is equivalent to declaring the
following three:

•	 @Configuration: Marks this class as a configuration class that can declare beans with
@Bean.

•	 @EnableAutoConfiguration: This is a specific Spring Boot annotation from the
package org.springframework.boot.autoconfigure that can enable Spring
ApplicationContext, attempting to guess and configure beans that you are likely to
need based on the specified dependencies.

	 @EnableAutoConfiguration works well with Spring-provided starter dependencies,
but it is not directly tied to them, so other dependencies outside the starters can be
used. For example, if there is a specific embedded server on the classpath, it will be
used, unless there is another EmbeddedServletContainerFactory configuration in
the project.

•	 @ComponentScan: We can declare classes annotated with stereotype annotations that
will become beans of some kind. The attribute used to list the packages to scan used
with @SpringBootApplication is basePackages. In version 1.3.0, another attribute
was added for component scanning: basePackageClasses. This attribute provides
a type-safe alternative to basePackages for specifying the packages to scan for
annotated components. The package of each class specified will be scanned.

If the @SpringBootApplication annotation has no component scanning attribute defined, it will scan
only the package in which the class annotated with it is located. That is why in the example presented here,
the helloWorld bean definition is found, and the bean is created.

The previous Spring Boot application was a simple console application with one developer-defined
bean and a full-blown out-of-the-box environment. But Spring Boot provides starter dependencies for web
applications as well. The dependency to use is spring-boot-starter-web, and in Figure 4-4 you can see the
transitive dependencies of this Boot starter library. In the boot-web project, the HelloWorld class is a Spring
controller, which is a special type of class that is used to create a Spring web bean. This is a typical Spring
MVC controller class that you will learn about in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

208

package com.apress.prospring5.ch4.ctrl;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloWorld {

 @RequestMapping("/")
 public String sayHi() {
 return "Hello World!";
 }
}

The annotation used to declare Spring web beans is a specialization of @Component: the @Controller
annotation. These types of classes contain methods annotated with @RequestMapping, which are mapped
to a certain request URL. The annotation you see in the example @RestController is used for practical
reasons. It is the @Controller annotation used for REST services. And exposing the helloWorld bean as
a REST service is useful here because you do not have to create a full-blown web application with an user
interface and other web components that will pollute the basic idea in this section. All the web components
introduced here are covered in Chapter 16.

Next we create your bootstrap class by using a simple main() method, as shown here:

package com.apress.prospring5.ch4;

import com.apress.prospring5.ch4.ctrl.HelloWorld;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

Figure 4-4.  Gradle Projects view of the boot-web project

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

209

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

import java.util.Arrays;

@SpringBootApplication(scanBasePackageClasses = HelloWorld.class)
public class WebApplication {

 private static Logger logger =
 LoggerFactory.getLogger(WebApplication.class);

 public static void main(String args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(WebApplication.class, args);
 assert (ctx != null);
 logger.info("Application started...");

 System.in.read();
 ctx.close();
 }
}

Because the HelloWorld controller was declared in a different package than the WebApplication class,
we created an opportunity to depict how the scanBasePackageClasses attribute is used.

At this point, you may be asking yourself: where is the web.xml configuration file and all the other
components I must create for a basic web application? You already defined everything needed in the
previous listings! Don’t believe it? Compile the project and run the Application class until you see the log
message indicating that the application has been started. If you look at the generated log files, you will see a
lot going on with such little code. Most notably, it looks like Tomcat is running, and various endpoints such
as health checks, environment output information, and metrics are already defined for you. First navigate
to http://localhost:8080 and you will see the Hello World web page displayed as expected. Next take a
look at some of the preconfigured endpoints (for example, http://localhost:8080/health, which returns a
JSON representation of the application status). Going further, load http://localhost:8080/metrics to
get a better understanding of various metrics that are being collected such as heap size, garbage collection,
and so on.

As you may be able to tell already from this one sample alone, Spring Boot radically simplifies the
way you go about creating any type of application. Gone are the days of having to configure numerous files
to get a simple web application going, and with an embedded servlet container ready to serve your web
application, everything “just works.”

While we have shown you a simple example, keep in mind that Spring Boot does not lock you into
using what it chooses; it simply takes the “opinionated” approach and chooses defaults for you. If you don’t
want to use embedded Tomcat but Jetty instead, simply modify the configuration file to exclude the Tomcat
starter module from the spring-boot-starter-web dependency. Utilizing the Gradle Projects view is one
way to help you visualize what dependencies are being brought into your project. Spring Boot also provides
many other starter dependencies for other types of applications, and you are encouraged to read through the
documentation for more details.

For more information on Spring Boot, please see its project page at http://projects.spring.io/
spring-boot/.

http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/

Chapter 4 ■ Spring Configuration in Detail and Spring Boot

210

Summary
In this chapter, you saw a wide range of Spring-specific features that complement the core IoC capabilities.
You saw how to hook into the life cycle of a bean and to make it aware of the Spring environment. We
introduced FactoryBeans as a solution for IoC, enabling a wider set of classes. We also showed how
you can use PropertyEditors to simplify application configuration and to remove the need for artificial
String-typed properties. We showed you more than one way to define beans using XML, annotations,
and Java configuration. Moreover, we finished with an in-depth look at some additional features offered by
ApplicationContext, including i18n, event publication, and resource access.

We also covered features such as using Java classes and the new Groovy syntax instead of XML
configuration, profiles support, and the environment and property source abstraction layer. Finally, we
discussed using JSR-330 standard annotations in Spring.

The icing on the cake was how to use Spring Boot to configure beans and boot up your application as
soon as possible and with little effort.

So far, we have covered the main concepts of the Spring Framework and its features as a DI container as
well as other services that the core Spring Framework provides. In the next chapter and onward, we discuss
using Spring in specific areas such as AOP, data access, transaction support, and web application support.

211© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_5

CHAPTER 5

Introducing Spring AOP

Besides dependency injection (DI), another core feature that the Spring Framework offers is support for
aspect-oriented programming (AOP). AOP is often referred to as a tool for implementing crosscutting concerns.
The term crosscutting concerns refers to logic in an application that cannot be decomposed from the rest of the
application and may result in code duplication and tight coupling. By using AOP for modularizing individual
pieces of logic, known as concerns, you can apply them to many parts of an application without duplicating the
code or creating hard dependencies. Logging and security are typical examples of crosscutting concerns that are
present in many applications. Consider an application that logs the start and end of every method for debugging
purposes. You will probably refactor the logging code into a special class, but you still have to call methods on that
class twice per method in your application in order to perform the logging. Using AOP, you can simply specify that
you want the methods on your logging class to be invoked before and after each method call in your application.

It is important to understand that AOP complements object-oriented programming (OOP), rather
than competing with it. OOP is very good at solving a wide variety of problems that we, as programmers,
encounter. However, if you look at the logging example again, it is obvious to see where OOP is lacking
when it comes to implementing crosscutting logic on a large scale. Using AOP on its own to develop an
entire application is practically impossible, given that AOP functions on top of OOP. Likewise, although it is
certainly possible to develop entire applications by using OOP, you can work smarter by employing AOP to
solve certain problems that involve crosscutting logic.

This chapter covers the following topics:

•	 AOP basics: Before discussing Spring’s AOP implementation, we cover the basics of
AOP as a technology. Most of the concepts covered in the “AOP Concepts” section
are not specific to Spring and can be found in any AOP implementation. If you
are already familiar with another AOP implementation, feel free to skip the “AOP
Concepts” section.

•	 Types of AOP: There are two distinct types of AOP: static and dynamic. In static
AOP, like that provided by AspectJ’s1 compile-time weaving mechanisms, the
crosscutting logic is applied to your code at compile time, and you cannot change
it without modifying the code and recompiling. With dynamic AOP, such as Spring
AOP, crosscutting logic is applied dynamically at runtime. This allows you to make
changes to the AOP configuration without having to recompile the application.
These types of AOP are complementary, and, when used together, they form a
powerful combination that you can use in your applications.

•	 Spring AOP architecture: Spring AOP is only a subset of the full AOP feature set found
in other implementations such as AspectJ. In this chapter, we take a high-level look
at which features are present in Spring, how they are implemented, and why some
features are excluded from the Spring implementation.

1http://eclipse.org/aspectj

https://doi.org/10.1007/978-1-4842-2808-1_5
http://eclipse.org/aspectj

Chapter 5 ■ Introducing Spring AOP

212

•	 Proxies in Spring AOP: Proxies are a huge part of how Spring AOP works, and you
must understand them to get the most out of Spring AOP. In this chapter, we look at
the two kinds of proxy: the JDK dynamic proxy and the CGLIB proxy. In particular,
we look at the different scenarios in which Spring uses each proxy, the performance
of the two proxy types, and some simple guidelines to follow in your application to
get the most from Spring AOP.

•	 Using Spring AOP: In this chapter, we present some practical examples of AOP usage.
We start off with a simple Hello World example to ease you into Spring’s AOP code,
and we continue with a detailed description of the AOP features that are available in
Spring, complete with examples.

•	 Advanced use of pointcuts: We explore the ComposablePointcut and
ControlFlowPointcut classes, introductions, and appropriate techniques you
should employ when using pointcuts in your application.

•	 AOP framework services: The Spring Framework fully supports configuring AOP
transparently and declaratively. We look at three ways (the ProxyFactoryBean
class, the aop namespace, and @AspectJ-style annotations) to inject declaratively
defined AOP proxies into your application objects as collaborators, thus making your
application completely unaware that it is working with advised objects.

•	 Integrating AspectJ: AspectJ is a fully featured AOP implementation. The main
difference between AspectJ and Spring AOP is that AspectJ applies advice to target
objects via weaving (either compile-time or load-time weaving), while Spring AOP is
based on proxies. The feature set of AspectJ is much greater than that of Spring AOP,
but it is much more complicated to use than Spring. AspectJ is a good solution when
you find that Spring AOP lacks a feature you need.

AOP Concepts
As with most technologies, AOP comes with its own specific set of concepts and terms, and it’s important to
understand what they mean. The following are the core concepts of AOP:

•	 Joinpoints: A joinpoint is a well-defined point during the execution of your
application. Typical examples of joinpoints include a call to a method, the method
invocation itself, class initialization, and object instantiation. Joinpoints are a core
concept of AOP and define the points in your application at which you can insert
additional logic using AOP.

•	 Advice: The code that is executed at a particular joinpoint is the advice, defined by a
method in your class. There are many types of advice, such as before, which executes
before the joinpoint, and after, which executes after it.

•	 Pointcuts: A pointcut is a collection of joinpoints that you use to define when advice
should be executed. By creating pointcuts, you gain fine-grained control over how
you apply advice to the components in your application. As mentioned previously, a
typical joinpoint is a method invocation, or the collection of all method invocations
in a particular class. Often you can compose pointcuts in complex relationships to
further constrain when advice is executed.

•	 Aspects: An aspect is the combination of advice and pointcuts encapsulated in a
class. This combination results in a definition of the logic that should be included in
the application and where it should execute.

Chapter 5 ■ Introducing Spring AOP

213

•	 Weaving: This is the process of inserting aspects into the application code at the
appropriate point. For compile-time AOP solutions, this weaving is generally done
at build time. Likewise, for runtime AOP solutions, the weaving process is executed
dynamically at runtime. AspectJ supports another weaving mechanism called load-
time weaving (LTW), in which it intercepts the underlying JVM class loader and
provides weaving to the bytecode when it is being loaded by the class loader.

•	 Target: An object whose execution flow is modified by an AOP process is referred to
as the target object. Often you see the target object referred to as the advised object.

•	 Introduction: This is the process by which you can modify the structure of an object
by introducing additional methods or fields to it. You can use introduction AOP to
make any object implement a specific interface without needing the object’s class to
implement that interface explicitly.

Don’t worry if you find these concepts confusing; this will all become clear when you see some
examples. Also, be aware that you are shielded from many of these concepts in Spring AOP, and some are not
relevant because of Spring’s choice of implementation. We will discuss each of these features in the context
of Spring as we progress through the chapter.

Types of AOP
As we mentioned earlier, there are two distinct types of AOP: static and dynamic. The difference between
them is really the point at which the weaving process occurs and how this process is achieved.

Using Static AOP
In static AOP, the weaving process forms another step in the build process for an application. In Java terms,
you achieve the weaving process in a static AOP implementation by modifying the actual bytecode of your
application, changing and extending the application code as necessary. This is a well-performing way of
achieving the weaving process because the end result is just Java bytecode, and you do not perform any special
tricks at runtime to determine when advice should be executed. The drawback of this mechanism is that any
modifications you make to the aspects, even if you simply want to add another joinpoint, require you to recompile
the entire application. AspectJ’s compile-time weaving is an excellent example of a static AOP implementation.

Using Dynamic AOP
Dynamic AOP implementations, such as Spring AOP, differ from static AOP implementations in that the
weaving process is performed dynamically at runtime. How this is achieved is implementation-dependent, but
as you will see, Spring’s approach is to create proxies for all advised objects, allowing for advice to be invoked
as required. The drawback of dynamic AOP is that, typically, it does not perform as well as static AOP, but the
performance is steadily increasing. The major benefit of dynamic AOP implementations is the ease with which
you can modify the entire aspect set of an application without needing to recompile the main application code.

Choosing an AOP Type
Choosing whether to use static or dynamic AOP is quite a hard decision. Both have their own benefits, and
you are not restricted to using only one type. In general, static AOP implementations have been around
longer and tend to have more feature-rich implementations, with a greater number of available joinpoints.
Typically, if performance is absolutely critical or you need an AOP feature that is not implemented in Spring,

Chapter 5 ■ Introducing Spring AOP

214

you will want to use AspectJ. In most other cases, Spring AOP is ideal. Keep in mind that many AOP-based
solutions such as transaction management are already provided for you by Spring, so check the framework
capabilities before rolling your own! As always, let the requirements of your application drive your choice of
AOP implementation, and don’t restrict yourself to a single implementation if a combination of technologies
would better suit your application. In general, Spring AOP is less complex than AspectJ, so it tends to be an
ideal first choice.

AOP in Spring
Spring’s AOP implementation can be viewed as two logical parts. The first part is the AOP core, which
provides fully decoupled, purely programmatic AOP functionality (also known as the Spring AOP API). The
second part of the AOP implementation is the set of framework services that make AOP easier to use in your
applications. On top of this, other components of Spring, such as the transaction manager and EJB helper
classes, provide AOP-based services to simplify the development of your application.

The AOP Alliance
The AOP Alliance (http://aopalliance.sourceforge.net/) is a joint effort among representatives of
many open source AOP projects to define a standard set of interfaces for AOP implementations. Wherever
applicable, Spring uses the AOP Alliance interfaces rather than defining its own. This allows you to reuse
certain advice across multiple AOP implementations that support the AOP Alliance interfaces.

Hello World in AOP
Before we dive into discussing the Spring AOP implementation in detail, let’s take a look at an example.
We’ll see how to change the typical Hello World example, and we’ll turn to movies for inspiration. We’ll write
a class named Agent, and we’ll implement it to print Bond. When using AOP, the instance of this class will be
transformed at runtime to print James Bond!. The following code depicts the Agent class:

package com.apress.prospring5.ch5;

public class Agent {
 public void speak() {
 System.out.print("Bond");
 }
}

With the name-printing method implemented, let’s advise—which in AOP terms means add advice
to—this method so that speak() prints James Bond! instead.

To do this, we need to execute code prior to the existing body executing (to write James), and we need
to execute code after that method body executes (to write !). In AOP terms, what we need is around advice,
which executes around a joinpoint. In this case, the joinpoint is the invocation of the speak() method.
The following code snippet shows the code of the AgentDecorator class, which acts as the around-advice
implementation:

package com.apress.prospring5.ch5;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

http://aopalliance.sourceforge.net/

Chapter 5 ■ Introducing Spring AOP

215

public class AgentDecorator implements MethodInterceptor {
 public Object invoke(MethodInvocation invocation) throws Throwable {
 System.out.print("James ");

 Object retVal = invocation.proceed();

 System.out.println("!");
 return retVal;
 }
}

The MethodInterceptor interface is a standard AOP Alliance interface for implementing around
advice for method invocation joinpoints. The MethodInvocation object represents the method invocation
that is being advised, and using this object, we control when the method invocation is allowed to proceed.
Because this is around advice, we are capable of performing actions before the method is invoked as
well as after it is invoked but before it returns. So in the previous code snippet, we simply write James
to console output, invoke the method with a call to invocation.proceed(), and then write ! to console
output.

The final step in this sample is to weave the AgentDecorator advice (more specifically, the invoke()
method) into the code. To do this, we create an instance of Agent, the target, and then create a proxy of this
instance, instructing the proxy factory to weave in the AgentDecorator advice. This is shown here:

package com.apress.prospring5.ch5;

import org.springframework.aop.framework.ProxyFactory;

public class AgentAOPDemo {
 public static void main(String... args) {
 Agent target = new Agent();

 ProxyFactory pf = new ProxyFactory();
 pf.addAdvice(new AgentDecorator());
 pf.setTarget(target);

 Agent proxy = (Agent) pf.getProxy();

 target.speak();
 System.out.println("");
 proxy.speak();
 }
}

The important part here is that we use the ProxyFactory class to create the proxy of the target object,
weaving in the advice at the same time. We pass the AgentDecorator advice to the ProxyFactory with a
call to addAdvice() and specify the target for weaving with a call to setTarget(). Once the target is set and
some advice is added to the ProxyFactory, we generate the proxy with a call to getProxy(). Finally, we call
speak() on both the original target object and the proxy object. Running the previous code results in the
following output:

Bond
James Bond!

Chapter 5 ■ Introducing Spring AOP

216

As you can see, calling speak() on the untouched target object results in a standard method invocation,
and no extra content is written to console output. However, the invocation of the proxy causes the code in
AgentDecorator to execute, creating the desired James Bond! output. From this example, you can see that
the advised class had no dependencies on Spring or the AOP Alliance interfaces; the beauty of Spring AOP,
and indeed AOP in general, is that you can advise almost any class, even if that class was created without
AOP in mind. The only restriction, in Spring AOP at least, is that you can’t advise final classes because they
cannot be overridden and therefore cannot be proxied.

Spring AOP Architecture
The core architecture of Spring AOP is based on proxies. When you want to create an advised instance of
a class, you must use ProxyFactory to create a proxy instance of that class, first providing ProxyFactory
with all the aspects that you want to be woven into the proxy. Using ProxyFactory is a purely programmatic
approach to creating AOP proxies. For the most part, you don’t need to use this in your application; instead,
you can rely on the declarative AOP configuration mechanisms provided by Spring (the ProxyFactoryBean
class, the aop namespace, and @AspectJ-style annotations) to take advantage of declarative proxy creation.
However, it is important to understand how proxy creation works, so we will first show the programmatic
approach to proxy creation and then dive into Spring’s declarative AOP configurations.

At runtime, Spring analyzes the crosscutting concerns defined for the beans in ApplicationContext
and generates proxy beans (which wrap the underlying target bean) dynamically. Instead of calling the target
bean directly, callers are injected with the proxied bean. The proxy bean then analyzes the running condition
(that is, joinpoint, pointcut, or advice) and weaves in the appropriate advice accordingly. Figure 5-1
shows a high-level view of a Spring AOP proxy in action. Internally, Spring has two proxy implementations:
JDK dynamic proxies and CGLIB proxies. By default, when the target object to be advised implements an
interface, Spring will use a JDK dynamic proxy to create proxy instances of the target. However, when the
advised target object doesn’t implement an interface (for example, it’s a concrete class), CGLIB will be used
for proxy instance creation. One major reason is that the JDK dynamic proxy supports only the proxying of
interfaces. We discuss proxies in detail in the section “Understanding Proxies.”

Joinpoints in Spring
One of the more noticeable simplifications in Spring AOP is that it supports only one joinpoint type:
method invocation. At first glance, this might seem like a severe limitation if you are familiar with other AOP
implementations such as AspectJ, which supports many more joinpoints, but in fact this makes Spring more
accessible.

Figure 5-1.  Spring AOP proxy in action

Chapter 5 ■ Introducing Spring AOP

217

The method invocation joinpoint is by far the most useful joinpoint available, and using it, you can
achieve many of the tasks that make AOP useful in day-to-day programming. Remember that if you need
to advise some code at a joinpoint other than a method invocation, you can always use Spring and AspectJ
together.

Aspects in Spring
In Spring AOP, an aspect is represented by an instance of a class that implements the Advisor interface.
Spring provides convenience Advisor implementations that you can reuse in your applications, thus
removing the need for you to create custom Advisor implementations. There are two subinterfaces of
Advisor: PointcutAdvisor and IntroductionAdvisor.

The PointcutAdvisor interface is implemented by all Advisor implementations that use pointcuts to
control the advice applied to joinpoints. In Spring, introductions are treated as special kinds of advice, and
by using the IntroductionAdvisor interface, you can control those classes to which an introduction applies.

We discuss PointcutAdvisor implementations in detail in the upcoming section “Advisors and
Pointcuts in Spring.”

About the ProxyFactory Class
The ProxyFactory class controls the weaving and proxy creation process in Spring AOP. Before you can
create a proxy, you must specify the advised or target object. You can do this, as you saw earlier, by using
the setTarget() method. Internally, ProxyFactory delegates the proxy creation process to an instance
of DefaultAopProxyFactory, which in turn delegates to either Cglib2AopProxy or JdkDynamicAopProxy,
depending on the settings of your application. We discuss proxy creation in more detail later in this chapter.

The ProxyFactory class provides the addAdvice() method that you saw in the previous code sample
for cases where you want advice to apply to the invocation of all methods in a class, not just a selection.
Internally, addAdvice() wraps the advice you pass it in an instance of DefaultPointcutAdvisor, which
is the standard implementation of PointcutAdvisor, and configures it with a pointcut that includes all
methods by default. When you want more control over the Advisor that is created or when you want to
add an introduction to the proxy, create the Advisor yourself and use the addAdvisor() method of the
ProxyFactory.

You can use the same ProxyFactory instance to create many proxies, each with different aspects.
To help with this, ProxyFactory has removeAdvice() and removeAdvisor() methods, which allow you
to remove any advice or advisors from the ProxyFactory that you previously passed to it. To check whether
a ProxyFactory has particular advice attached to it, call adviceIncluded(), passing in the advice object for
which you want to check.

Creating Advice in Spring
Spring supports six flavors of advice, described in Table 5-1.

Chapter 5 ■ Introducing Spring AOP

218

Table 5-1.  Advice Types in Spring

Advice Name Interface Description

Before org.springframework.aop.
MethodBefore
Advice

Using before advice, you can perform custom processing
before a joinpoint executes. Because a joinpoint in Spring
is always a method invocation, this essentially allows you
to perform preprocessing before the method executes.
Before advice has full access to the target of the method
invocation as well as the arguments passed to the method,
but it has no control over the execution of the method itself.
If the before advice throws an exception, further execution
of the interceptor chain (as well as the target method) will
be aborted, and the exception will propagate back up the
interceptor chain.

After-Returning org.springframework.aop.
AfterReturning
Advice

After-returning advice is executed after the method
invocation at the joinpoint has finished executing and has
returned a value. The after- returning advice has access to
the target of the method invocation, the arguments passed
to the method, and the return value. Because the method
has already executed when the after-returning advice is
invoked, it has no control over the method invocation at
all. If the target method throws an exception, the after-
returning advice will not be run, and the exception will be
propagated up to the call stack as usual.

After(finally) org.springframework.aop.
AfterAdvice

After-returning advice is executed only when the advised
method completes normally. However, the after (finally)
advice will be executed no matter the result of the advised
method. The advice is executed even when the advised
method fails and an exception is thrown.

Around org.aopalliance.
intercept.Method
Interceptor

In Spring, around advice is modeled using the AOP Alliance
standard of a method interceptor. Your advice is allowed to
execute before and after the method invocation, and you can
control the point at which the method invocation is allowed
to proceed. You can choose to bypass the method altogether
if you want, providing your own implementation of the logic.

Throws org.springframework.aop.
ThrowsAdvice

Throws advice is executed after a method invocation
returns, but only if that invocation threw an exception. It is
possible for throws advice to catch only specific exceptions,
and if you choose to do so, you can access the method
that threw the exception, the arguments passed into the
invocation, and the target of the invocation.

Introduction org.springframework.aop.
IntroductionInterceptor

Spring models introductions as special types of
interceptors. Using an introduction interceptor, you can
specify the implementation for methods that are being
introduced by the advice.

Chapter 5 ■ Introducing Spring AOP

219

Interfaces for Advice
From our previous discussion of the ProxyFactory class, recall that advice is added to a proxy either directly,
by using the addAdvice() method, or indirectly, by using an Advisor implementation with the addAdvisor()
method. The main difference between advice and an advisor is that an advisor carries advice with the
associated pointcut, which provides more fine-grained control on which joinpoints the advice will intercept.
With regard to advice, Spring has created a well-defined hierarchy for Advice interfaces. This hierarchy is
based on the AOP Alliance interfaces and is shown in detail in Figure 5-2.

This kind of hierarchy has the benefit of not only being sound OO design but also enabling you to deal
with advice types generically, such as by using a single addAdvice() method on the ProxyFactory, and you
can add new advice types easily without having to modify the ProxyFactory class.

Creating Before Advice
Before advice is one of the most useful advice types available in Spring. This advice can modify the arguments
passed to a method and can prevent the method from executing by raising an exception. In this section, we
show you two simple examples of using before advice: one that writes a message to console output containing
the name of the method before the method executes and another that you can use to restrict access to methods
on an object. In the following code snippet, you can see the code for the SimpleBeforeAdvice class:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.MethodBeforeAdvice;
import org.springframework.aop.framework.ProxyFactory;

public class SimpleBeforeAdvice implements MethodBeforeAdvice {
 public static void main(String... args) {
 Guitarist johnMayer = new Guitarist();

 ProxyFactory pf = new ProxyFactory();
 pf.addAdvice(new SimpleBeforeAdvice());
 pf.setTarget(johnMayer);

 Guitarist proxy = (Guitarist) pf.getProxy();

 proxy.sing();
 }

Figure 5-2.  Interfaces for Spring advice types as depicted in IntelliJ IDEA

Chapter 5 ■ Introducing Spring AOP

220

 @Override
 public void before(Method method, Object[] args, Object target)
 throws Throwable {
 System.out.println("Before '" + method.getName() + "', tune guitar.");
 }
}

Class Guitarist is simple and has just one method, sing(), that prints out a lyric in the console.
It extends the Singer interface, which will be used all throughout the book.

package com.apress.prospring5.ch5;
import com.apress.prospring5.ch2.common.Singer;

public class Guitarist implements Singer {

 private String lyric="You're gonna live forever in me";
@Override
 public void sing(){
 System.out.println(lyric);
 }
}

Basically, the advice makes sure the johnMayer bean tunes his guitar before singing. In this code, you
can see that we have advised an instance of the Guitarist class that we created earlier with an instance of the
SimpleBeforeAdvice class. The MethodBeforeAdvice interface, which is implemented by SimpleBeforeAdvice,
defines a single method, before(), which the AOP framework calls before the method at the joinpoint is
invoked. Remember that, for now, we are using the default pointcut provided by the addAdvice() method,
which matches all methods in a class. The before() method is passed three arguments: the method that is to
be invoked, the arguments that will be passed to that method, and the Object that is the target of the invocation.
The SimpleBeforeAdvice class uses the Method argument of the before() method to write a message to console
output containing the name of the method to be invoked. Running this example gives we the following output:

Before 'sing', tune guitar.
You're gonna live forever in me

As you can see, the output from the call to sing() is shown, but just before it, you can see the output
generated by SimpleBeforeAdvice.

Securing Method Access by Using Before Advice
In this section, we are going to implement before advice that checks user credentials before allowing the
method invocation to proceed. If the user credentials are invalid, an exception is thrown by the advice, thus
preventing the method from executing. The example in this section is simplistic. It allows users to authenticate
with any password, and it also allows only a single, hard-coded user access to the secured methods. However, it
does illustrate how easy it is to use AOP to implement a crosscutting concern such as security.

 T his is just an example demonstrating the use of before advice. For securing the method execution of
Spring beans, the Spring Security project already provides comprehensive support; you don’t need to implement
the features by yourself.

Chapter 5 ■ Introducing Spring AOP

221

The following code snippet shows the SecureBean class. This is the class that we will be securing
using AOP.

package com.apress.prospring5.ch5;

public class SecureBean {
 public void writeSecureMessage() {
 System.out.println("Every time I learn something new, "
 + "it pushes some old stuff out of my brain");
 }
}

The SecureBean class imparts a small pearl of wisdom from Homer Simpson, and it’s wisdom that we
don’t want everyone to see. Because this example requires users to authenticate, we are somehow going to
need to store their details. The following code snippet shows the UserInfo class we can use to store a user’s
credentials:

package com.apress.prospring5.ch5;

public class UserInfo {
 private String userName;
 private String password;

 public UserInfo(String userName, String password) {
 this.userName = userName;
 this.password = password;
 }

 public String getPassword() {
 return password;
 }
 public String getUserName() {
 return userName;
 }
}

This class simply holds data about the user so that we can do something useful with it. The following
code snippet shows the SecurityManager class, which is responsible for authenticating users and storing
their credentials for later retrieval:

package com.apress.prospring5.ch5;

public class SecurityManager {
 private static ThreadLocal<UserInfo>
 threadLocal = new ThreadLocal<>();

 public void login(String userName, String password) {
 threadLocal.set(new UserInfo(userName, password));
 }

 public void logout() {
 threadLocal.set(null);
 }

Chapter 5 ■ Introducing Spring AOP

222

 public UserInfo getLoggedOnUser() {
 return threadLocal.get();
 }
}

The application uses the SecurityManager class to authenticate a user and, later, to retrieve the details
of the currently authenticated user. The application authenticates a user by using the login() method.
This is only a mock implementation. In a real application, the login() method would probably check the
supplied credentials against a database or LDAP directory, but here we can assume that all users are allowed
to authenticate. The login() method creates a UserInfo object for the user and stores it on the current
thread by using ThreadLocal. The logout() method sets any value that might be stored in ThreadLocal to
null. Finally, the getLoggedOnUser() method returns the UserInfo object for the currently authenticated
user. This method returns null if no user is authenticated.

To check whether a user is authenticated and, if so, whether the user is permitted to access the methods
on Secure-Bean, we need to create advice that executes before the method and checks the UserInfo object
returned by Security-Manager.getLoggedOnUser() against the set of credentials for allowed users. The
code for this advice, SecurityAdvice, is shown here:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.MethodBeforeAdvice;

public class SecurityAdvice implements MethodBeforeAdvice {
 private SecurityManager securityManager;

 public SecurityAdvice() {
 this.securityManager = new SecurityManager();
 }

 @Override
 public void before(Method method, Object[] args, Object target)
 throws Throwable {
 UserInfo user = securityManager.getLoggedOnUser();

 if (user == null) {
 System.out.println("No user authenticated");
 throw new SecurityException(
 "You must login before attempting to invoke the method: "
 + method.getName());
 } else if ("John".equals(user.getUserName())) {
 System.out.println("Logged in user is John - OKAY!");
 } else {
 System.out.println("Logged in user is " + user.getUserName()
 + " NOT GOOD :(");
 throw new SecurityException("User " + user.getUserName()
 + " is not allowed access to method " + method.getName());
 }
 }
}

Chapter 5 ■ Introducing Spring AOP

223

The SecurityAdvice class creates an instance of SecurityManager in its constructor and then stores
this instance in a field. You should note that the application and SecurityAdvice don’t need to share the
same SecurityManager instance because all data is stored with the current thread by using ThreadLocal.
In the before() method, we perform a simple check to see whether the username of the authenticated user
is John. If so, we allow the user access; otherwise, an exception is raised. Also notice that we check for a null
UserInfo object, which indicates that the current user is not authenticated.

In the following code snippet, you can see a sample application that uses the SecurityAdvice class to
secure the SecureBean class:

package com.apress.prospring5.ch5;

import org.springframework.aop.framework.ProxyFactory;

public class SecurityDemo {
 public static void main(String... args) {
 SecurityManager mgr = new SecurityManager();

 SecureBean bean = getSecureBean();

 mgr.login("John", "pwd");
 bean.writeSecureMessage();
 mgr.logout();

 try {
 mgr.login("invalid user", "pwd");
 bean.writeSecureMessage();
 } catch(SecurityException ex) {
 System.out.println("Exception Caught: " + ex.getMessage());
 } finally {
 mgr.logout();
 }

 try {
 bean.writeSecureMessage();
 } catch(SecurityException ex) {
 System.out.println("Exception Caught: " + ex.getMessage());
 }
 }

 private static SecureBean getSecureBean() {
 SecureBean target = new SecureBean();

 SecurityAdvice advice = new SecurityAdvice();

 ProxyFactory factory = new ProxyFactory();
 factory.setTarget(target);
 factory.addAdvice(advice);

 SecureBean proxy = (SecureBean)factory.getProxy();

 return proxy;
 }
}

Chapter 5 ■ Introducing Spring AOP

224

In the getSecureBean() method, we create a proxy of the SecureBean class that is advised using an
instance of SecurityAdvice. This proxy is returned to the caller. When the caller invokes any method on this
proxy, the call is first routed to the instance of SecurityAdvice for a security check. In the main() method,
we test three scenarios, invoking the SecureBean.writeSecureMessage() method with two sets of user
credentials and then no user credentials at all. Because SecurityAdvice allows method calls to proceed only
if the currently authenticated user is John, we can expect that the only successful scenario in the previous
code is the first. Running this example gives the following output:

Logged in user is John - OKAY!
Every time I learn something new, it pushes some old stuff out of my brain
Logged in user is invalid user NOT GOOD :(
Exception Caught: User invalid user is not allowed access to method
 writeSecureMessage
No user authenticated
Exception Caught: You must login before attempting to invoke the method:
 writeSecureMessage

As you can see, only the first invocation of SecureBean.writeSecureMessage() was allowed to
proceed. The remaining invocations were prevented by the SecurityException exception thrown by
SecurityAdvice. This example is simple, but it does highlight the usefulness of before advice. Security is
a typical example of before advice, but we also find it useful when a scenario demands the modification of
arguments passed to the method.

Creating After-Returning Advice
After-returning advice is executed after the method invocation at the joinpoint returns. Given that the
method has already executed, you can’t change the arguments that are passed to it. Although you can read
these arguments, you can’t change the execution path, and you can’t prevent the method from executing.
These restrictions are expected; what is not expected, however, is that you cannot modify the return value
in the after-returning advice. When using after-returning advice, you are limited to adding processing.
Although after-returning advice cannot modify the return value of a method invocation, it can throw an
exception that can be sent up the stack instead of the return value.

In this section, we look at two examples of using after-returning advice in an application. The first example
simply writes a message to console output after the method has been invoked. The second example shows
how you can use after-returning advice to add error checking to a method. Consider a class, KeyGenerator,
which generates keys for cryptographic purposes. Many cryptographic algorithms suffer from the problem that
a small number of keys are considered weak. A weak key is any key whose characteristics make it significantly
easier to derive the original message without knowing the key. For the DES algorithm, there are a total of 256
possible keys. From this key space, 4 keys are considered weak, and another 12 are considered semiweak.
Although the chance of one of these keys being generated randomly is small (1 in 252), testing for the keys is so
simple that it’s worthwhile to do so. In the second example of this section, we build after-returning advice that
checks for weak keys generated by KeyGenerator, raising an exception if one is found.

  For more information on weak keys and cryptography at large, we recommend a visit to William
Stallings’ site at http://williamstallings.com/Cryptography/.

In the following code snippet, you can see the SimpleAfterReturningAdvice class, which demonstrates
the use of after-returning advice by writing a message to console output after a method has returned. The
previously introduced class Guitarist is reused here.

http://williamstallings.com/Cryptography/

Chapter 5 ■ Introducing Spring AOP

225

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.AfterReturningAdvice;
import org.springframework.aop.framework.ProxyFactory;

public class SimpleAfterReturningAdvice implements
 AfterReturningAdvice {
 public static void main(String... args) {
 Guitarist target = new Guitarist();

 ProxyFactory pf = new ProxyFactory();

 pf.addAdvice(new SimpleAfterReturningAdvice());
 pf.setTarget(target);

 Guitarist proxy = (Guitarist) pf.getProxy();
 proxy.sing();
 }

 @Override
 public void afterReturning(Object returnValue, Method method,
 Object[] args, Object target) throws Throwable {

 System.out.println("After '" + method.getName()+ "' put down guitar.");
 }
}

Notice that the AfterReturningAdvice interface declares a single method, afterReturning(), which
is passed the return value of method invocation, a reference to the method that was invoked, the arguments
that were passed to the method, and the target of the invocation. Running this example results in the
following output:

You're gonna live forever in me
After 'sing' put down guitar.

The output is similar to that of the before-advice example except that, as expected, the message written
by the advice appears after the message written by the writeMessage() method. A good use of after-returning
advice is to perform some additional error checking when it is possible for a method to return an invalid value.

In the scenario we described earlier, it is possible for a cryptographic key generator to generate a key
that is considered weak for a particular algorithm. Ideally, the key generator would check for these weak
keys, but since the chance of these keys arising is often very small, many generators do not check. By using
after-returning advice, we can advise the method that generates the key and performs this additional check.
The following is an extremely primitive key generator:

package com.apress.prospring5.ch5;

import java.util.Random;

public class KeyGenerator {
 protected static final long WEAK_KEY = 0xFFFFFFF0000000L;
 protected static final long STRONG_KEY = 0xACDF03F590AE56L;

Chapter 5 ■ Introducing Spring AOP

226

 private Random rand = new Random();

 public long getKey() {
 int x = rand.nextInt(3);

 if (x == 1) {
 return WEAK_KEY;
 }

 return STRONG_KEY;
 }
}

This key generator should not be considered secure. It’s purposely simple for this example and has a
one-in-three chance of producing a weak key. In the following snippet, you can see WeakKeyCheckAdvice,
which checks to see whether the result of the getKey() method is a weak key:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;
import org.springframework.aop.AfterReturningAdvice;

import static com.apress.prospring5.ch5.KeyGenerator.WEAK_KEY;

public class WeakKeyCheckAdvice implements AfterReturningAdvice {
 @Override
 public void afterReturning(Object returnValue, Method method,
 Object args,Object target) throws Throwable {

 if ((target instanceof KeyGenerator)
 && ("getKey".equals(method.getName()))) {
 long key = ((Long) returnValue).longValue();

 if (key == WEAK_KEY) {
 throw new SecurityException(
 "Key Generator generated a weak key. Try again");
 }
 }
 }
}

In the afterReturning() method, we check first to see whether the method that was executed at the
joinpoint was the getKey() method. If so, we then check the result value to see whether it was the weak key.
If we find that the result of the getKey() method was a weak key, then we throw a SecurityException to
inform the calling code of this. The following code snippet shows a simple application that demonstrates the
use of this advice:

package com.apress.prospring5.ch5;

import org.springframework.aop.framework.ProxyFactory;

public class AfterAdviceDemo {
 private static KeyGenerator getKeyGenerator() {
 KeyGenerator target = new KeyGenerator();

Chapter 5 ■ Introducing Spring AOP

227

 ProxyFactory factory = new ProxyFactory();
 factory.setTarget(target);
 factory.addAdvice(new WeakKeyCheckAdvice());

 return (KeyGenerator)factory.getProxy();
 }

 public static void main(String... args) {
 KeyGenerator keyGen = getKeyGenerator();

 for(int x = 0; x < 10; x++) {
 try {
 long key = keyGen.getKey();
 System.out.println("Key: " + key);
 } catch(SecurityException ex) {
 System.out.println("Weak Key Generated!");
 }
 }
 }
}

After creating an advised proxy of the KeyGenerator target, the AfterAdviceDemo class attempts to
generate ten keys. If a SecurityException is thrown during a single generation, a message is written
to the console, informing the user that a weak key was generated; otherwise, the generated key is displayed.
A single run of this on our machine generated the following output:

Key: 48658904092028502
Weak Key Generated!
Key: 48658904092028502
Weak Key Generated!
Weak Key Generated!
Weak Key Generated!
Key: 48658904092028502
Key: 48658904092028502
Key: 48658904092028502
Key: 48658904092028502

As you can see, the KeyGenerator class sometimes generates weak keys, as expected, and
WeakKeyCheckAdvice ensures that SecurityException is raised whenever a weak key is encountered.

Creating Around Advice
Around advice functions like a combination of before and after advice, with one big difference: you can
modify the return value. Not only that, but you can prevent the method from executing. This means that
by using around advice, you can essentially replace the entire implementation of a method with new code.
Around advice in Spring is modeled as an interceptor using the MethodInterceptor interface. There are
many uses for around advice, and you will find that many features of Spring are created by using method
interceptors, such as the remote proxy support and the transaction management features. Method
interception is also a good mechanism for profiling the execution of your application, and it forms the basis
of the example in this section.

Chapter 5 ■ Introducing Spring AOP

228

We are not going to see how to build a simple example for method interception; instead, we refer to the
first example using the Agent class, which shows how to use a basic method interceptor to write a message
on either side of a method invocation. Notice from this earlier example that the invoke() method of the
MethodInterceptor interface does not provide the same set of arguments as MethodBeforeAdvice and
AfterReturningAdvice. The method is not passed the target of the invocation, the method that was invoked,
or the arguments used. However, you can access this data by using the MethodInvocation object that is
passed to invoke(). You will see a demonstration of this in the following example.

For this example, we want to achieve some way to advise a class so we get basic information about the
runtime performance of its methods. Specifically, we want to know how long the method took to execute. To
achieve this, we can use the StopWatch class included in Spring, and we clearly need a MethodInterceptor,
because we need to start StopWatch before the method invocation and stop it right afterward.

The following code snippet shows the WorkerBean class that we are going to profile by using the
StopWatch class and around advice:

package com.apress.prospring5.ch5;

public class WorkerBean {
 public void doSomeWork(int noOfTimes) {
 for(int x = 0; x < noOfTimes; x++) {
 work();
 }
 }

 private void work() {
 System.out.print("");
 }
}

This is a simple class. The doSomeWork() method accepts a single argument, noOfTimes, and calls the
work() method exactly the number of times specified by this method. The work() method simply has a
dummy call to System.out.print(), which passes in an empty String. This prevents the compiler from
optimizing the work() method and thus the call to work().

In the following snippet, you can see the ProfilingInterceptor class that uses the StopWatch class to
profile method invocation times. We use this interceptor to profile the WorkerBean class shown previously.

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;
import org.springframework.util.StopWatch;

public class ProfilingInterceptor implements MethodInterceptor {
 @Override
 public Object invoke(MethodInvocation invocation) throws Throwable {
 StopWatch sw = new StopWatch();
 sw.start(invocation.getMethod().getName());

 Object returnValue = invocation.proceed();

Chapter 5 ■ Introducing Spring AOP

229

 sw.stop();
 dumpInfo(invocation, sw.getTotalTimeMillis());
 return returnValue;
 }

 private void dumpInfo(MethodInvocation invocation, long ms) {
 Method m = invocation.getMethod();
 Object target = invocation.getThis();
 Object args = invocation.getArguments();

 System.out.println("Executed method: " + m.getName());
 System.out.println("On object of type: " +
 target.getClass().getName());

 System.out.println("With arguments:");
 for (int x = 0; x < args.length; x++) {
 System.out.print(" > " + argsx);
 }
 System.out.print("\n");

 System.out.println("Took: " + ms + " ms");
 }
}

In the invoke() method, which is the only method in the MethodInterceptor interface, we create an
instance of StopWatch and then start it running immediately, allowing the method invocation to proceed with a
call to MethodInvocation.proceed(). As soon as the method invocation has ended and the return value has been
captured, we stop StopWatch and pass the total number of milliseconds taken, along with the MethodInvocation
object, to the dumpInfo() method. Finally, we return the Object returned by MethodInvocation.proceed() so
that the caller obtains the correct return value. In this case, we did not want to disrupt the call stack in any way;
we were simply acting as an eavesdropper on the method invocation. If we had wanted, we could have changed
the call stack completely, redirecting the method call to another object or a remote service, or we could simply
have reimplemented the method logic inside the interceptor and returned a different return value.

The dumpInfo() method simply writes some information about the method call to console output,
along with the time taken for the method to execute. In the first three lines of dumpInfo(), you can see how
you can use the MethodInvocation object to determine the method that was invoked, the original target of
the invocation, and the arguments used.

The following code sample shows the ProfilingDemo class that first advises an instance of WorkerBean
with a ProfilingInterceptor and then profiles the doSomeWork() method.

package com.apress.prospring5.ch5;

import org.springframework.aop.framework.ProxyFactory;

public class ProfilingDemo {
 public static void main(String... args) {
 WorkerBean bean = getWorkerBean();
 bean.doSomeWork(10000000);
 }

 private static WorkerBean getWorkerBean() {
 WorkerBean target = new WorkerBean();

Chapter 5 ■ Introducing Spring AOP

230

 ProxyFactory factory = new ProxyFactory();
 factory.setTarget(target);
 factory.addAdvice(new ProfilingInterceptor());

 return (WorkerBean)factory.getProxy();
 }
}

Running this example on our machine produces the following output:

Executed method: doSomeWork
On object of type: com.apress.prospring5.ch5.WorkerBean
With arguments:
 > 10000000
Took: 1139 ms

From this output, you can see which method was executed, what the class of the target was, what
arguments were passed in, and how long the invocation took.

Creating Throws Advice
Throws advice is similar to after-returning advice in that it executes after the joinpoint, which is always a
method invocation, but throws advice executes only if the method throws an exception. Throws advice is
also similar to after-returning advice in that it has little control over program execution. If you are using
throws advice, you can’t choose to ignore the exception that was raised and return a value for the method
instead. The only modification you can make to the program flow is to change the type of exception that is
thrown. This is quite a powerful concept and can make application development much simpler. Consider a
situation where you have an API that throws an array of poorly defined exceptions. Using throws advice, you
can advise all classes in that API and reclassify the exception hierarchy into something more manageable
and descriptive. Of course, you can also use throws advice to provide centralized error logging across your
application, thus reducing the amount of error-logging code that is spread across your application.

As you saw from the diagram in Figure 5-2, throws advice is implemented by the ThrowsAdvice
interface. Unlike the interfaces you have seen so far, ThrowsAdvice does not define any methods; instead,
it is simply a marker interface used by Spring. The reason for this is that Spring allows typed throws advice,
which allows you to define exactly which Exception types your throws advice should catch. Spring achieves
this by detecting methods with certain signatures using reflection. Spring looks for two distinct method
signatures. This is best demonstrated with a simple example. The following code snippet shows a simple
bean with two methods that both simply throw exceptions of different types:

package com.apress.prospring5.ch5;

public class ErrorBean {
 public void errorProneMethod() throws Exception {
 throw new Exception("Generic Exception");
 }

 public void otherErrorProneMethod() throws IllegalArgumentException {
 throw new IllegalArgumentException("IllegalArgument Exception");
 }
}

Chapter 5 ■ Introducing Spring AOP

231

Here you can see the SimpleThrowsAdvice class that demonstrates both of the method signatures that
Spring looks for on throws advice:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.ThrowsAdvice;
import org.springframework.aop.framework.ProxyFactory;

public class SimpleThrowsAdvice implements ThrowsAdvice {
 public static void main(String... args) throws Exception {
 ErrorBean errorBean = new ErrorBean();

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(errorBean);
 pf.addAdvice(new SimpleThrowsAdvice());

 ErrorBean proxy = (ErrorBean) pf.getProxy();
 try {
 proxy.errorProneMethod();
 } catch (Exception ignored) {

 }

 try {
 proxy.otherErrorProneMethod();
 } catch (Exception ignored) {

 }
 }

 public void afterThrowing(Exception ex) throws Throwable {
 System.out.println("***");
 System.out.println("Generic Exception Capture");
 System.out.println("Caught: " + ex.getClass().getName());
 System.out.println("***\n");
 }

 public void afterThrowing(Method method, Object args, Object target,
 IllegalArgumentException ex) throws Throwable {
 System.out.println("***");
 System.out.println("IllegalArgumentException Capture");
 System.out.println("Caught: " + ex.getClass().getName());
 System.out.println("Method: " + method.getName());
 System.out.println("***\n");
 }
}

Chapter 5 ■ Introducing Spring AOP

232

The first thing Spring looks for in throws advice is one or more public methods called afterThrowing().
The return type of the methods is unimportant, although we find it best to stick with void because this
method can’t return any meaningful value. The first afterThrowing() method in the SimpleThrowsAdvice
class has a single argument of type Exception. You can specify any type of Exception as the argument,
and this method is ideal when you are not concerned about the method that threw the exception or the
arguments that were passed to it. Note that this method catches Exception and any subtypes of Exception
unless the type in question has its own afterThrowing() method.

In the second afterThrowing() method, we declared four arguments to catch the method that threw
the exception, the arguments that were passed to the method, and the target of the method invocation. The
order of the arguments in this method is important, and you must specify all four. Notice that the second
afterThrowing() method catches exceptions of type IllegalArgumentException (or its subtype). Running
this example produces the following output:

Generic Exception Capture
Caught: java.lang.Exception

IllegalArgumentException Capture
Caught: java.lang.IllegalArgumentException
Method: otherErrorProneMethod

As you can see, when a plain old Exception is thrown, the first afterThrowing() method is invoked,
but when an IllegalArgumentException is thrown, the second afterThrowing() method is invoked. Spring
invokes a afterThrowing() method only for each Exception, and as you saw from the example in class
SimpleThrowsAdvice, Spring uses the method whose signature contains the best match for the Exception
type. In the situation where your after-throwing advice has two afterThrowing() methods, both declared
with the same Exception type but one with a single argument and the other with four arguments, Spring
invokes the four-argument afterThrowing() method.

After-throwing advice is useful in a variety of situations; it allows you to reclassify entire Exception
hierarchies as well as build centralized Exception logging for your application. We have found that after-
throwing advice is particularly useful when we are debugging a live application because it allows us to add
extra logging code without needing to modify the application’s code.

Choosing an Advice Type
In general, choosing an advice type is driven by the requirements of your application, but you should choose
the most specific advice type for your need. That is to say, don’t use around advice when before advice will
do. In most cases, around advice can accomplish everything that the other three advice types can, but it
may be overkill for what you are trying to achieve. By using the most specific type of advice, you are making
the intention of your code clearer, and you are also reducing the possibility of errors. Consider advice that
counts method calls. When you are using before advice, all you need to code is the counter, but with around
advice, you need to remember to invoke the method and return the value to the caller. These small things
can allow spurious errors to creep into your application. By keeping the advice type as focused as possible,
you reduce the scope for errors.

Chapter 5 ■ Introducing Spring AOP

233

Advisors and Pointcuts in Spring
Thus far, all the examples you have seen have used the ProxyFactory class. This class provides a simple way
of obtaining and configuring AOP proxy instances in custom user code. The ProxyFactory.addAdvice()
method is to configure advice for a proxy. This method delegates to addAdvisor() behind the scenes,
creating an instance of DefaultPointcutAdvisor and configuring it with a pointcut that points to all
methods. In this way, the advice is deemed to apply to all methods on the target. In some cases, such as
when you are using AOP for logging purposes, this may be desirable, but in other cases you may want to limit
the methods to which the advice applies.

Of course, you could simply perform the checking in the advice itself that the method being advised
is the correct one, but this approach has several drawbacks. First, hard-coding the list of acceptable
methods into the advice reduces the advice’s reusability. By using pointcuts, you can configure the
methods to which an advice applies, without needing to put this code inside the advice; this clearly
increases the reuse value of the advice. Other drawbacks with hard-coding the list of methods into the
advice are performance related. To inspect the method being advised in the advice, you need to perform
the check each time any method on the target is invoked. This clearly reduces the performance of your
application. When you use pointcuts, the check is performed once for each method, and the results are
cached for later use. The other performance-related drawback of not using pointcuts to restrict the list-
advised methods is that Spring can make optimizations for nonadvised methods when creating a proxy,
which results in faster invocations on nonadvised methods. These optimizations are covered in greater
detail when we discuss proxies later in the chapter.

We strongly recommend that you avoid the temptation to hard-code method checks into your advice
and instead use pointcuts wherever possible to govern the applicability of advice to methods on the target.
That said, in some cases it is necessary to hard-code the checks into your advice. Consider the earlier
example of the after-returning advice designed to catch weak keys generated by the KeyGenerator class. This
kind of advice is closely coupled to the class it is advising, and it is wise to check inside the advice to ensure
that it is applied to the correct type. We refer to this coupling between advice and target as target affinity. In
general, you should use pointcuts when your advice has little or no target affinity. That is, it can apply to any
type or a wide range of types. When your advice has strong target affinity, try to check that the advice is being
used correctly in the advice itself; this helps reduce head-scratching errors when advice is misused. We
also recommend you avoid advising methods needlessly. As you will see, this results in a noticeable drop in
invocation speed that can have a large impact on the overall performance of your application.

The Pointcut Interface
Pointcuts in Spring are created by implementing the Pointcut interface, which is shown here:

package org.springframework.aop;

public interface Pointcut {
 ClassFilter getClassFilter ();
 MethodMatcher getMethodMatcher();
}

As you can see from this code, the Pointcut interface defines two methods, getClassFilter() and
getMethodMatcher(), which return instances of ClassFilter and MethodMatcher, respectively. Obviously, if
you choose to implement the Pointcut interface, you will need to implement these methods. Thankfully, as
you will see in the next section, this is usually unnecessary because Spring provides a selection of Pointcut
implementations that cover most, if not all, of your use cases.

Chapter 5 ■ Introducing Spring AOP

234

When determining whether a Pointcut applies to a particular method, Spring first checks to see
whether the Pointcut interface applies to the method’s class by using the ClassFilter instance returned by
Pointcut.getClassFilter(). Here is the ClassFilter interface:

org.springframework.aop;

public interface ClassFilter {
 boolean matches(Class<?> clazz);
}

As you can see, the ClassFilter interface defines a single method, matches(), that is passed an
instance of Class that represents the class to be checked. As you have no doubt determined, the matches()
method returns true if the pointcut applies to the class and false otherwise.

The MethodMatcher interface is more complex than the ClassFilter interface, as shown here:

package org.springframework.aop;

public interface MethodMatcher {
 boolean matches(Method m, Class<?> targetClass);
 boolean isRuntime();
 boolean matches(Method m, Class<?> targetClass, Object[] args);
}

Spring supports two types of MethodMatcher, static and dynamic, which are determined by the return
value of isRuntime(). Before using MethodMatcher, Spring calls isRuntime() to determine whether
MethodMatcher is static, indicated by a return value of false, or dynamic, indicated by a return value of true.

For a static pointcut, Spring calls the matches(Method, Class<T>) method of the MethodMatcher once
for every method on the target, caching the return value for subsequent invocations of those methods.
In this way, the check for method applicability is performed only once for each method, and subsequent
invocations of a method do not result in an invocation of matches().

With dynamic pointcuts, Spring still performs a static check by using matches(Method, Class<T>)
the first time a method is invoked to determine the overall applicability of a method. However, in
addition to this and provided that the static check returned true, Spring performs a further check for
each invocation of a method by using the matches(Method, Class<T>, Object[]) method. In this
way, a dynamic MethodMatcher can determine whether a pointcut should apply based on a particular
invocation of a method, not just on the method itself. For example, a pointcut needs to be applied
only when the argument is an Integer with a value larger than 100. In this case, the matches(Method,
Class<T>, Object[]) method can be coded to perform further checking on the argument for each
invocation.

Clearly, static pointcuts perform much better than dynamic pointcuts because they avoid the need
for an additional check per invocation. Dynamic pointcuts provide a greater level of flexibility for deciding
whether to apply advice. In general, we recommend you use static pointcuts wherever you can. However, in
cases where your advice adds substantial overhead, it may be wise to avoid any unnecessary invocations of
your advice by using a dynamic pointcut.

In general, you rarely create your own Pointcut implementations from scratch because Spring provides
abstract base classes for both static and dynamic pointcuts. We will look at these base classes, along with
other Pointcut implementations, over the next few sections.

Chapter 5 ■ Introducing Spring AOP

235

Available Pointcut Implementations
As of version 4.0, Spring provides eight implementations of the Pointcut interface: two abstract classes
intended as convenience classes for creating static and dynamic pointcuts, and six concrete classes, one for
each of the following:

•	 Composing multiple pointcuts together

•	 Handling control flow pointcuts

•	 Performing simple name-based matching

•	 Defining pointcuts using regular expressions

•	 Defining pointcuts using AspectJ expressions

•	 Defining pointcuts that look for specific annotations at the class or method level

Table 5-2 summarizes the eight Pointcut interface implementations.

Table 5-2.  Summary of Spring Pointcut Implementations

Implementation Class Description

org.springframework.aop.support.annotation.
AnnotationMatchingPointcut

This implementation looks for a specific Java
annotation on a class or method. This class requires
JDK 5 or higher.

org.springframework.aop.aspectj.AspectJ
ExpressionPointcut

This implementation uses an AspectJ weaver to
evaluate a pointcut expression in AspectJ syntax.

org.springframework.aop.support.Composable
Pointcut

The ComposablePointcut class is used to compose
two or more pointcuts together with operations such
as union() and intersection().

org.springframework.aop.support.Control
FlowPointcut

ControlFlowPointcut is a special case pointcut
that matches all methods within the control flow of
another method, that is, any method that is invoked
either directly or indirectly as the result of another
method being invoked.

org.springframework.aop.support.Dynamic
MethodMatcherPointcut

This implementation is intended as a base class for
building dynamic pointcuts.

org.springframework.aop.support.JdkRegexp
MethodPointcut

This implementation allows you to define pointcuts
using JDK 1.4 regular expression support. This class
requires JDK 1.4 or newer.

org.springframework.aop.support.NameMatch
MethodPointcut

Using NameMatchMethodPointcut, you can create a
pointcut that performs simple matching against a
list of method names.

org.springframework.aop.support.Static
MethodMatcherPointcut

The StaticMethodMatcherPointcut class is
intended as a base for building static pointcuts.

Chapter 5 ■ Introducing Spring AOP

236

Figure 5-3 shows the Unified Modeling Language (UML)2 diagram for the Pointcut implementation classes.

Using DefaultPointcutAdvisor
Before you can use any Pointcut implementation, you must first create an instance of the Advisor interface,
or more specifically a PointcutAdvisor interface. Remember from our earlier discussions that Advisor is
Spring’s representation of an aspect (see the previous section called “Aspects in Spring”), which is a coupling of
advice and pointcuts that governs which methods should be advised and how they should be advised. Spring
provides a number of implementations of PointcutAdvisor, but for now we will concern yourself with just one,
DefaultPointcutAdvisor. This is a simple PointcutAdvisor for associating a single Pointcut with a single Advice.

Creating a Static Pointcut by Using StaticMethodMatcherPointcut
In this section, we will create a simple static pointcut by extending the abstract
StaticMethodMatcherPointcut class. Since the StaticMethodMatcherPointcut class extends the
StaticMethodMatcher class (an abstract class too), which implements the MethodMatcher interface, you are
required to implement the method matches(Method, Class<?>). The rest of the Pointcut implementation
is handled automatically. Although this is the only method you are required to implement (when extending
the StaticMethodMatcherPointcut class), you may want to override the getClassFilter() method as
shown in this example to ensure that only methods of the correct type get advised.

Figure 5-3.  Pointcut implementation classes represented as an UML diagram in Intellij IDEA

2UML is quite important in development because it is a way to simplify application logic and make it visual, thus making it
easy to detect issues before the code is even written. It can also be used as documentation when introducing new members to a
team, making them productive as soon as possible. You can find more information at www.uml.org/.

http://www.uml.org/

Chapter 5 ■ Introducing Spring AOP

237

For this example, we have two classes, GoodGuitarist and GreatGuitarist, with identical methods
defined in both, which are implementations of the method in interface Singer.

package com.apress.prospring5.ch5;
import com.apress.prospring5.ch2.common.Singer;

public class GoodGuitarist implements Singer {

 @Override public void sing() {
 System.out.println("Who says I can't be free \n" +
 "From all of the things that I used to be");
 }
}

public class GreatGuitarist implements Singer {

 @Override public void sing() {
 System.out.println("I shot the sheriff, \n" +
 "But I did not shoot the deputy");
 }
}

With this example, we want to be able to create a proxy of both classes by using the same
DefaultPointcutAdvisor but have the advice apply only to the sing() method of the GoodGuitarist class.
To do this, we created the SimpleStaticPointcut class as shown here:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.ClassFilter;
import org.springframework.aop.support.StaticMethodMatcherPointcut;

public class SimpleStaticPointcut extends StaticMethodMatcherPointcut {
 @Override
 public boolean matches(Method method, Class<?> cls) {
 return ("sing".equals(method.getName()));
 }

 @Override
 public ClassFilter getClassFilter() {
 return cls -> (cls == GoodGuitarist.class);
 }
}

Here you can see that we implement the matches(Method, Class<?>) method as required by the
StaticMethodMatcher abstract class. The implementation simply returns true if the name of the method
is sing; otherwise, it returns false. Using lambda expressions, the creation of an anonymous class
implementing ClassFilter in the getClassFilter() method is hidden in the previous code sample. The
expanded lambda expression looks like this:

Chapter 5 ■ Introducing Spring AOP

238

public ClassFilter getClassFilter() {
 return new ClassFilter() {
 public boolean matches(Class<?> cls) {
 return (cls == GoodGuitarist.class);
 }
 };
 }

Notice that we have also overridden the getClassFilter() method to return a ClassFilter instance
whose matches() method returns true only for the GoodGuitarist class. With this static pointcut, we are
saying that only methods of the GoodGuitarist class will be matched, and furthermore, only the sing()
method of that class will be matched.

The following code snippet shows the SimpleAdvice class that simply writes out a message on either
side of the method invocation:

package com.apress.prospring5.ch5;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class SimpleAdvice implements MethodInterceptor {
 @Override
 public Object invoke(MethodInvocation invocation) throws Throwable {
 System.out.println(">> Invoking " + invocation.getMethod().getName());
 Object retVal = invocation.proceed();
 System.out.println(">> Done\n");
 return retVal;
 }
}

In the following code snippet, you can see a simple driver application for this example that creates an
instance of DefaultPointcutAdvisor by using the SimpleAdvice and SimpleStaticPointcut classes. Also,
because both classes implement the same interface, you can see that the proxies can be created based on the
interface, not on the concrete classes.

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Singer;
import org.aopalliance.aop.Advice; import org.springframework.aop.Advisor;
import org.springframework.aop.Pointcut;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;

public class StaticPointcutDemo {
 public static void main(String... args) {
 GoodGuitarist johnMayer = new GoodGuitarist();
 GreatGuitarist ericClapton = new GreatGuitarist();

 Singer proxyOne;
 Singer proxyTwo;

Chapter 5 ■ Introducing Spring AOP

239

 Pointcut pc = new SimpleStaticPointcut();
 Advice advice = new SimpleAdvice();
 Advisor advisor = new DefaultPointcutAdvisor(pc, advice);

 ProxyFactory pf = new ProxyFactory();
 pf.addAdvisor(advisor);
 pf.setTarget(johnMayer);
 proxyOne = (Singer)pf.getProxy();

 pf = new ProxyFactory();
 pf.addAdvisor(advisor);
 pf.setTarget(ericClapton);
 proxyTwo = (Singer)pf.getProxy();

 proxyOne.sing();
 proxyTwo.sing();
 }
}

Notice that the DefaultPointcutAdvisor instance is then used to create two proxies: one for
an instance of GoodGuitarist and one for an instance of EricClapton. Finally, the sing() method is
invoked on the two proxies. Running this example results in the following output:

>> Invoking sing
Who says I can't be free
From all of the things that I used to be
>> Done

I shot the sheriff,
But I did not shoot the deputy

As you can see, the only method for which SimpleAdvice was actually invoked was the sing() method
for the GoodGuitarist class, exactly as expected. Restricting the methods to which advice applies is quite
simple and, as you will see when we discuss proxy options, is key to getting the best performance out of your
application.

Creating a Dynamic Pointcut by Using DyanmicMethod
MatcherPointcut
Creating a dynamic pointcut is not much different from creating a static one, so for this example, we will
create a dynamic pointcut for the class shown here:

package com.apress.prospring5.ch5;

public class SampleBean {
 public void foo(int x) {
 System.out.println("Invoked foo() with: " + x);
 }

Chapter 5 ■ Introducing Spring AOP

240

 public void bar() {
 System.out.println("Invoked bar()");
 }
}

For this example, we want to advise only the foo() method, but unlike the previous example, we want
to advise this method only if the int argument passed to it is greater or less than 100.

As with static pointcuts, Spring provides a convenient base class for creating dynamic pointcuts:
DynamicMethodMatcherPointcut. The DynamicMethodMatcherPointcut class has a single abstract
method, matches(Method, Class<?>, Object[]) (via the MethodMatcher interface that it implements),
that you must implement, but as you will see, it is also prudent to implement the matches(Method,
Class<?>) method to control the behavior of the static checks. The following code snippet shows the
SimpleDynamicPointcut class:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.ClassFilter;
import org.springframework.aop.support.DynamicMethodMatcherPointcut;

public class SimpleDynamicPointcut
 extends DynamicMethodMatcherPointcut {
 @Override
 public boolean matches(Method method, Class<?> cls) {
 System.out.println("Static check for " + method.getName());
 return ("foo".equals(method.getName()));
 }

 @Override
 public boolean matches(Method method, Class<?> cls, Object args) {
 System.out.println("Dynamic check for " + method.getName());

 int x = ((Integer) args0).intValue();

 return (x != 100);
 }

 @Override
 public ClassFilter getClassFilter() {
 return cls -> (cls == SampleBean.class);
 }
}

As you can see from the previous code sample, we override the getClassFilter() method in a similar
manner as in the previous section. This removes the need to check the class in the method-matching
methods, which is something that is especially important for the dynamic check. Although you are required
to implement only the dynamic check, we implement the static check as well. The reason for this is that you
know the bar() method will never be advised. By indicating this by using the static check, Spring never has
to perform a dynamic check for this method. This is because when the static check method is implemented,
Spring will first check against it, and if the checking result is not a match, Spring will stop doing any further
dynamic checking. Moreover, the result of the static check will be cached for better performance. But if

Chapter 5 ■ Introducing Spring AOP

241

we neglect the static check, Spring performs a dynamic check each time the bar() method is invoked.
As a recommended practice, perform the class checking in the getClassFilter() method, the method
checking in the matches(Method, Class<?>) method, and the argument checking in the matches(Method,
Class<?>, Object[]) method. This will make your pointcut much easier to understand and maintain, and
performance will be better too.

In the matches(Method, Class<?>, Object[]) method, you can see that we return false if the value of
the int argument passed to the foo() method is not equal to 100; otherwise, we return true. Note that in the
dynamic check, we know that we are dealing with the foo() method because no other method makes it past
the static check. In the following code snippet, you can see an example of this pointcut in action:

package com.apress.prospring5.ch5;

import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;

public class DynamicPointcutDemo {
 public static void main(String... args) {
 SampleBean target = new SampleBean();

 Advisor advisor = new DefaultPointcutAdvisor(
 new SimpleDynamicPointcut(), new SimpleAdvice());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 SampleBean proxy = (SampleBean)pf.getProxy();

 proxy.foo(1);
 proxy.foo(10);
 proxy.foo(100);

 proxy.bar();
 proxy.bar();
 proxy.bar();
 }
}

Notice that we have used the same advice class as in the static pointcut example. However, in this
example, only the first two calls to foo() should be advised. The dynamic check prevents the third call to
foo() from being advised, and the static check prevents the bar() method from being advised. Running this
example yields the following output:

Static check for bar
Static check for foo
Static check for toString
Static check for clone
Static check for foo
Dynamic check for foo
>> Invoking foo
Invoked foo() with: 1
>> Done

Chapter 5 ■ Introducing Spring AOP

242

Dynamic check for foo
>> Invoking foo
Invoked foo() with: 10
>> Done

Dynamic check for foo
Invoked foo() with: 100
Static check for bar
Invoked bar()
Invoked bar()
Invoked bar()

As we expected, only the first two invocations of the foo() method were advised. Notice that none of
the bar() invocations is subject to a dynamic check, thanks to the static check on bar(). An interesting point
to note here is that the foo() method is subject to two static checks: one during the initial phase when all
methods are checked and another when it is first invoked.

As you can see, dynamic pointcuts offer a greater degree of flexibility than static pointcuts, but because
of the additional runtime overhead they require, you should use a dynamic pointcut only when absolutely
necessary.

Using Simple Name Matching
Often when creating a pointcut, we want to match want to match based on just the name of the
method, ignoring method signature and return type. In this case, you can avoid needing to create a
subclass of StaticMethodMatcherPointcut and use NameMatchMethodPointcut (which is a subclass of
StaticMethodMatcherPointcut) to match against a list of method names instead. When you are using
NameMatchMethodPointcut, no consideration is given to the signature of the method, so if you have methods
sing() and sing(guitar), they are both matched for the name foo.

In the following code snippet, you can see the GrammyGuitarist class, which is yet another
implementation of Singer, because this Grammy award singer sings using his voice, uses a guitar, and, being
human, occasionally talks and rests.

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import com.apress.prospring5.ch2.common.Singer;

public class GrammyGuitarist implements Singer {

 @Override public void sing() {
 System.out.println("sing: Gravity is working against me\n" +
 "And gravity wants to bring me down");
 }

 public void sing(Guitar guitar) {
 System.out.println("play: " + guitar.play());
 }

 public void rest(){
 System.out.println("zzz");
 }

Chapter 5 ■ Introducing Spring AOP

243

 public void talk(){
 System.out.println("talk");
 }
}

//chapter02/hello-world/src/main/java/com/apress/prospring5/ch2/common/Guitar.java
package com.apress.prospring5.ch2.common;

public class Guitar {
 public String play(){
 return "G C G C Am D7";
 }
}

For this example, we want to match the sing(), sing(Guitar), and rest() methods by using
NameMatchMethodPointcut;. This translates to matching the names foo and bar. This is shown in the
following code snippet:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;
import org.springframework.aop.support.NameMatchMethodPointcut;

public class NamePointcutDemo {

 public static void main(String... args) {
 GrammyGuitarist johnMayer = new GrammyGuitarist();

 NameMatchMethodPointcut pc = new NameMatchMethodPointcut();
 pc.addMethodName("sing");
 pc.addMethodName("rest");

 Advisor advisor = new DefaultPointcutAdvisor(pc, new SimpleAdvice());
 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(johnMayer);
 pf.addAdvisor(advisor);

 GrammyGuitarist proxy = (GrammyGuitarist) pf.getProxy();
 proxy.sing();
 proxy.sing(new Guitar());
 proxy.rest();
 proxy.talk();
 }
}

Chapter 5 ■ Introducing Spring AOP

244

There is no need to create a class for the pointcut; you can simply create an instance of
NameMatchMethodPointcut, and you are on your way. Notice that we have added two method names to
the pointcut, sing and rest, using the addMethodName() method. Running this example results in the
following output:

>> Invoking sing
sing: Gravity is working against me
And gravity wants to bring me down
>> Done

>> Invoking sing
play: G C G C Am D7
>> Done

>> Invoking rest
zzz
>> Done

talk

As expected, the sing, sing(Guitar), and rest methods are advised, thanks to the pointcut, but the
talk() method is left unadvised.

Creating Pointcuts with Regular Expressions
In the previous section, we discussed how to perform simple matching against a predefined list of methods.
But what if you don’t know all of the methods’ names in advance, and instead you know the pattern that the
names follow? For instance, what if you want to match all methods whose names start with get? In this case,
you can use the regular expression pointcut JdkRegexpMethodPointcut to match a method name based on a
regular expression. Here you can see yet another Guitarist class, which contains three methods:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Singer;

public class Guitarist implements Singer {

 @Override public void sing() {
 System.out.println("Just keep me where the light is");
 }

 public void sing2() {
 System.out.println("Just keep me where the light is");
 }

 public void rest() {
 System.out.println("zzz");
 }
}

Chapter 5 ■ Introducing Spring AOP

245

Using a regular expression-based pointcut, we can match all methods in this class whose name starts
with string. This is shown here:

package com.apress.prospring5.ch5;

import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;
import org.springframework.aop.support.JdkRegexpMethodPointcut;

public class RegexpPointcutDemo {
 public static void main(String... args) {
 Guitarist johnMayer = new Guitarist();

 JdkRegexpMethodPointcut pc = new JdkRegexpMethodPointcut();
 pc.setPattern(".*sing.*");
 Advisor advisor = new DefaultPointcutAdvisor(pc, new SimpleAdvice());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(johnMayer);
 pf.addAdvisor(advisor);
 Guitarist proxy = (Guitarist) pf.getProxy();

 proxy.sing();
 proxy.sing2();
 proxy.rest();
 }
}

Notice we do not need to create a class for the pointcut; instead, we just create an instance of
JdkRegexpMethodPointcut and specify the pattern to match, and we are finished. The interesting thing to
note is the pattern. When matching method names, Spring matches the fully qualified name of the method,
so for sing1(), Spring is matching against com.apress.prospring5.ch5.Guitarist.sing1, which is why
there’s the leading .* in the pattern. This is a powerful concept because it allows you to match all methods
within a given package, without needing to know exactly which classes are in that package and what the
names of the methods are. Running this example yields the following output:

>> Invoking sing
Just keep me where the light is
>> Done

>> Invoking sing2
Oh gravity, stay the hell away from me
>> Done

zzz

As you would expect, only the sing() and sing2() methods have been advised because the rest()
method does not match the regular expression pattern.

Chapter 5 ■ Introducing Spring AOP

246

Creating Pointcuts with AspectJ Pointcut Expression
Besides JDK regular expressions, you can use AspectJ’s pointcut expression language for pointcut
declaration. Later in this chapter, you will see that when we declare the pointcut in XML configuration
by using the aop namespace, Spring defaults to using AspectJ’s pointcut language. Moreover, when using
Spring’s @AspectJ annotation-style AOP support, you need to use AspectJ’s pointcut language. So when
declaring pointcuts by using expression language, using an AspectJ pointcut expression is the best way to
go. Spring provides the class AspectJExpressionPointcut for defining pointcuts via AspectJ’s expression
language. To use AspectJ pointcut expressions with Spring, you need to include two AspectJ library files,
aspectjrt.jar and aspectjweaver.jar, in your project’s classpath. The dependencies and their versions
are configured in the main build.gradle configuration file (and configured as dependencies for all the
modules of the chapter05 project).

ext {
 aspectjVersion = '1.9.0.BETA-5'
...
 misc = [
 ...
 Aspectjweaver : "org.aspectj:aspectjweaver:$aspectjVersion",
 Aspectjrt : "org.aspectj:aspectjrt:$aspectjVersion"
]
...

Considering the previous implementation of the Guitarist class, the same functionality implemented
with JDK regular expressions can be implemented using an AspectJ expression. Here’s the code for that:

package com.apress.prospring5.ch5;

import org.springframework.aop.Advisor;
import org.springframework.aop.aspectj.AspectJExpressionPointcut;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;

public class AspectjexpPointcutDemo {
 public static void main(String... args) {
 Guitarist johnMayer = new Guitarist();

 AspectJExpressionPointcut pc = new AspectJExpressionPointcut();
 pc.setExpression("execution(* sing*(..))");
 Advisor advisor = new DefaultPointcutAdvisor(pc, new SimpleAdvice());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(johnMayer);
 pf.addAdvisor(advisor);
 Guitarist proxy = (Guitarist) pf.getProxy();

 proxy.sing();
 proxy.sing2();
 proxy.rest();
 }
}

Chapter 5 ■ Introducing Spring AOP

247

Note that we use the AspectJExpressionPointcut’s setExpression() method to set the matching
criteria. The expression execution(* sing*(..)) means that the advice should apply to the execution of
any methods that start with sing, have any arguments, and return any types. Running the program will get
the same result as the previous example using JDK regular expressions.

Creating Annotation Matching Pointcuts
If your application is annotation-based, you may want to use your own specified annotations for defining
pointcuts, that is, apply the advice logic to all methods or types with specific annotations. Spring provides
the class AnnotationMatchingPointcut for defining pointcuts using annotations. Again, let’s reuse the
previous example and see how to do it when using an annotation as a pointcut.

First we define an annotation called AdviceRequired, which is an annotation that we will use for
declaring a pointcut. The following code snippet shows the annotation class:

package com.apress.prospring5.ch5;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD})
public @interface AdviceRequired {
}

In the previous code sample, you can see that we declare the interface as an annotation by using
@interface as the type, and the @Target annotation defines that the annotation can apply at either the type
or method level. The following code snippet shows yet another Guitarist class implementation with your
annotation on one of its methods:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import com.apress.prospring5.ch2.common.Singer;

public class Guitarist implements Singer {

 @Override public void sing() {
 System.out.println("Dream of ways to throw it all away");
 }

 @AdviceRequired
 public void sing(Guitar guitar) {
 System.out.println("play: " + guitar.play());
 }

 public void rest(){
 System.out.println("zzz");
 }
}

Chapter 5 ■ Introducing Spring AOP

248

The following code snippet shows the testing program:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;
import org.springframework.aop.support.annotation.AnnotationMatchingPointcut;

public class AnnotationPointcutDemo {
 public static void main(String... args) {
 Guitarist johnMayer = new Guitarist();

 AnnotationMatchingPointcut pc = AnnotationMatchingPointcut
 .forMethodAnnotation(AdviceRequired.class);
 Advisor advisor = new DefaultPointcutAdvisor(pc, new SimpleAdvice());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(johnMayer);
 pf.addAdvisor(advisor);
 Guitarist proxy = (Guitarist) pf.getProxy();

 proxy.sing(new Guitar());
 proxy.rest();
 }
}

In the previous listing, an instance of AnnotationMatchingPointcut is acquired by calling its static
method forMethodAnnotation() and passing in the annotation type. This indicates that we want to apply
the advice to all the methods annotated with the given annotation. It’s also possible to specify annotations
applied at the type level by calling the forClassAnnotation() method. The following shows the output
when the program runs:

>> Invoking sing
play: G C G C Am D7
>> Done

zzz

As you can see, since we annotated the sing() method, only that method was advised.

Convenience Advisor Implementations
For many of the Pointcut implementations, Spring also provides a convenience Advisor
implementation that acts as the pointcut. For instance, instead of using NameMatchMethodPointcut
coupled with DefaultPointcutAdvisor in the previous example, we could simply have used
NameMatchMethodPointcutAdvisor, as shown in the following code snippet:

package com.apress.prospring5.ch5;
...
import org.springframework.aop.support.NameMatchMethodPointcutAdvisor;

Chapter 5 ■ Introducing Spring AOP

249

public class NamePointcutUsingAdvisor {
 public static void main(String... args) {
 GrammyGuitarist johnMayer = new GrammyGuitarist();

 NameMatchMethodPointcut pc = new NameMatchMethodPointcut();
 pc.addMethodName("sing");
 pc.addMethodName("rest");

 Advisor advisor =
 new NameMatchMethodPointcutAdvisor(new SimpleAdvice());
 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(johnMayer);
 pf.addAdvisor(advisor);

 GrammyGuitarist proxy = (GrammyGuitarist) pf.getProxy();
 proxy.sing();
 proxy.sing(new Guitar());
 proxy.rest();
 proxy.talk();
 }
}

Notice that rather than creating an instance of NameMatchMethodPointcut, we configure
the pointcut details on the instance of NameMatchMethodPointcutAdvisor. In this way,
NameMatchMethodPointcutAdvisor is acting as both the advisor and the pointcut.

You can find full details of the different Advisor implementations by exploring the Javadoc for the
org.springframework.aop.support package. There is no noticeable performance difference between the
two approaches, and aside from there being slightly less code in the second example, there is very little
difference in the actual coding approach. We prefer to stick with the first approach because we feel the intent
is slightly clearer in the code. At the end of the day, the style you choose comes down to personal preference.

Understanding Proxies
So far, we have taken only a cursory look at the proxies generated by ProxyFactory. We mentioned that two
types of proxy are available in Spring: JDK proxies created by using the JDK Proxy class and CGLIB-based
proxies created by using the CGLIB Enhancer class. You may be wondering exactly what the difference
between the two proxies is and why Spring needs two types of proxy. In this section, we take a detailed look
at the differences between the proxies.

The core goal of a proxy is to intercept method invocations and, where necessary, execute chains
of advice that apply to a particular method. The management and invocation of advice is largely proxy
independent and is managed by the Spring AOP framework. However, the proxy is responsible for
intercepting calls to all methods and passing them as necessary to the AOP framework for the advice to be
applied.

In addition to this core functionality, the proxy must support a set of additional features. It is possible
to configure the proxy to expose itself via the AopContext class (which is an abstract class) so that you can
retrieve the proxy and invoke advised methods on the proxy from the target object. The proxy is responsible
for ensuring that when this option is enabled via ProxyFactory.setExposeProxy(), the proxy class is
appropriately exposed. In addition, all proxy classes implement the Advised interface by default, which
allows for, among other things, the advice chain to be changed after the proxy has been created. A proxy
must also ensure that any methods that return this (that is, return the proxied target) do in fact return the
proxy and not the target.

Chapter 5 ■ Introducing Spring AOP

250

As you can see, a typical proxy has quite a lot of work to perform, and all of this logic is implemented in
both the JDK and CGLIB proxies.

Using JDK Dynamic Proxies
JDK proxies are the most basic type of proxy available in Spring. Unlike the CGLIB proxy, the JDK proxy can
generate proxies only of interfaces, not classes. In this way, any object you want to proxy must implement at
least one interface, and the resulting proxy will be an object that implements that interface. Figure 5-4 shows
an abstract schema of such a proxy.

In general, it is good design to use interfaces for your classes, but it is not always possible, especially
when you are working with third-party or legacy code. In this case, you must use the CGLIB proxy. When you
are using the JDK proxy, all method calls are intercepted by the JVM and routed to the invoke() method of
the proxy. This method then determines whether the method in question is advised (by the rules defined by
the pointcut), and if so, it invokes the advice chain and then the method itself by using reflection. In addition
to this, the invoke() method performs all the logic discussed in the previous section.

The JDK proxy makes no determination between methods that are advised and unadvised until it is
in the invoke() method. This means that for unadvised methods on the proxy, the invoke() method is
still called, all the checks are still performed, and the method is still invoked by using reflection. Obviously,
this incurs runtime overhead each time the method is invoked, even though the proxy often performs no
additional processing other than to invoke the unadvised method via reflection.

You can instruct ProxyFactory to use a JDK proxy by specifying the list of interfaces to proxy by using
setInterfaces() (in the AdvisedSupport class that the ProxyFactory class extends indirectly).

Using CGLIB Proxies
With the JDK proxy, all decisions about how to handle a particular method invocation are handled at
runtime each time the method is invoked. When you use CGLIB, CGLIB dynamically generates the bytecode
for a new class on the fly for each proxy, reusing already generated classes wherever possible. The resulting
proxy type in this case will be a subclass of the target object class. Figure 5-5 shows an abstract schema of
such a proxy.

Figure 5-4.  JDK proxy abstract schema

Chapter 5 ■ Introducing Spring AOP

251

When a CGLIB proxy is first created, CGLIB asks Spring how it wants to handle each method. This
means that many of the decisions that are performed in each call to invoke() on the JDK proxy are
performed just once for the CGLIB proxy. Because CGLIB generates actual bytecode, there is also a lot more
flexibility in the way you can handle methods. For instance, the CGLIB proxy generates the appropriate
bytecode to invoke any unadvised methods directly, reducing the overhead introduced by the proxy. In
addition, the CGLIB proxy determines whether it is possible for a method to return this; if not, it allows the
method call to be invoked directly, again reducing the runtime overhead.

The CGLIB proxy also handles fixed-advice chains differently than the JDK proxy. A fixed-advice chain
is one that you guarantee will not change after the proxy has been generated. By default, you are able to
change the advisors and advice on a proxy even after it is created, although this is rarely a requirement. The
CGLIB proxy handles fixed-advice chains in a particular way, reducing the runtime overhead for executing
an advice chain.

Comparing Proxy Performance
So far, all we have done is discuss in loose terms the differences in implementation between the proxy types.
In this section, we are going to run a simple test to compare the performance of the CGLIB proxy with the
JDK proxy.

Let’s create a class named DefaultSimpleBean, which we will use as the target object for proxying. Here
are the SimpleBean interface and the DefaultSimpleBean class:

ppackage com.apress.prospring5.ch5;

public interface SimpleBean {
 void advised();
 void unadvised();
}

public class DefaultSimpleBean implements SimpleBean {
 private long dummy = 0;

Figure 5-5.  CGLIB proxy abstract schema

Chapter 5 ■ Introducing Spring AOP

252

 @Override
 public void advised() {
 dummy = System.currentTimeMillis();
 }

 @Override
 public void unadvised() {
 dummy = System.currentTimeMillis();
 }
}

In the following example, the TestPointcut class is shown that provides static checking on the method
to advise:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.support.StaticMethodMatcherPointcut;

public class TestPointcut extends StaticMethodMatcherPointcut {
 @Override
 public boolean matches(Method method, Class cls) {
 return ("advise".equals(method.getName()));
 }
}

The next code snippet depicts the NoOpBeforeAdvice class, which is just simple before advice without
any operation:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.MethodBeforeAdvice;

public class NoOpBeforeAdvice implements MethodBeforeAdvice {
 @Override
 public void before(Method method, Object args, Object target)
 throws Throwable {
 // no-op
 }
}

In the following code snippet, you can see the code used to test the different types of proxies:

package com.apress.prospring5.ch5;

import org.springframework.aop.Advisor;
import org.springframework.aop.framework.Advised;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.DefaultPointcutAdvisor;

Chapter 5 ■ Introducing Spring AOP

253

public class ProxyPerfTest {
 public static void main(String... args) {
 SimpleBean target = new DefaultSimpleBean();

 Advisor advisor = new DefaultPointcutAdvisor(new TestPointcut(),
 new NoOpBeforeAdvice());

 runCglibTests(advisor, target);
 runCglibFrozenTests(advisor, target);
 runJdkTests(advisor, target);
 }

 private static void runCglibTests(Advisor advisor, SimpleBean target) {
 ProxyFactory pf = new ProxyFactory();
 pf.setProxyTargetClass(true);
 pf.setTarget(target);
 pf.addAdvisor(advisor);

 SimpleBean proxy = (SimpleBean)pf.getProxy();
 System.out.println("Running CGLIB (Standard) Tests");
 test(proxy);
 }

 private static void runCglibFrozenTests(Advisor advisor, SimpleBean target) {
 ProxyFactory pf = new ProxyFactory();
 pf.setProxyTargetClass(true);
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 pf.setFrozen(true);

 SimpleBean proxy = (SimpleBean) pf.getProxy();
 System.out.println("Running CGLIB (Frozen) Tests");
 test(proxy);
 }

 private static void runJdkTests(Advisor advisor, SimpleBean target) {
 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 pf.setInterfaces(new Class{SimpleBean.class});

 SimpleBean proxy = (SimpleBean)pf.getProxy();
 System.out.println("Running JDK Tests");
 test(proxy);
 }

 private static void test(SimpleBean bean) {
 long before = 0;
 long after = 0;

Chapter 5 ■ Introducing Spring AOP

254

 System.out.println("Testing Advised Method");
 before = System.currentTimeMillis();
 for(int x = 0; x < 500000; x++) {
 bean.advised();
 }
 after = System.currentTimeMillis();

 System.out.println("Took " + (after - before) + " ms");

 System.out.println("Testing Unadvised Method");
 before = System.currentTimeMillis();
 for(int x = 0; x < 500000; x++) {
 bean.unadvised();
 }
 after = System.currentTimeMillis();

 System.out.println("Took " + (after - before) + " ms");

 System.out.println("Testing equals() Method");
 before = System.currentTimeMillis();
 for(int x = 0; x < 500000; x++) {
 bean.equals(bean);
 }
 after = System.currentTimeMillis();

 System.out.println("Took " + (after - before) + " ms");

 System.out.println("Testing hashCode() Method");
 before = System.currentTimeMillis();
 for(int x = 0; x < 500000; x++) {
 bean.hashCode();
 }
 after = System.currentTimeMillis();

 System.out.println("Took " + (after - before) + " ms");

 Advised advised = (Advised)bean;

 System.out.println("Testing Advised.getProxyTargetClass() Method");
 before = System.currentTimeMillis();
 for(int x = 0; x < 500000; x++) {
 advised.getTargetClass();
 }
 after = System.currentTimeMillis();

 System.out.println("Took " + (after - before) + " ms");

 System.out.println(">>>\n");
 }
}

Chapter 5 ■ Introducing Spring AOP

255

In this code, you can see that you are testing three kinds of proxies:

•	 A standard CGLIB proxy

•	 A CGLIB proxy with a frozen advice chain (that is, when a proxy is frozen by calling
the setFrozen() method in the ProxyConfig class that ProxyFactory extends
indirectly, CGLIB will perform further optimization; however, further advice change
will not be allowed)

•	 A JDK proxy

For each proxy type, you run the following five test cases:

•	 Advised method (test 1): This is a method that is advised. The advice type used in
the test is before advice that performs no processing, so it reduces the effects of the
advice on the performance tests.

•	 Unadvised method (test 2): This is a method on the proxy that is unadvised. Often
your proxy has many methods that are not advised. This test looks at how well
unadvised methods perform for the different proxies.

•	 The equals() method (test 3): This test looks at the overhead of invoking the equals()
method. This is especially important when you use proxies as keys in a HashMap or
similar collection.

•	 The hashCode() method (test 4): As with the equals() method, the hashCode()
method is important when you are using HashMaps or similar collections.

•	 Executing methods on the Advised interface (test 5): As we mentioned earlier, a proxy
implements the Advised interface by default, allowing you to modify the proxy
after creation and to query information about the proxy. This test looks at how fast
methods on the Advised interface can be accessed using the different proxy types.

Table 5-3 shows the results of these tests.

As you can see, the performance between standard CGLIB and JDK dynamic proxy for both advised and
unadvised methods doesn’t differ much. As always, these numbers will vary based on hardware and the JDK
being used.

However, there is a noticeable difference when you are using a CGLIB proxy with a frozen advice chain.
Similar figures apply to the equals() and hashCode() methods, which are noticeably faster when you are
using the CGLIB proxy. For methods on the Advised interface, you will notice that they are also faster on the
CGLIB frozen proxy. The reason for this is that Advised methods are handled early on in the intercept()
method, so they avoid much of the logic that is required for other methods.

Table 5-3.  Proxy Performance Test Results (in Milliseconds)

CGLIB (Standard) CGLIB (Frozen) JDK

Advised method 245 135 224

Unadvised method 92 42 78

equals() 9 6 77

hashCode() 29 13 23

Advised.
getProxyTargetClass()

9 6 15

Chapter 5 ■ Introducing Spring AOP

256

Choosing a Proxy to Use
Deciding which proxy to use is typically easy. The CGLIB proxy can proxy both classes and interfaces,
whereas JDK proxies can proxy only interfaces. In terms of performance, there is no significant difference
between JDK and CGLIB standard mode (at least in running both advised and unadvised methods), unless
you use CGLIB in frozen mode, in which case the advice chain can’t be changed and CGLIB performs further
optimization when in frozen mode. When proxying a class, the CGLIB proxy is the default choice because it
is the only proxy capable of generating a proxy of a class. To use the CGLIB proxy when proxying an interface,
you must set the value of the optimize flag in ProxyFactory to true by using the setOptimize() method.

Advanced Use of Pointcuts
Earlier in the chapter, we looked at the six basic Pointcut implementations Spring provides; for the most
part, we have found that these meet the needs of our applications. However, sometimes you might need
more flexibility when defining pointcuts. Spring provides two additional Pointcut implementations,
ComposablePointcut and ControlFlowPointcut, which provide exactly the flexibility you need.

Using Control Flow Pointcuts
Spring control flow pointcuts, implemented by the ControlFlowPointcut class, are similar to the cflow
construct available in many other AOP implementations, although they are not quite as powerful.
Essentially, a control flow pointcut in Spring applies to all method calls below a given method or below all
methods in a class. This is quite hard to visualize and is better explained using an example.

The following code snippet shows a SimpleBeforeAdvice class that writes out a message describing the
method it is advising:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.MethodBeforeAdvice;

public class SimpleBeforeAdvice implements MethodBeforeAdvice {
 @Override
 public void before(Method method, Object args, Object target)
 throws Throwable {
 System.out.println("Before method: " + method);
 }
}

This advice class allows we to see which methods the ControlFlowPointcut applies to. Here, you can
see the simple TestBean class:

package com.apress.prospring5.ch5;

public class TestBean {
 public void foo() {
 System.out.println("foo()");
 }
}

Chapter 5 ■ Introducing Spring AOP

257

You can see the simple foo() method that we want to advise. We have, however, a special requirement:
we want to advise this method only when it is called from another, specific method. The following code
snippet shows a simple driver program for this example:

package com.apress.prospring5.ch5;

import org.springframework.aop.Advisor;
import org.springframework.aop.Pointcut;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.ControlFlowPointcut;
import org.springframework.aop.support.DefaultPointcutAdvisor;

public class ControlFlowDemo {
 public static void main(String... args) {
 ControlFlowDemo ex = new ControlFlowDemo();
 ex.run();
 }

 public void run() {
 TestBean target = new TestBean();

 Pointcut pc = new ControlFlowPointcut(ControlFlowDemo.class,
 "test");
 Advisor advisor = new DefaultPointcutAdvisor(pc,
 new SimpleBeforeAdvice());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);

 TestBean proxy = (TestBean) pf.getProxy();
 System.out.println("\tTrying normal invoke");
 proxy.foo();
 System.out.println("\n\tTrying under ControlFlowDemo.test()");
 test(proxy);
 }
 private void test(TestBean bean) {
 bean.foo();
 }
}

In the previous code snippet, the advised proxy is assembled with ControlFlowPointcut, and then the
foo() method is invoked twice, once directly from the main() method and once from the test() method.
Here is the line of particular interest:

 Pointcut pc = new ControlFlowPointcut(ControlFlowDemo.class, "test");

In this line, we are creating a ControlFlowPointcut instance for the test() method of the
ControlFlowDemo class. Essentially, this says, “Pointcut all methods that are called from the
ControlFlowExample.test() method.” Note that although we said “Pointcut all methods,” in fact this really
means “Pointcut all methods on the proxy object that is advised using the Advisor corresponding to this
instance of ControlFlowPointcut.” Running the previous example yields the following result in the console:

Chapter 5 ■ Introducing Spring AOP

258

 Trying normal invoke
foo()

 Trying under ControlFlowDemo.test()
Before method: public void com.apress.prospring5.ch5.TestBean.foo()
foo()

As you can see, when the sing() method is first invoked outside of the control flow of the test()
method, it is unadvised. When it executes for a second time, this time inside the control flow of the test()
method, the ControlFlowPointcut indicates that its associated advice applies to the method, and thus the
method is advised. Note that if we had called another method from within the test() method, one that was
not on the advised proxy, it would not have been advised.

Control flow pointcuts can be extremely useful, allowing you to advise an object selectively only when
it is executed in the context of another. However, be aware that you take a substantial performance hit for
using control flow pointcut over other pointcuts.

Let’s consider an example. Suppose we have a transaction processing system, which contains a
TransactionService interface as well as an AccountService interface. We would like to apply after
advice so that when the AccountService.updateBalance() method is called by TransactionService.
reverseTransaction(), an e-mail notification is sent to the customer, after the account balance is updated.
However, an e-mail will not be sent under any other circumstances. In this case, the control flow pointcut
will be useful. Figure 5-6 shows the UML sequence diagram for this scenario.

Figure 5-6.  UML sequence diagram for a control flow pointcut

Chapter 5 ■ Introducing Spring AOP

259

Using a Composable Pointcut
In previous pointcut examples, we used just a single pointcut for each Advisor. In most cases, this is usually
enough, but in some cases, you may need to compose two or more pointcuts together to achieve the desired
goal. Say you want to pointcut all getter and setter methods on a bean. You have a pointcut for getters and
a pointcut for setters, but you don’t have one for both. Of course, you could just create another pointcut
with the new logic, but a better approach is to combine the two pointcuts into a single pointcut by using
ComposablePointcut.

ComposablePointcut supports two methods: union() and intersection(). By default,
ComposablePointcut is created with a ClassFilter that matches all classes and a MethodMatcher that
matches all methods, although you can supply your own initial ClassFilter and MethodMatcher during
construction. The union() and intersection() methods are both overloaded to accept ClassFilter and
MethodMatcher arguments.

The ComposablePointcut.union() method can be called by passing in an instance of either
the ClassFilter, MethodMatcher, or Pointcut interface. The result of a union operation is that
ComposablePointcut will add an “or” condition into its call chain for matching with the joinpoints. It’s
the same for the ComposablePointcut.intersection() method, but this time an “and” condition will
be added instead, which means that all ClassFilter, MethodMatcher, and Pointcut definitions within
ComposablePointcut should be matched for applying an advice. You can imagine it as the WHERE clause in a
SQL query, with the union() method like the “or” operator and the intersection() method like the “and”
operator.

As with control flow pointcuts, this is quite difficult to visualize, and it is much easier to understand with
an example. The following example shows the GrammyGuitarist class used in a previous example with its
four methods:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import com.apress.prospring5.ch2.common.Singer;

public class GrammyGuitarist implements Singer {

 @Override public void sing() {
 System.out.println("sing: Gravity is working against me\n" +
 "And gravity wants to bring me down");
 }

 public void sing(Guitar guitar) {
 System.out.println("play: " + guitar.play());
 }

 public void rest(){
 System.out.println("zzz");
 }

 public void talk(){
 System.out.println("talk");
 }
}

Chapter 5 ■ Introducing Spring AOP

260

With this example, we are going to generate three proxies by using the same ComposablePointcut
instance, but each time, we are going to modify ComposablePointcut by using either the union() or
intersection() method. Following this, we will invoke all three methods on the target bean proxy and
look at which ones have been advised. The following code sample depicts this:

package com.apress.prospring5.ch5;

import java.lang.reflect.Method;

import org.springframework.aop.Advisor;
import org.springframework.aop.ClassFilter;
import org.springframework.aop.framework.ProxyFactory;
import org.springframework.aop.support.ComposablePointcut;
import org.springframework.aop.support.DefaultPointcutAdvisor;
import org.springframework.aop.support.StaticMethodMatcher;

public class ComposablePointcutExample {
 public static void main(String... args) {
 GrammyGuitarist johnMayer = new GrammyGuitarist();

 ComposablePointcut pc = new ComposablePointcut(ClassFilter.TRUE,
 new SingMethodMatcher());

 System.out.println("Test 1 >> ");
 GrammyGuitarist proxy = getProxy(pc, johnMayer);
 testInvoke(proxy);
 System.out.println();

 System.out.println("Test 2 >> ");
 pc.union(new TalkMethodMatcher());
 proxy = getProxy(pc, johnMayer);
 testInvoke(proxy);
 System.out.println();

 System.out.println("Test 3 >> ");
 pc.intersection(new RestMethodMatcher());
 proxy = getProxy(pc, johnMayer);
 testInvoke(proxy);
 }

 private static GrammyGuitarist getProxy(ComposablePointcut pc,
 GrammyGuitarist target) {
 Advisor advisor = new DefaultPointcutAdvisor(pc,
 new SimpleBeforeAdvice());

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 return (GrammyGuitarist) pf.getProxy();
 }

Chapter 5 ■ Introducing Spring AOP

261

 private static void testInvoke(GrammyGuitarist proxy) {
 proxy.sing();
 proxy.sing(new Guitar());
 proxy.talk();
 proxy.rest();
 }

 private static class SingMethodMatcher extends StaticMethodMatcher {
 @Override
 public boolean matches(Method method, Class<?> cls) {
 return (method.getName().startsWith("si"));
 }
 }

 private static class TalkMethodMatcher extends StaticMethodMatcher {
 @Override
 public boolean matches(Method method, Class<?> cls) {
 return "talk".equals(method.getName());
 }
 }

 private static class RestMethodMatcher extends StaticMethodMatcher {
 @Override
 public boolean matches(Method method, Class<?> cls) {
 return (method.getName().endsWith("st"));
 }
 }
}

The first thing to notice in this example is the set of three private MethodMatcher implementations.
SingMethodMatcher matches all methods that start with get. This is the default MethodMatcher that we
use to assemble ComposablePointcut. Because of this, we expect that the first round of invocations on the
GrammyGuitarist methods will result in only the sing() methods being advised.

TalkMethodMatcher matches all methods named talk, and it is combined with ComposablePointcut by
using union() for the second round of invocations. At this point, we have a union of two MethodMatchers—one
that matches all methods starting with si and one that matches all methods named talk. We now expect that
all invocations during the second round will be advised. TalkMethodMatcher is very specific and matches only
the talk() method. This MethodMatcher is combined with ComposablePointcut by using intersection() for
the third round for invocations.

Because RestMethodMatcher is being composed by using intersection(), we expect none of the methods
to be advised in the third round because there is no method that matches all the composed MethodMatchers.

Running this example results in the following output:

Test 1 >>
Before method: public void
 com.apress.prospring5.ch5.GrammyGuitarist.sing()
sing: Gravity is working against me
And gravity wants to bring me down
Before method: public void com.apress.prospring5.ch5.
 GrammyGuitarist.sing(com.apress.prospring5.ch2.common.Guitar)
play: G C G C Am D7
talk
zzz

Chapter 5 ■ Introducing Spring AOP

262

Test 2 >>
Before method: public void
 com.apress.prospring5.ch5.GrammyGuitarist.sing()
sing: Gravity is working against me
And gravity wants to bring me down
Before method: public void
 com.apress.prospring5.ch5.GrammyGuitarist.talk()
Before method: public void com.apress.prospring5.ch5.
 GrammyGuitarist.sing(com.apress.prospring5.ch2.common.Guitar)
play: G C G C Am D7
talk
zzz

Test 3 >>
sing: Gravity is working against me
And gravity wants to bring me down
talk
zzz

Although this example demonstrated the use of MethodMatchers only in the composition process, it is
just as simple to use ClassFilter when you are building the pointcut. Indeed, you can use a combination of
MethodMatchers and ClassFilters when building your composite pointcut.

Composition and the Pointcut Interface
In the previous section, you saw how to create a composite pointcut by using multiple MethodMatchers and
ClassFilters. You can also create composite pointcuts by using other objects that implement the Pointcut
interface.

Another way to construct a composite pointcut is to use the org.springframework.aop.support.
Pointcuts class. The class provides three static methods. The intersection() and union() methods
both take two pointcuts as arguments to construct a composite pointcut. On the other hand, a
matches(Pointcut, Method, Class, Object[]) method is provided for performing a quick check on
whether a pointcut matches with the provided method, class, and method arguments.

The Pointcuts class supports operations on only two pointcuts. So, if you need to combine
MethodMatcher and ClassFilter with Pointcut, you need to use the ComposablePointcut class. However,
when you need to combine just two pointcuts, the Pointcuts class will be more convenient.

Pointcut Summary
Spring offers a powerful set of Pointcut implementations that should meet most, if not all, of your
application’s requirements. Remember that if you can’t find a pointcut to suit your needs, you can create
your own implementation from scratch by implementing Pointcut, MethodMatcher, and ClassFilter.

You can use two patterns to combine pointcuts and advisors. The first pattern, the one we have used so
far, involves having the pointcut implementation decoupled from the advisor. In the code we have seen up to
this point, we created instances of Pointcut implementations and then used the DefaultPointcutAdvisor
implementation to add advice along with the Pointcut to the proxy.

The second option, one that is adopted by many of the examples in the Spring documentation, is
to encapsulate the Pointcut inside your own Advisor implementation. This way, you have a class that
implements both Pointcut and PointcutAdvisor, with the PointcutAdvisor.getPointcut() method
simply returning this. This is an approach many classes, such as StaticMethodMatcherPointcutAdvisor,
use in Spring. We find that the first approach is the most flexible, allowing you to use different Pointcut

Chapter 5 ■ Introducing Spring AOP

263

implementations with different Advisor implementations. However, the second approach is useful in
situations where you are going to be using the same combination of Pointcut and Advisor in different parts
of your application or, indeed, across many applications.

The second approach is useful when each Advisor must have a separate instance of a Pointcut; by
making the Advisor responsible for creating the Pointcut, you can ensure that this is the case. If you recall
the discussion on proxy performance from the previous chapter, you will remember that unadvised methods
perform much better than methods that are advised. For this reason, you should ensure that, by using
Pointcuts, you advise only the methods that are absolutely necessary. This way, you reduce the amount of
unnecessary overhead added to your application by using AOP.

Getting Started with Introductions
Introductions are an important part of the AOP feature set available in Spring. By using introductions,
you can introduce new functionality to an existing object dynamically. In Spring, you can introduce an
implementation of any interface to an existing object. You may well be wondering exactly why this is
useful. Why would you want to add functionality dynamically at runtime when you can simply add that
functionality at development time? The answer to this question is easy. You add functionality dynamically
when the functionality is crosscutting and is not easily implemented using traditional advice.

Introduction Basics
Spring treats introductions as a special type of advice, more specifically, as a special type of around
advice. Because introductions apply solely at the class level, you cannot use pointcuts with
introductions; semantically, the two don’t match. An introduction adds new interface implementations
to a class, and a pointcut defines which methods the advice applies to. You create an introduction by
implementing the IntroductionInterceptor interface, which extends the MethodInterceptor and
DynamicIntroductionAdvice interfaces. Figure 5-7 shows this structure along with the methods of
both interfaces, as depicted by the IntelliJ IDEA UML plug-in. As you can see, the MethodInterceptor
interface defines an invoke() method. Using this method, you provide the implementation for the
interfaces that you are introducing and perform interception for any additional methods as required.
Implementing all methods for an interface inside a single method can prove troublesome, and it is
likely to result in an awful lot of code that you will have to wade through just to decide which method
to invoke. Thankfully, Spring provides a default implementation of IntroductionInterceptor, called
DelegatingIntroductionInterceptor, which makes creating introductions much simpler. To build
an introduction by using DelegatingIntroductionInterceptor, you create a class that both inherits
from DelegatingIntroductionInterceptor and implements the interfaces you want to introduce. The
DelegatingIntroductionInterceptor implementation then simply delegates all calls to introduced
methods to the corresponding method on itself. Don’t worry if this seems a little unclear; you will see an
example of it in the next section.

Chapter 5 ■ Introducing Spring AOP

264

Just as you need to use PointcutAdvisor when you are working with pointcut advice, you need to use
IntroductionAdvisor to add introductions to a proxy. The default implementation of IntroductionAdvisor
is DefaultIntroductionAdvisor, which should suffice for most, if not all, of your introduction needs. You
should be aware that adding an introduction by using ProxyFactory.addAdvice() is not permitted and
results in AopConfigException being thrown. Instead, you should use the addAdvisor() method and pass
an instance of the IntroductionAdvisor interface.

When using standard advice—that is, not introductions—it is possible for the same advice instance to
be used for many objects. The Spring documentation refers to this as the per-class life cycle, although you
can use a single advice instance for many classes. For introductions, the introduction advice forms part of the
state of the advised object, and as a result, you must have a distinct advice instance for every advised object.
This is called the per-instance life cycle. Because you must ensure that each advised object has a distinct
instance of the introduction, it is often preferable to create a subclass of DefaultIntroductionAdvisor
that is responsible for creating the introduction advice. This way, you need to ensure only that a new
instance of your advisor class is created for each object because it will automatically create a new instance
of the introduction. For example, say you want to apply before advice to the setFirstName() method
on all instances of the Contact class. Figure 5-8 shows the same advice that applies to all objects of the
Contact type. Now let’s say you want to mix an introduction into all instances of the Contact class, and the
introduction will carry information for each Contact instance (for example, an attribute isModified that
indicates whether the specific instance was modified).

Figure 5-7.  Interface structure for introductions

Chapter 5 ■ Introducing Spring AOP

265

Figure 5-8.  Per-class life cycle of advice

Figure 5-9.  Per-instance introduction

 In this case, the introduction will be created for each instance of Contact and tied to that specific
instance, as shown in Figure 5-9. That covers the basics of introduction creation. We will now discuss how
you can use introductions to solve the problem of object modification detection.

Object Modification Detection with Introductions
Object modification detection is a useful technique for many reasons. Typically, you apply modification
detection to prevent unnecessary database access when you are persisting object data. If an object is
passed to a method for modification but it comes back unmodified, there is little point in issuing an
update statement to the database. Using a modification check in this way can really increase application
throughput, especially when the database is already under a substantial load or is located on a remote
network, making communication an expensive operation.

Unfortunately, this kind of functionality is difficult to implement by hand because it requires you to add
to every method that can modify object state to check whether the object state is actually being modified.
When you consider all the null checks that have to be made and the checks to see whether the value is
actually changing, you are looking at around eight lines of code per method. You could refactor this into a
single method, but you still have to call this method every time you need to perform the check. Spread this
across a typical application with many classes that require modification checks, and you have a disaster
waiting to happen.

Chapter 5 ■ Introducing Spring AOP

266

This is clearly a place where introductions will help. We don’t want to have each class that requires
modification checks inherit from some base implementation, losing its only chance for inheritance as a
result, nor do we really want to be adding checking code to each and every state-changing method. Using
introductions, we can provide a flexible solution to the modification detection problem without having to
write a bunch of repetitive, error-prone code.

In this example, we are going to build a full modification check framework using introductions. The
modification check logic is encapsulated by the IsModified interface, an implementation of which will
be introduced into the appropriate objects, along with interception logic to perform modification checks
automatically. For the purposes of this example, we use JavaBeans conventions, in that we consider a
modification to be any call to a setter method. Of course, we don’t just treat all calls to a setter method as a
modification; we check to see whether the value being passed to the setter is different from the one currently
stored in the object. The only flaw with this solution is that setting an object back to its original state will
still reflect a modification if any one of the values on the object has changed. For example, you have a
Contact object with the firstName attribute. Let’s say that during processing, the firstName attribute was
changed from Peter to John. As a result, the object was marked as modified. However, it will still be marked
as modified, even if the value is then changed back from John to its original value Peter in later processing.
One way to keep track of such changes is to store the full history of changes in the object’s entire life cycle.
However, the implementation here is nontrivial and suffices for most requirements. Implementing the more
complete solution would result in an overly complex example.

Using the IsModified Interface
Central to the modification check solution is the IsModified interface, which the fictional application uses
to make intelligent decisions about object persistence. We do not cover how the application would use
IsModified; instead, we will focus on the implementation of the introduction. The following code snippet
shows the IsModified interface:

package com.apress.prospring5.ch5.introduction;

public interface IsModified {
 boolean isModified();
}

There’s nothing special here—just a single method, isModified(), indicating whether an object has
been modified.

Creating a Mixin
The next step is to create the code that implements IsModified and that is introduced to the
objects; this is referred to as a mixin. As we mentioned earlier, it is much simpler to create mixins
by subclassing DelegatingIntroductionInterceptor than to create one by directly implementing
the IntroductionInterceptor interface. The mixin class, IsModifiedMixin, subclasses
DelegatingIntroductionInterceptor and also implements the IsModified interface. This is shown here:

package com.apress.prospring5.ch5.introduction;

import java.lang.reflect.Method;
import java.util.HashMap;
import java.util.Map;

Chapter 5 ■ Introducing Spring AOP

267

import org.aopalliance.intercept.MethodInvocation;
import org.springframework.aop.support.DelegatingIntroductionInterceptor;

public class IsModifiedMixin extends DelegatingIntroductionInterceptor
 implements IsModified {
 private boolean isModified = false;

 private Map<Method, Method> methodCache = new HashMap<>();

 @Override
 public boolean isModified() {
 return isModified;
 }

 @Override
 public Object invoke(MethodInvocation invocation) throws Throwable {
 if (!isModified) {
 if ((invocation.getMethod().getName().startsWith("set"))
 && (invocation.getArguments().length == 1)) {

 Method getter = getGetter(invocation.getMethod());

 if (getter != null) {
 Object newVal = invocation.getArguments()0;
 Object oldVal = getter.invoke(invocation.getThis(), null);
 if((newVal == null) && (oldVal == null)) {
 isModified = false;
 } else if((newVal == null) && (oldVal != null)) {
 isModified = true;
 } else if((newVal != null) && (oldVal == null)) {
 isModified = true;
 } else {
 isModified = !newVal.equals(oldVal);
 }
 }
 }
 }

 return super.invoke(invocation);
 }

 private Method getGetter(Method setter) {
 Method getter = methodCache.get(setter);

 if (getter != null) {
 return getter;
 }

 String getterName = setter.getName().replaceFirst("set", "get");
 try {
 getter = setter.getDeclaringClass().getMethod(getterName, null);
 synchronized (methodCache) {

Chapter 5 ■ Introducing Spring AOP

268

 methodCache.put(setter, getter);
 }
 return getter;
 } catch (NoSuchMethodException ex) {
 return null;
 }
 }
}

The first thing to notice here is the implementation of IsModified, which consists of the private
modified field and the isModified() method. This example highlights why you must have one mixin
instance per advised object—the mixin introduces not only methods to the object but also state. If you share
a single instance of this mixin across many objects, then you are also sharing the state, which means all
objects show as modified the first time a single object becomes modified.

You do not actually have to implement the invoke() method for a mixin, but in this case, doing so
allows us to detect automatically when a modification occurs. We start by performing the check only if the
object is still unmodified; we do not need to check for modifications once we know that the object has been
modified. Next, we check to see whether the method is a setter, and if it is, we retrieve the corresponding
getter method. Note that we cache the getter/setter pairs for quicker future retrieval. Finally, we compare the
value returned by the getter with that passed to the setter to determine whether a modification has occurred.
Notice that we check for the different possible combinations of null and set the modifications appropriately.
It is important to remember that when you are using DelegatingIntroductionInterceptor, you must call
super.invoke() when overriding invoke() because it is the DelegatingIntroductionInterceptor that
dispatches the invocation to the correct location, either the advised object or the mixin itself.

You can implement as many interfaces as you like in your mixin, each of which is automatically
introduced into the advised object.

Creating an Advisor
The next step is to create an Advisor to wrap the creation of the mixin class. This step is optional, but it
does help ensure that a new instance of the mixin is being used for each advised object. The following code
snippet shows the IsModifiedAdvisor class:

package com.apress.prospring5.ch5.introduction;

import org.springframework.aop.support.DefaultIntroductionAdvisor;

public class IsModifiedAdvisor extends DefaultIntroductionAdvisor {
 public IsModifiedAdvisor() {
 super(new IsModifiedMixin());
 }
}

Notice that we have extended DefaultIntroductionAdvisor to create your IsModifiedAdvisor. The
implementation of this advisor is trivial and self-explanatory.

Chapter 5 ■ Introducing Spring AOP

269

Putting It All Together
Now that we have a mixin class and an Advisor class, we can test the modification check framework. The
class that we are going to use is the Contact class that was mentioned earlier, which is part of a common
package. This class is often used as a dependency for projects in this book for reasons of reusability. The
contents of this class are shown here:

package com.apress.prospring5.ch2.common;

public class Contact {

 private String name;
 private String phoneNumber;
 private String email;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 // getters and setter for other fields
 ...
}

This bean has a set of properties, but only the name property for testing the modification check mixin.
The following code snippet shows how to assemble the advised proxy and then tests the modification check
code:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Contact;
import com.apress.prospring5.ch5.introduction.IsModified;
import com.apress.prospring5.ch5.introduction.IsModifiedAdvisor;
import org.springframework.aop.IntroductionAdvisor;
import org.springframework.aop.framework.ProxyFactory;

public class IntroductionDemo {
 public static void main(String... args) {
 Contact target = new Contact();
 target.setName("John Mayer");

 IntroductionAdvisor advisor = new IsModifiedAdvisor();

 ProxyFactory pf = new ProxyFactory();
 pf.setTarget(target);
 pf.addAdvisor(advisor);
 pf.setOptimize(true);

Chapter 5 ■ Introducing Spring AOP

270

 Contact proxy = (Contact) pf.getProxy();
 IsModified proxyInterface = (IsModified)proxy;

 System.out.println("Is Contact?: " + (proxy instanceof Contact));
 System.out.println("Is IsModified?: " + (proxy instanceof IsModified));

 System.out.println("Has been modified?: " +
 proxyInterface.isModified());

 proxy.setName("John Mayer");

 System.out.println("Has been modified?: " +
 proxyInterface.isModified());

 proxy.setName("Eric Clapton");

 System.out.println("Has been modified?: " +
 proxyInterface.isModified());
 }
}

Notice that when we are creating the proxy, we set the optimize flag to true to force the use of the
CGLIB proxy. The reason for this is that when you are using the JDK proxy to introduce a mixin, the resulting
proxy will not be an instance of the object class (in this case Contact); the proxy implements only the mixin
interfaces, not the original class. With the CGLIB proxy, the original class is implemented by the proxy along
with the mixin interfaces.

Notice in the code that we test first to see whether the proxy is an instance of Contact and then to see
whether it is an instance of IsModified. Both tests return true when you are using the CGLIB proxy, but
only the IsModified test returns true for the JDK proxy. Finally, we test the modification check code by first
setting the name property to its current value and then to a new value, checking the value of the isModified
flag each time. Running this example results in the following output:

Is Contact?: true
Is IsModified?: true
Has been modified?: false
Has been modified?: false
Has been modified?: true

As expected, both instanceof tests return true. Notice that the first call to isModified(), before any
modification occurred, returns false. The next call, after we set the value of name to the same value, also
returns false. For the final call, however, after we set the value of name to a new value, the isModified()
method returns true, indicating that the object has in fact been modified.

Introduction Summary
Introductions are one of the most powerful features of Spring AOP; they allow you not only to extend
the functionality of existing methods but to extend the set of interfaces and object implementations
dynamically. Using introductions is the perfect way to implement crosscutting logic that your application
interacts with through well-defined interfaces. In general, this is the kind of logic that you want to apply
declaratively rather than programmatically. By using IsModifiedMixin defined in this example and the
framework services discussed in the next section, we can declaratively define which objects are capable of
modification checks, without needing to modify the implementations of those objects.

Chapter 5 ■ Introducing Spring AOP

271

Obviously, because introductions work via proxies, they add a certain amount of overhead. All methods
on the proxy are considered advised since pointcuts cannot be used in conjunction with introductions.
However, in the case of many of the services that you can implement by using introductions such as the
object modification check, this performance overhead is a small price to pay for the reduction in code
required to implement the service, as well as the increase in stability and maintainability that comes from
fully centralizing the service logic.

Framework Services for AOP
Up to now, we have had to write a lot of code to advise objects and generate the proxies for them. Although
this in itself is not a huge problem, it does mean that all advice configuration is hard-coded into your
application, removing some of the benefits of being able to advise a method implementation transparently.
Thankfully, Spring provides additional framework services that allow you to create an advised proxy in your
application configuration and then inject this proxy into a target bean just like any other dependencies.

Using the declarative approach to AOP configuration is preferable to the manual, programmatic
mechanism. When you use the declarative mechanism, not only do you externalize the configuration
of advice but you also reduce the chance of coding errors. You can also take advantage of DI and AOP
combined to enable AOP so that it can be used in a completely transparent environment.

Configuring AOP Declaratively
When using declarative configuration of Spring AOP, three options exist.

•	 Using ProxyFactoryBean: In Spring AOP, ProxyFactoryBean provides a declarative
way to configure Spring’s ApplicationContext (and hence the underlying
BeanFactory) when creating AOP proxies based on defined Spring beans.

•	 Using the Spring aop namespace: Introduced in Spring 2.0, the aop namespace
provides a simplified way (when compared to ProxyFactoryBean) to define aspects
and their DI requirements in Spring applications. However, the aop namespace also
uses ProxyFactoryBean behind the scenes.

•	 Using @AspectJ-style annotations: Besides the XML-based aop namespace, you
can use the @AspectJ-style annotations within your classes for configuring Spring
AOP. Although the syntax it uses is based on AspectJ and you need to include some
AspectJ libraries when using this option, Spring still uses the proxy mechanism (that
is, creates proxied objects for the targets) when bootstrapping ApplicationContext.

Using ProxyFactoryBean
The ProxyFactoryBean class is an implementation of FactoryBean that allows you to specify a bean to target,
and it provides a set of advice and advisors for that bean that are eventually merged into an AOP proxy.
ProxyFactoryBean is used to apply interceptor logic to an existing target bean in a way that when methods
on that bean are invoked, the interceptors are executed before and after that method call. Because you can
use both advisor and advice with ProxyFactoryBean, you can configure not only the advice declaratively but
the pointcuts as well.

ProxyFactoryBean shares a common interface (the org.springframework.aop.framework.
Advised interface) with ProxyFactory (both classes extend the org.springframework.aop.framework.
AdvisedSupport class indirectly, which implements the Advised interface), and as a result, it exposes many
of the same flags such as frozen, optimize, and exposeProxy. The values for these flags are passed directly
to the underlying ProxyFactory, which allows you to configure the factory declaratively as well.

Chapter 5 ■ Introducing Spring AOP

272

ProxyFactoryBean in Action
Using ProxyFactoryBean is simple. You define a bean that will be the target bean, and then using
ProxyFactoryBean, you define the bean that your application will access, using the target bean as the proxy
target. Where possible, define the target bean as an anonymous bean inside the proxy bean declaration. This
prevents your application from accidentally accessing the unadvised bean. However, in some cases, such as
the sample we are about to show you, you may want to create more than one proxy for the same bean, so you
should use a normal top-level bean for this case.

For the following example, imagine this scenario: you have a singer working together with a
documentarist to produce a documentary of a tour. In this case, Documentarist has a dependency of the
Singer implementation. The Singer implementation that we will use here is the previously introduced
GrammyGuitarist. The contents are shown again here:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import com.apress.prospring5.ch2.common.Singer;

public class GrammyGuitarist implements Singer {

 @Override public void sing() {
 System.out.println("sing: Gravity is working against me\n" +
 "And gravity wants to bring me down");
 }

 public void sing(Guitar guitar) {
 System.out.println("play: " + guitar.play());
 }

 public void rest(){
 System.out.println("zzz");
 }

 public void talk(){
 System.out.println("talk");
 }
}

The Documentarist class that will basically tell the singer what to do while filming the documentary is
shown here:

package com.apress.prospring5.ch5;

public class Documentarist {

 private GrammyGuitarist guitarist;

 public void execute() {
 guitarist.sing();
 guitarist.talk();
 }

Chapter 5 ■ Introducing Spring AOP

273

 public void setDep(GrammyGuitarist guitarist) {
 this.guitarist = guitarist;
 }
}

For this example, we are going to create two proxies for a single GrammySinger instance, both with the
same basic advice shown here:

package com.apress.prospring5.ch5;

import org.aspectj.lang.JoinPoint;

public class AuditAdvice {
 public void simpleBeforeAdvice(JoinPoint joinPoint) {
 System.out.println("Executing: " +
 joinPoint.getSignature().getDeclaringTypeName() + " "
 + joinPoint.getSignature().getName());
 }
}

The first proxy will just advise the target by using the advice directly; thus, all methods will be advised.
For the second proxy, we will configure AspectJExpressionPointcut and DefaultPointcutAdvisor so that
only the sing() method of the GrammySinger class is advised. To test the advice, we will create two bean
definitions of type Documentarist, each of which will be injected with a different proxy. Then we will invoke
the execute() method on each of these beans and observe what happens when the advised methods on
the dependency are invoked. Figure 5-10 shows the configuration for this example (app-context-xml.
xml). We used an image to depict this configuration because it might look a little confusing and we
wanted to make sure it is easy to see where each bean is injected. In the example, we are simply setting
the properties that we set in code using Spring’s DI capabilities. The only points of interest are that we
use an anonymous bean for the pointcut, and we use the ProxyFactoryBean class. We prefer to use
anonymous beans for pointcuts when they are not being shared because it keeps the set of beans that are
directly accessible as small and as relevant to the application as possible. The important point to realize
when you are using ProxyFactoryBean is that the ProxyFactoryBean declaration is the one to expose to
your application and the one to use when you are fulfilling dependencies. The underlying target bean
declaration is not advised, so you should use this bean only when you want to bypass the AOP framework,
although in general, your application should not be aware of the AOP framework and thus should not
want to bypass it. For this reason, you should use anonymous beans wherever possible to avoid accidental
access from the application.

Chapter 5 ■ Introducing Spring AOP

274

The following code snippet shows a simple class that obtains the two Documentarist instances from
ApplicationContext and then runs the execute() method for each one:

package com.apress.prospring5.ch5;

import org.springframework.context.support.GenericXmlApplicationContext;
public class ProxyFactoryBeanDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("spring/app-context-xml.xml");
 ctx.refresh();

 Documentarist documentaristOne =
 ctx.getBean("documentaristOne", Documentarist.class);
 Documentarist documentaristTwo =
 ctx.getBean("documentaristTwo", Documentarist.class);

Figure 5-10.  Declarative AOP configuration

Chapter 5 ■ Introducing Spring AOP

275

 System.out.println("Documentarist One >>");
 documentaristOne.execute();

 System.out.println("\nDocumentarist Two >> ");
 documentaristTwo.execute();
 }
}

Running this example produces the following output:

Documentarist One >>
Executing: public void com.apress.prospring5.ch5.GrammyGuitarist.sing()
sing: Gravity is working against me
And gravity wants to bring me down
Executing: public void com.apress.prospring5.ch5.GrammyGuitarist.talk()
talk

Documentarist Two >>
Executing: public void com.apress.prospring5.ch5.GrammyGuitarist.sing()
sing: Gravity is working against me
And gravity wants to bring me down
talk

As expected, both the sing() and talk() methods in the first proxy are advised because no pointcut
was used in its configuration. For the second proxy, however, only the sing() method was advised because
of the pointcut used in the configuration.

Using ProxyFactoryBean for Introductions
You are not limited in using the ProxyFactoryBean class for just advising an object but also for introducing
mixins to your objects. Remember from the earlier discussion on introductions that you must use an
IntroductionAdvisor to add an introduction; you cannot add an introduction directly. The same rule
applies when you are using ProxyFactoryBean with introductions. When you are using ProxyFactoryBean,
it becomes much easier to configure your proxies if you created a custom Advisor for your mixin. The
following configuration snippet shows a sample configuration for the IsModifiedMixin introduction from
earlier in the chapter (app-context-xml.xml):

<beans ...>

 <bean id="guitarist"
 class="com.apress.prospring5.ch2.common.Contact"
 p:name="John Mayer"/>
 <bean id="advisor"
 class="com.apress.prospring5.ch5.introduction.IsModifiedAdvisor"/>

 <util:list id="interceptorAdvisorNames">
 <value>advisor</value>
 </util:list>

 <bean id="bean"
 class="org.springframework.aop.framework.ProxyFactoryBean"
 p:target-ref="guitarist"

Chapter 5 ■ Introducing Spring AOP

276

 p:interceptorNames-ref="interceptorAdvisorNames"
 p:proxyTargetClass="true">
 </bean>

</beans>

As you can see from the configuration, we use the IsModifiedAdvisor class as the advisor for
ProxyFactoryBean, and because we do not need to create another proxy of the same target object, we use an
anonymous declaration for the target bean. The following code snippet shows a modification of the previous
introduction example that obtains the proxy from ApplicationContext:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Contact;
import com.apress.prospring5.ch5.introduction.IsModified;
import org.springframework.context.support.GenericXmlApplicationContext;

public class IntroductionConfigDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 Contact bean = (Contact) ctx.getBean("bean");
 IsModified mod = (IsModified) bean;

 System.out.println("Is Contact?: " + (bean instanceof Contact));
 System.out.println("Is IsModified?: " + (bean instanceof IsModified));

 System.out.println("Has been modified?: " + mod.isModified());
 bean.setName("John Mayer");

 System.out.println("Has been modified?: " + mod.isModified());
 bean.setName("Eric Clapton");

 System.out.println("Has been modified?: " + mod.isModified());
 }
}

Running this example yields exactly the same output as the previous introduction example, but this time
the proxy is obtained from ApplicationContext and no configuration is present in the application code.

And since we’ve already covered Java configuration, the XML configuration depicted previously can be
replaced with a configuration class like the one shown here:

package com.apress.prospring5.ch5.config;

import com.apress.prospring5.ch2.common.Contact;
import com.apress.prospring5.ch5.introduction.IsModifiedAdvisor;
import org.springframework.aop.Advisor;
import org.springframework.aop.framework.ProxyFactoryBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

Chapter 5 ■ Introducing Spring AOP

277

@Configuration
public class AppConfig {

 @Bean
 public Contact guitarist() {
 Contact guitarist = new Contact();
 guitarist.setName("John Mayer");
 return guitarist;
 }

 @Bean
 public Advisor advisor() {
 return new IsModifiedAdvisor();
 }

 @Bean ProxyFactoryBean bean() {
 ProxyFactoryBean proxyFactoryBean = new ProxyFactoryBean();
 proxyFactoryBean.setTarget(guitarist());
 proxyFactoryBean.setProxyTargetClass(true);
 proxyFactoryBean.addAdvisor(advisor());
 return proxyFactoryBean;
 }
}

To test that the previous class actually works, in the main() method of class IntroductionConfigDemo,
just replace the lines that initialize the context with the following:

GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

The difference in the configuration class is that there is no need to refer to the advisor bean by name
or add it in a list to provide it as an argument to ProxyFactoryBean because addAdvisor(..) can be called
directly and the advisor bean can be provided as the argument. This obviously simplifies the configuration.

ProxyFactoryBean Summary
When you use ProxyFactoryBean, you can configure AOP proxies that provide all the flexibility of the
programmatic method without needing to couple your application to the AOP configuration. Unless
you need to perform decisions at runtime as to how your proxies should be created, it is best to use the
declarative method of proxy configuration over the programmatic method. Let’s move on so you can see the
other two options for declarative Spring AOP, which are both preferred options for applications based on
Spring 2.0 or newer with JDK 5 or newer.

Using the aop Namespace
The aop namespace provides a greatly simplified syntax for declarative Spring AOP configurations. To show
you how it works, let’s reuse the previous ProxyFactoryBean example with a slightly modified version in
order to demonstrate its usage. The GrammyGuitarist class from the previous example is still used, but
Documentarist will be extended to call the sing() method with a Guitar argument.

Chapter 5 ■ Introducing Spring AOP

278

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;

public class NewDocumentarist extends Documentarist {

 @Override
 public void execute() {
 guitarist.sing();
 guitarist.sing(new Guitar());
 guitarist.talk();
 }
}

The advice class changes to the following:

package com.apress.prospring5.ch5;

import org.aspectj.lang.JoinPoint;

public class SimpleAdvice {

 public void simpleBeforeAdvice(JoinPoint joinPoint) {
 System.out.println("Executing: " +
 joinPoint.getSignature().getDeclaringTypeName() + " "
 + joinPoint.getSignature().getName());
 }
}

You will see that the advice class no longer needs to implement the MethodBeforeAdvice interface. Also,
the before advice accepts the joinpoint as an argument but not the method, object, and arguments. Actually,
for the advice class, this argument is optional, so you can leave the method with no argument. However,
if in the advice you need to access the information of the joinpoint being advised (in this case, we want to
dump the information of the calling type and method name), then we need to define the acceptance of the
argument. When the argument is defined for the method, Spring will automatically pass the joinpoint into
the method for your processing. Here is the Spring XML configuration with the aop namespace from the
app-context-xml-01.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <aop:config>
 <aop:pointcut id="singExecution"
 expression="execution(

Chapter 5 ■ Introducing Spring AOP

279

 * com.apress.prospring5.ch5..sing*(com.apress.prospring5.ch2.common.Guitar)
)"/>

 <aop:aspect ref="advice">
 <aop:before pointcut-ref="singExecution"
 method="simpleBeforeAdvice"/>
 </aop:aspect>
 </aop:config>

 <bean id="advice"
 class="com.apress.prospring5.ch5.SimpleAdvice"/>
 <bean id="johnMayer"
 class="com.apress.prospring5.ch5.GrammyGuitarist"/>
 <bean id="documentarist"
 class="com.apress.prospring5.ch5.NewDocumentarist"
 p:guitarist-ref="johnMayer"/>
</beans>

First, we need to declare the aop namespace in the <beans> tags. Second, all the Spring AOP
configuration was put under the tag <aop:config>. Under <aop:config>, you can then define the pointcut,
aspects, advisors, and so on, and reference other Spring beans as usual.

From the previous configuration, we defined a pointcut with the ID singExecution. The expression

"execution(*
 com.apress.prospring5.ch5..sing*(com.apress.prospring5.ch2.common.Guitar)
)"

means that we want to advise all methods with the prefix sing, and the classes are defined under the
package com.apress.prospring5.ch5 (including all the subpackages). Also, the sing() method should receive
one argument with the Guitar type. Afterward, the aspect was declared by using the <aop:aspect> tag, and the
advice class is referencing the Spring bean with the ID advice, which is the SimpleAdvice class. The pointcut-
ref attribute is referencing the defined pointcut with the ID singExecution, and the before advice (declared by
using the <aop:before> tag) is the method simpleBeforeAdvice() within the advice bean. To test the previous
configuration, you can use the following class:

package com.apress.prospring5.ch5;

import org.springframework.context.support.GenericXmlApplicationContext;

public class AopNamespaceDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml-01.xml");
 ctx.refresh();
 NewDocumentarist documentarist =
 ctx.getBean("documentarist", NewDocumentarist.class);
 documentarist.execute();

 ctx.close();
 }
}

Chapter 5 ■ Introducing Spring AOP

280

In this example, we simply initialize ApplicationContext as usual, retrieve the bean, and call its
execute() method. Running the program will yield the following output:

sing: Gravity is working against me
And gravity wants to bring me down
Executing: com.apress.prospring5.ch5.GrammyGuitarist sing
play: G C G C Am D7
talk

As you can see, only the call to the sing(..) method with a Guitar argument was advised; the sing()
method with no argument and the talk() method were not. This exactly works as expected, and you can see
the configuration was greatly simplified when compared to the ProxyFactoryBean configuration.

Let’s further revise the previous sample into a bit more complicated case. Suppose now we want to
advise only those methods with Spring beans with an ID starting with john and a parameter of type Guitar
that has the brand property set to Gibson.

For this, first the Guitar class must be changed to add the brand property. We’ll make it nonmandatory
and populate it with a default value, just to keep the previous examples working.

package com.apress.prospring5.ch2.common;

public class Guitar {
 private String brand =" Martin";

 public String play(){
 return "G C G C Am D7";
 }

 public String getBrand() {
 return brand;
 }

 public void setBrand(String brand) {
 this.brand = brand;
 }
}

Then we need to make NewDocumentarist call the sing() method with a special brand of guitar.

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;

public class NewDocumentarist extends Documentarist {

 @Override
 public void execute() {
 guitarist.sing();
 Guitar guitar = new Guitar();
 guitar.setBrand("Gibson");
 guitarist.sing(guitar);
 guitarist.talk();
 }
}

Chapter 5 ■ Introducing Spring AOP

281

Now we need a new and more complex type of advice. The argument guitar was added into the
signature of the before advice. Second, in the advice, we check and execute the logic only when the
argument’s brand property is equal to Gibson.

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import org.aspectj.lang.JoinPoint;

public class ComplexAdvice {
 public void simpleBeforeAdvice(JoinPoint joinPoint, Guitar value) {
 if(value.getBrand().equals("Gibson")) {
 System.out.println("Executing: " +
 joinPoint.getSignature().getDeclaringTypeName() + " "
 + joinPoint.getSignature().getName());
 }
 }
}

Also, the XML configuration needs to be revised because we need to use the new type of advice and
update the pointcut expression. (You can find the full configuration in app-context-xml-02.xml, and except
for the lines shown next, everything else is identical to the contents of app-context-xml-01.xml, so they
won’t be depicted again here.)

<beans ..>
...

 <bean id="advice"
 class="com.apress.prospring5.ch5.ComplexAdvice"/>

 <aop:config>
 <aop:pointcut id="singExecution"
 expression="execution(* sing*(com.apress.prospring5.ch2.common.Guitar))
 and args(value) and bean(john*)"/>

</beans>

Two more directives were added to the pointcut expression. First, args(value) instructs Spring to also
pass the argument with the name value into the before advice. Second, the bean(john*) directive instructs
Spring to advise only the beans with an ID that has john as the prefix. This is a powerful feature; if you have
a well-defined structure of Spring beans naming, you can easily advise the objects you want. For example,
you can have advice that applies to all DAO beans by using bean(*DAO*) or all service layer beans using
bean(*Service*), instead of using the fully qualified class name for matching. Running the same testing
program with the new configuration file app-context-xml02.xml produces the following output:

sing: Gravity is working against me
And gravity wants to bring me down
Executing: com.apress.prospring5.ch5.GrammyGuitarist sing
play: G C G C Am D7
talk

Chapter 5 ■ Introducing Spring AOP

282

You can see that only the sing() method with the Guitar argument and brand equal to Gibson was
advised.

Let’s see one more example of using the aop namespace for the around advice. Instead of creating
another class to implement the MethodInterceptor interface, we can simply add a new method to the
ComplexAdvice class. The following code sample shows the new method named simpleAroundAdvice() in
the revised ComplexAdvice class:

//ComplexAdvice.java
public Object simpleAroundAdvice(ProceedingJoinPoint pjp,
 Guitar value) throws Throwable {
 System.out.println("Before execution: " +
 pjp.getSignature().getDeclaringTypeName() + " "
 + pjp.getSignature().getName()
 + " argument: " + value.getBrand());

 Object retVal = pjp.proceed();

 System.out.println("After execution: " +
 pjp.getSignature().getDeclaringTypeName() + " "
 + pjp.getSignature().getName()
 + " argument: " + value.getBrand());

 return retVal;
}

The newly added simpleAroundAdvice() method needs to take at least one argument of type
ProceedingJoinPoint so that it can proceed with the invocation of the target object. We also add the value
argument to display the value in the advice. The XML configuration for <aop:aspect> must be adapted to
add the new advice. (You can find the full configuration in app-context-xml-03.xml, and except for the
lines shown next, everything else is identical to the contents from app-context-xml-02.xml, so they won’t
be depicted again here.)

<beans ..>
...
 <aop:config>
 <aop:pointcut id="singExecution"
 expression="execution(
 * sing*(com.apress.prospring5.ch2.common.Guitar))
 and args(value) and bean(john*)"
 />

 <aop:aspect ref="advice">
 <aop:before pointcut-ref="singExecution"
 method="simpleBeforeAdvice"/>
 <aop:around pointcut-ref="singExecution"
 method="simpleAroundAdvice"/>
 </aop:aspect>
 </aop:config>
</beans>

Chapter 5 ■ Introducing Spring AOP

283

We just added the new tag <aop:around> to declare the around advice and reference the same pointcut.
Let’s modify the NewDocumentarist.execute() method again to include a sing() call with a default Guitar
to obtain the behavior we want to analyze.

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;

public class NewDocumentarist extends Documentarist {

 @Override
 public void execute() {
 guitarist.sing();
 Guitar guitar = new Guitar();
 guitar.setBrand("Gibson");
 guitarist.sing(guitar);
 guitarist.sing(new Guitar());
 guitarist.talk();
 }
}

Run the testing program again, and you will have the following output:

sing: Gravity is working against me
And gravity wants to bring me down

Executing: com.apress.prospring5.ch5.GrammyGuitarist sing
Before execution: com.apress.prospring5.ch5.GrammyGuitarist sing argument: Gibson
play: G C G C Am D7
After execution: com.apress.prospring5.ch5.GrammyGuitarist sing argument: Gibson

Before execution: com.apress.prospring5.ch5.GrammyGuitarist sing argument: Martin
play: G C G C Am D7
After execution: com.apress.prospring5.ch5.GrammyGuitarist sing argument: Martin
talk

There are two interesting points here. First, you see that the around advice was applied to both
invocations of the sing(..) method with a Guitar argument, since it doesn’t check the argument. Second,
for the sing() method with "Gibson" Guitar as an argument, both the before and around advice were
executed, and by default the before advice takes precedence.

  When using the aop namespace or the @AspectJ style, there are two types of after advice. The
after-returning advice (using the <aop:after-returning> tag) applies only when the target method is
completed normally. Another one is the after advice (using the <aop:after> tag), which takes place whether
the method was completed normally or the method runs into an error and an exception is thrown. If you need
advice that executes regardless of the execution result of the target method, you should use after advice.

Chapter 5 ■ Introducing Spring AOP

284

Using @AspectJ-Style Annotations
When using Spring AOP with JDK 5 or newer, you can also use the @AspectJ-style annotations to declare
your advice. However, as stated before, Spring still uses its own proxying mechanism for advising the target
methods, not AspectJ’s weaving mechanism.

In this section, we will go through how to implement the same aspects as the ones in the aop
namespace by using @AspectJ-style annotations. AspectJ is a general-purpose aspect-oriented extension
to Java born out of need to solve issues or concerns that are not well captured by traditional programming
methodologies, in other words, crosscutting concerns. For the examples in this section, we will use
annotations for other Spring beans as well, and we will use Java configuration classes.

The following example depicts the GrammyGuitarist class with the bean being declared using annotations:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import com.apress.prospring5.ch2.common.Singer;
import org.springframework.stereotype.Component;

@Component("johnMayer")
public class GrammyGuitarist implements Singer {

 @Override public void sing() {
 System.out.println("sing: Gravity is working against me\n" +
 "And gravity wants to bring me down");
 }

 public void sing(Guitar guitar) {
 System.out.println("play: " + guitar.play());
 }

 public void rest(){
 System.out.println("zzz");
 }

 public void talk(){
 System.out.println("talk");
 }
}

The NewDocumentarist class needs adapting too.

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.stereotype.Component;

@Component("documentarist")
public class NewDocumentarist {
 protected GrammyGuitarist guitarist;

Chapter 5 ■ Introducing Spring AOP

285

 public void execute() {
 guitarist.sing();
 Guitar guitar = new Guitar();
 guitar.setBrand("Gibson");
 guitarist.sing(guitar);
 guitarist.talk();
 }

 @Autowired
 @Qualifier("johnMayer")
 public void setGuitarist(GrammyGuitarist guitarist) {
 this.guitarist = guitarist;
 }
}

We annotate both classes with the @Component annotation and assign them with the corresponding
name. In the GrammyGuitarist class, the setter method of the property guitarist was annotated with
@Autowired for automatic injection by Spring.

Now let’s see the AnnotationAdvice class using @AspectJ-style annotations. We will implement the
pointcuts, before advice, and around advice altogether in one shot. The following code snippet shows the
AnnotationAdvice class:

package com.apress.prospring5.ch5;

import com.apress.prospring5.ch2.common.Guitar;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.stereotype.Component;

@Component
@Aspect
public class AnnotatedAdvice {
 @Pointcut("execution(*
 com.apress.prospring5.ch5..sing*(com.apress.prospring5.ch2.common.Guitar))
 && args(value)")
 public void singExecution(Guitar value) {
 }

 @Pointcut("bean(john*)")
 public void isJohn() {
 }

 @Before("singExecution(value) && isJohn()")
 public void simpleBeforeAdvice(JoinPoint joinPoint, Guitar value) {
 if(value.getBrand().equals("Gibson")) {
 System.out.println("Executing: " +

Chapter 5 ■ Introducing Spring AOP

286

 joinPoint.getSignature().getDeclaringTypeName() + " "
 + joinPoint.getSignature().getName() + " argument: " + value.getBrand());
 }
 }

 @Around("singExecution(value) && isJohn()")
 public Object simpleAroundAdvice(ProceedingJoinPoint pjp,
 Guitar value) throws Throwable {
 System.out.println("Before execution: " +
 pjp.getSignature().getDeclaringTypeName() + " "
 + pjp.getSignature().getName()
 + " argument: " + value.getBrand());

 Object retVal = pjp.proceed();

 System.out.println("After execution: " +
 pjp.getSignature().getDeclaringTypeName() + " "
 + pjp.getSignature().getName()
 + " argument: " + value.getBrand());

 return retVal;
 }
}

You will notice that the code structure is quite like the one we used in the aop namespace, just in this
case we used annotations instead. However, there are still a few points worth noting.

•	 We used both @Component and @Aspect to annotate the AnnotatedAdvice class.
The @Aspect annotation is used to declare that it’s an aspect class. To allow Spring
to scan the component when we use the <context:component-scan> tag in the XML
configuration, you also need to annotate the class with @Component.

•	 The pointcuts were defined as methods that return void. In the class, we defined two
pointcuts; both are annotated with @Pointcut. We intentionally split the pointcut
expression in the aop namespace example into two. The first one (indicated by the
method singExecution(Guitar value)) defines the pointcut for execution of
sing*() methods within all classes under the package com.apress.prospring4.
ch5 with a guitar argument, and the argument (value) will also be passed into
the advice. The other one (indicated by the method isJohn()) is to define another
pointcut that defines all method executions with Spring beans’ names prefixed by
john. Also note that we need to use && to define the “and” condition in the pointcut
expression, while for the aop namespace, we need to use the and operator.

•	 The before-advice method was annotated with @Before, while the around advice
was annotated with @Around. For both advice types, we pass in the value that uses the
two pointcuts defined in the class. The value singExecution(value) && isJohn()
means the condition of both pointcuts should be matched for applying the advice,
which is the same as the intersection operation in ComposablePointcut.

•	 The before-advice logic and the around-advice logic are the same as in the aop
namespace example.

Chapter 5 ■ Introducing Spring AOP

287

With all the annotations in place, the XML configuration becomes simple.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <aop:aspectj-autoproxy/>

 <context:component-scan
 base-package="com.apress.prospring5.ch5"/>
</beans>

Only two tags were declared. The <aop:aspect-autoproxy> tag is to inform Spring to scan for
@AspectJ-style annotations, while the <context:component-scan> tag was still required for Spring to scan
for Spring beans within the package that the advice resides. We also need to annotate the advice class with
@Component to indicate that it’s a Spring component.

The class to test this configuration is depicted in the following code snippet:

package com.apress.prospring5.ch5;

import org.springframework.context.support.GenericXmlApplicationContext;

public class AspectJAnnotationDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 NewDocumentarist documentarist =
 ctx.getBean("documentarist", NewDocumentarist.class);
 documentarist.execute();
 }
}

If you were to run the example as it is, you would get a little surprise as this is what you would see in the
console:

Exception in thread "main"
org.springframework.beans.factory.UnsatisfiedDependencyException:
Error creating bean with name 'documentarist': Unsatisfied dependency
expressed through method 'setGuitarist' parameter 0; nested exception is
 org.springframework.beans.factory.BeanNotOfRequiredTypeException:
 Bean named 'johnMayer' is expected to be of type

Chapter 5 ■ Introducing Spring AOP

288

 'com.apress.prospring5.ch5.GrammyGuitarist' but was actually of
 type 'com.sun.proxy.$Proxy18'
...

So, what is going on here? Well, GrammyGuitarist implements the Singer interface, and by default
interface-based JDK dynamic proxies are created. But NewDocumentarist strictly requires the dependency
to be of type Grammy-Guitarist or an extension of it. Thus, the previous exception is thrown. How do we
fix it? There are two ways: one is to modify NewDocumentarist to accept a Singer dependency, but this
is not suitable for our example as we want to access methods in the GrammyGuitarist class, which are
not implementations of methods defined in the Singer interface. The second way is to request Spring
to generate CGLIB, class-based proxies. In XML, this can be done by modifying the configuration of the
<aop:aspectj-autoproxy/> tag and setting the proxy-target-class attribute value to true.

The Java configuration class is even simpler than this:

@Configuration
@ComponentScan(basePackages = {"com.apress.prospring5.ch5"})
@EnableAspectJAutoProxy(proxyTargetClass = true)
public class AppConfig {
}

Notice the @EnableAspectJAutoProxy annotation. It is the equivalent of <aop:aspectj-autoproxy/>
and also has an attribute called proxyTargetClass that is analogous to the proxy-target-class attribute.
This annotation enables support for handling components marked with AspectJ’s @Aspect annotation and is
designed to be used on classes annotated with @Configuration.

The following is the testing program. It was designed as a JUnit test case so that both XML and Java
configuration examples can be placed in the same class. Smart editors like IntelliJ IDEA offer the possibility
to execute every test method in isolation.

package com.apress.prospring5.ch5;

import org.junit.Test;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class AspectJAnnotationTest {

 @Test
 public void xmlTest() {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 NewDocumentarist documentarist =
 ctx.getBean("documentarist", NewDocumentarist.class);
 documentarist.execute();

 ctx.close();
 }

Chapter 5 ■ Introducing Spring AOP

289

 @Test
 public void configTest() {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 NewDocumentarist documentarist =
 ctx.getBean("documentarist", NewDocumentarist.class);
 documentarist.execute();
 ctx.close();
 }
}

Running any of these test methods, if it passes, yields the following output:

sing: Gravity is working against me
And gravity wants to bring me down
Before execution: com.apress.prospring5.ch5.GrammyGuitarist sing argument: Gibson
Executing: com.apress.prospring5.ch5.GrammyGuitarist sing argument: Gibson
play: G C G C Am D7
After execution: com.apress.prospring5.ch5.GrammyGuitarist sing argument: Gibson
talk

Spring Boot provides a special AOP starter library that removes a little of the hassle of configuration.
The library is configured as usual in the pro-spring-15/build.properties file and added as a dependency
using its given name in the child project configuration file aspectj-boot/build.gradle.

//pro-spring-15/build.properties
ext {
 bootVersion = '2.0.0.BUILD-SNAPSHOT'

 ...
 boot = [
 springBootPlugin:
 "org.springframework.boot:spring-boot-gradle-plugin:$bootVersion",
 ...
 starterAop:
 "org.springframework.boot:spring-boot-starter-aop:$bootVersion"
]
}
//aspectj-boot/build.gradle
buildscript {
 ...
 dependencies {
 classpath boot.springBootPlugin
 }
}

apply plugin: 'org.springframework.boot'

dependencies {
 compile boot.starterAop
}

Chapter 5 ■ Introducing Spring AOP

290

In Figure 5-11 you can see the set of libraries added as dependencies to the Spring Boot project. By
adding this library to your application as a dependency, the @EnableAspectJAutoProxy(proxyTarget
Class = true) annotation is no longer needed because the AOP Spring support is already enabled by
default. The attribute does not have to be set anywhere either because Spring Boot automatically detects
what type of proxies you need. Considering the previous example, you can remove the AppConfig class and
replace it with a typical Spring Boot application class.

Figure 5-11.  Spring Boot AOP starter tranzitive dependencies as depicted in IntelliJ IDEA

package com.apress.prospring5.ch5;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

@SpringBootApplication
public class Application {

 private static Logger logger = LoggerFactory.getLogger(Application.class);

 public static void main(String args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 assert (ctx != null);

 NewDocumentarist documentarist =
 ctx.getBean("documentarist", NewDocumentarist.class);
 documentarist.execute();

 System.in.read();
 ctx.close();
 }
}

Chapter 5 ■ Introducing Spring AOP

291

Considerations for Declarative Spring AOP Configuration
So far, we have discussed three ways of declaring Spring AOP configuration, including the
ProxyFactoryBean, the aop namespace, and @AspectJ-style annotations. We believe you will agree that the
aop namespace is much simpler than ProxyFactoryBean. So, the general question is, do you use the aop
namespace or @AspectJ-style annotations?

If your Spring application is XML configuration–based, using the aop namespace approach is a
natural choice because it keeps the AOP and DI configuration styles consistent. On the other hand, if your
application is mainly annotation based, use the @AspectJ annotation. Again, let the requirements of your
application drive the configuration approach and make your best effort to be consistent.

Moreover, there are some other differences between the aop namespace and @AspectJ annotation
approaches.

•	 The pointcut expression syntax has some minor differences (for example, in the
previous discussions, we need to use and in the aop namespace, but && in @AspectJ
annotation).

•	 The aop namespace approach supports only the “singleton” aspect instantiation
model.

•	 In the aop namespace, you can’t “combine” multiple pointcut expressions. In the
example using @AspectJ, we can combine the two pointcut definitions (that is,
singExecution(value) && isJohn()) in the before and around advice. When using
the aop namespace and you need to create a new pointcut expression that combines
the matching conditions, you need to use the ComposablePointcut class.

AspectJ Integration
AOP provides a powerful solution to many of the common problems that arise with OOP-based applications.
When using Spring AOP, you can take advantage of a select subset of AOP functionality that, in most cases,
enables you to solve problems you encounter in your application. However, in some cases, you may want to
use some AOP features that are outside the scope of Spring AOP.

From the joinpoint perspective, Spring AOP supports only pointcuts matching on the execution of
public nonstatic methods. However, in some cases, you may need to apply advice to protected/private
methods, during object construction or field access, and so on.

In those cases, you need to look at an AOP implementation with a fuller feature set. Our preference, in
this case, is to use AspectJ, and because you can now configure AspectJ aspects using Spring, AspectJ forms
the perfect complement to Spring AOP.

About AspectJ
AspectJ is a fully featured AOP implementation that uses a weaving process (either compile-time or load-
time weaving) to introduce aspects into your code. In AspectJ, aspects and pointcuts are built using a
Java-like syntax, which reduces the learning curve for Java developers. We are not going to spend too much
time looking at AspectJ and how it works because that is outside the scope of this book. Instead, we present
some simple AspectJ examples and show you how to configure them using Spring. For more information on
AspectJ, you should definitely read AspectJ in Action: Enterprise AOP with Spring Applications by Ramnivas
Laddad (Manning, 2009).

Chapter 5 ■ Introducing Spring AOP

292

  We are not going to cover how to weave AspectJ aspects into your application. Refer to the AspectJ
documentation for details or take a look at the provided Gradle build in Chapter 5’s aspectj-aspects project.

Using Singleton Aspects
By default, AspectJ aspects are singletons, meaning you get a single instance per class loader. The problem
Spring faces with any AspectJ aspect is that it cannot create the aspect instance, as this is already handled
by AspectJ itself. However, each aspect exposes a method called org.aspectj.lang.Aspects.aspectOf()
that can be used to access the aspect instance. Using the aspectOf() method and a special feature of Spring
configuration, you can have Spring configure the aspect for you. With this support, you can take full advantage
of AspectJ’s powerful AOP feature set without losing out on Spring’s excellent DI and configuration abilities.
This also means you do not need two separate configuration methods for your application; you can use the
same Spring ApplicationContext approach for all your Spring-managed beans and for your AspectJ aspects.

To support aspects in a Spring application, a Gradle plug-in needs to be added to the configuration. You
can find the source code and instructions on how to use it in a Gradle application here: https://github.com/
eveoh/gradle-aspectj. Here you can see the contents of the chapter05/aspectj-aspects/build.gradle:

buildscript {
 repositories {
 mavenLocal()
 mavenCentral()
 maven { url "http://repo.spring.io/release" }
 maven { url "http://repo.spring.io/milestone" }
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/libs-snapshot" }
 maven { url "https://maven.eveoh.nl/content/repositories/releases" }
 }
 dependencies {
 classpath "nl.eveoh:gradle-aspectj:1.6"
 }
}

apply plugin: 'aspectj'

jar {
 manifest {
 attributes(
 'Main-Class': 'com.apress.prospring5.ch5.AspectJDemo',
 "Class-Path": configurations.compile.collect { it.getName() }.join(' '))
 }
}

In the following code snippet, you can see a basic class, MessageWriter, that we will advise using AspectJ:

package com.apress.prospring5.ch5;

public class MessageWriter {
 public void writeMessage() {
 System.out.println("foobar!");
 }

http://dx.doi.org/10.1007/978-1-4842-2808-1_5
https://github.com/eveoh/gradle-aspectj
https://github.com/eveoh/gradle-aspectj

Chapter 5 ■ Introducing Spring AOP

293

 public void foo() {
 System.out.println("foo");
 }
}

For this example, we are going to use AspectJ to advise the writeMessage() method and write out a
message before and after the method invocation. These messages will be configurable using Spring. The
following code sample shows the MessageWrapper aspect (the file name is MessageWrapper.aj, which is an
AspectJ file instead of a standard Java class):

package com.apress.prospring5.ch5;

public aspect MessageWrapper {
 private String prefix;
 private String suffix;

 public void setPrefix(String prefix) {
 this.prefix = prefix;
 }

 public String getPrefix() {
 return this.prefix;
 }

 public void setSuffix(String suffix) {
 this.suffix = suffix;
 }

 public String getSuffix() {
 return this.suffix;
 }

 pointcut doWriting() :
 execution(*
 com.apress.prospring5.ch5.MessageWriter.writeMessage());
 before() : doWriting() {
 System.out.println(prefix);
 }

 after() : doWriting() {
 System.out.println(suffix);
 }
}

Essentially, we create an aspect called MessageWrapper, and, just as with a normal Java class, we
give the aspect two properties, suffix and prefix, which we will use when advising the writeMessage()
method. Next, we define a named pointcut, doWriting(), for a single joinpoint, in this case, the execution
of the writeMessage() method. AspectJ has a large number of joinpoints, but coverage of those is outside
the scope of this example. Finally, we define two bits of advice: one that executes before the doWriting()

Chapter 5 ■ Introducing Spring AOP

294

pointcut and one that executes after it. The following configuration snippet shows how this aspect is
configured in Spring (app-config-xml.xml):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="aspect" class="com.apress.prospring5.ch5.MessageWrapper"
 factory-method="aspectOf" p:prefix="The Prefix" p:suffix="The Suffix"/>
</beans>

As you can see, much of the configuration of the aspect bean is similar to standard bean configuration.
The only difference is the use of the factory-method attribute of the <bean> tag. The factory-method
attribute is intended to allow classes that follow a traditional Factory pattern to be integrated seamlessly
into Spring. For instance, if you have a class Foo with a private constructor and then a static factory method,
getInstance(), using the factory-method attribute allows a bean of this class to be managed by Spring.
The aspectOf() method exposed by every AspectJ aspect allows you to access the instance of the aspect and
thus allows Spring to set the properties of the aspect. Here you can see a simple driver application for this
example:

package com.apress.prospring5.ch5;
import org.springframework.context.support.GenericXmlApplicationContext;

public class AspectJDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context-xml.xml");
 ctx.refresh();

 MessageWriter writer = new MessageWriter();
 writer.writeMessage();
 writer.foo();
 }
}

Notice that first we load ApplicationContext to allow Spring to configure the aspect. Next we create an
instance of MessageWriter and then invoke the writeMessage() and foo() methods. The output from this
example is as follows:

The Prefix
foobar!
The Suffix
foo

As you can see, the advice in the MessageWrapper aspect was applied to the writeMessage() method,
and the prefix and suffix values specified in the ApplicationContext configuration were used by the advice
when writing out the before and after messages.

Chapter 5 ■ Introducing Spring AOP

295

Summary
In this chapter, we covered a large number of AOP core concepts and looked at how these concepts translate
into the Spring AOP implementation. We discussed the features that are (and are not) implemented
in Spring AOP, and we pointed to AspectJ as an AOP solution for those features that Spring does not
implement. We spent some time explaining the details of the advice types available in Spring, and you saw
examples of the four types in action. We also looked at how you limit the methods to which advice applies by
using pointcuts. In particular, we looked at the six basic pointcut implementations available with Spring. We
also covered the details of how the AOP proxies are constructed, the different options, and what makes them
different. We compared performance among three proxy types and highlighted some major differences and
restrictions for choosing between a JDK vs. CGLIB proxy. We covered the advanced options for pointcutting,
as well as how to extend the set of interfaces implemented by an object using introductions. We also covered
Spring Framework services to configure AOP declaratively, thus avoiding the need to hard-code AOP proxy
construction logic into your code. We spent some time looking at how Spring and AspectJ are integrated to
allow you to use the added power of AspectJ without losing any of the flexibility of Spring. That’s certainly a
lot of AOP!

In the next chapter, we move on to a completely different topic—how we can use Spring’s JDBC support
to radically simplify the creation of JDBC-based data access code.

297© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_6

CHAPTER 6

Spring JDBC Support

By now you have seen how easy it is to build a fully Spring-managed application. You have a solid
understanding of bean configuration and aspect-oriented programming (AOP). However, one part of the
puzzle is missing: how do you get the data that drives the application?

Besides simple throwaway command-line utilities, almost every application needs to persist data to
some sort of data store. The most usual and convenient data store is a relational database.

These are the top seven relational enterprise databases for 2017:

•	 Oracle Database

•	 Microsoft SQL Server

•	 IBM DB2

•	 SAP Sybase ASE

•	 PostgreSQL

•	 MariaDB Enterprise

•	 MySQL

If you are not working for a big company that can afford licenses for the first four, you probably are using
one of the last three in the previous list. The most used open source relational databases are perhaps MySQL
(http://mysql.com) and PostgreSQL (postgresql.org). MySQL is generally more widely used for web
application development, especially on the Linux platform.1 On the other side, PostgreSQL is friendlier to
Oracle developers because its procedural language, PLpgSQL, is very close to Oracle’s PL/SQL language.

Even if you choose the fastest and most reliable database, you cannot afford to lose its speed and
flexibility by using a poorly designed and implemented data access layer. Applications tend to use the data
access layer very frequently; thus, any unnecessary bottlenecks in the data access code impact the entire
application, no matter how well designed it is.

In this chapter, we show you how you can use Spring to simplify the implementation of data access
code using JDBC. We start by looking at the large and repetitive amount of code you would normally need
to write without Spring and then compare it to a class implemented using Spring’s data access classes. The
result is truly amazing because Spring allows you to use the full power of human-tuned SQL queries while
minimizing the amount of support code you need to implement. Specifically, we discuss the following:

•	 Comparing traditional JDBC code and Spring JDBC support: We explore how Spring
simplifies the old-style JDBC code while keeping the same functionality. You will
also see how Spring accesses the low-level JDBC API and how this low-level API is
mapped into convenient classes such as JdbcTemplate.

1WordPress is a widely used blogging platform that uses MySQL or MariaDB for storing data.

https://doi.org/10.1007/978-1-4842-2808-1_6
http://mysql.com/

Chapter 6 ■ Spring JDBC Support

298

•	 Connecting to the database: Even though we do not go into every little detail of
database connection management, we do show you the fundamental differences
between a simple Connection and a DataSource. Naturally, we discuss how Spring
manages the data sources and which data sources you can use in your applications.

•	 Retrieving and mapping the data to Java objects: We show you how to retrieve data
and then how to effectively map the selected data to Java objects. You also learn that
Spring JDBC is a viable alternative to object-relational mapping (ORM) tools.

•	 Inserting, updating, and deleting data: Finally, we discuss how you can implement the
insert, update, and delete operations by using Spring to execute these types of queries.

Introducing Lambda Expressions
The release of Java version 8 brings lambda expression support, among many other features. Lambda
expressions make a great replacement for anonymous inner class usage and are an ideal candidate for
working with Spring’s JDBC support. The usage of lambda expressions requires the use of Java 8. This
book was written during the prerelease versions of Java 8 and the first General Availability version, so we
understand not everybody will be using Java 8 yet. Given that, the chapter code samples and source code
download show both flavors where applicable. Lambda expressions are suitable in most places of the
Spring API where templates or callbacks are used, not just limited to JDBC. This chapter does not cover
lambda expressions themselves, as they are a Java language feature, and you should be familiar with lambda
concepts and syntax. Please refer to the Lambda Expressions tutorial at http://docs.oracle.com/javase/
tutorial/java/javaOO/lambdaexpressions.html for more information.

Sample Data Model for Example Code
Before proceeding with the discussion, we introduce a simple data model that is used for the examples
throughout this chapter, as well as the next few chapters when discussing other data access techniques (we
will expand the model accordingly to fulfill the needs of each topic as we go).

The model is a simple music database with two tables. The first one is the SINGER table, which stores
a singer’s information, and the other table is ALBUM, which stores the albums released by that singer. Each
singer can have zero or more albums; in other words, it’s a one-to-many relationship between SINGER and
ALBUM. A singer’s information includes their first and last names and date of birth. Figure 6-1 shows the
entity-relationship (ER) diagram of the database.

As you can see, both tables have an ID column that will be automatically assigned by the database
during insertion. For the ALBUM table, there is a foreign-key relation to the SINGER table, which is linked by
the column SINGER_ID with the primary key of the SINGER table (that is, the ID column).

Figure 6-1.  Simple data model for the example code

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Chapter 6 ■ Spring JDBC Support

299

 I n this chapter, we use the open source database MySQL to show interactions with a real database
in some examples. This will require you to have an instance of MySQL available to use. We do not cover how
to install MySQL. You can use another database of your choice, but you may need to modify the schema and
function definitions. We also cover embedded database usage, which does not require a MySQL database.

Just in case you want to use MySQL, on the official site you can find very good tutorials on installing and
configuring MySQL. After you have downloaded MySQL2 and installed it, you can access it using the root
account. Usually, when you develop an application, you need a new schema and user. For the code samples
in this chapter, the schema is named MUSICDB, and the user to access it is named prospring5. The SQL code
to execute to create them is depicted next, and you can find them in the ddl.sql file, under the resources
directory of the plain-jdbc project. Included is a fix for a bug in the MySQL Community Server version
5.17.18, the current version at the time this book was written.

CREATE USER 'prospring5'@'localhost' IDENTIFIED BY 'prospring5';

CREATE SCHEMA MUSICDB;
GRANT ALL PRIVILEGES ON MUSICDB . * TO 'prospring5'@'localhost';
FLUSH PRIVILEGES;

/*in case of java.sql.SQLException: The server timezone value 'UTC'
 is unrecognized or represents more than one timezone. */
SET GLOBAL time_zone = '+3:00';

The following code snippet depicts the SQL code necessary to create the two tables mentioned
previously. This code is in the resources directory of the plain-jdbc project in schema.sql.

CREATE TABLE SINGER (
 ID INT NOT NULL AUTO_INCREMENT
 , FIRST_NAME VARCHAR(60) NOT NULL
 , LAST_NAME VARCHAR(40) NOT NULL
 , BIRTH_DATE DATE
 , UNIQUE UQ_SINGER_1 (FIRST_NAME, LAST_NAME)
 , PRIMARY KEY (ID)
);

CREATE TABLE ALBUM (
 ID INT NOT NULL AUTO_INCREMENT
 , SINGER_ID INT NOT NULL
 , TITLE VARCHAR(100) NOT NULL
 , RELEASE_DATE DATE
 , UNIQUE UQ_SINGER_ALBUM_1 (SINGER_ID, TITLE)
 , PRIMARY KEY (ID)
 , CONSTRAINT FK_ALBUM FOREIGN KEY (SINGER_ID)
 REFERENCES SINGER (ID)
);

2Download MySQL Community Server from https://dev.mysql.com/downloads/.

https://dev.mysql.com/downloads/

Chapter 6 ■ Spring JDBC Support

300

If you use a smart editor like IntelliJ IDEA, you can use the Database view to inspect your schema and
tables. In Figure 6-2 you can see the contents of the MUSICDB schema as depicted in IntelliJ IDEA.

Because we need data to test the JDBC usage, a file named test-data.sql is also provided containing a
set of INSERT statements that populate the two tables.

insert into singer (first_name, last_name, birth_date)
 values ('John', 'Mayer', '1977-10-16');
insert into singer (first_name, last_name, birth_date)
 values ('Eric', 'Clapton', '1945-03-30');
insert into singer (first_name, last_name, birth_date)
 values ('John', 'Butler', '1975-04-01');

insert into album (singer_id, title, release_date)
 values (1, 'The Search For Everything', '2017-01-20');
insert into album (singer_id, title, release_date)
 values (1, 'Battle Studies', '2009-11-17');
insert into album (singer_id, title, release_date)
 values (2, ' From The Cradle ', '1994-09-13');

In later sections of this chapter, you will see examples of retrieving the data via JDBC from the database
and directly mapping the result set into Java objects (that is, POJOs). These classes that map to the records in
tables are also called entities. For the SINGER table, a Singer class will be created that will be instantiated
to create Java objects that map to singer records.

Figure 6-2.  Contents of the MUSICDB schema

Chapter 6 ■ Spring JDBC Support

301

package com.apress.prospring5.ch6.entities;

import java.io.Serializable;
import java.sql.Date;
import java.util.List;

public class Singer implements Serializable {

 private Long id;
 private String firstName;
 private String lastName;
 private Date birthDate;
 private List<Album> albums;

 public void setId(Long id) {
 this.id = id;
 }

 public Long getId() {
 return this.id;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getLastName() {
 return this.lastName;
 }

 public boolean addAbum(Album album) {
 if (albums == null) {
 albums = new ArrayList<>();
 albums.add(album);
 return true;
 } else {
 if (albums.contains(album)) {
 return false;
 }
 }
 albums.add(album);
 return true;
 }

Chapter 6 ■ Spring JDBC Support

302

 public void setAlbums(List<Album> albums) {
 this.albums = albums;
 }

 public List<Album> getAlbums() {
 return albums;
 }

 public void setBirthDate(Date birthDate) {
 this.birthDate = birthDate;
 }

 public Date getBirthDate() {
 return birthDate;
 }

 public String toString() {
 return "Singer - Id: " + id + ", First name: " + firstName
 + ", Last name: " + lastName + ", Birthday: " + birthDate;
 }
}

In a similar manner, an Album class is created as well.

package com.apress.prospring5.ch6.entities;

import java.io.Serializable;
import java.sql.Date;

public class Album implements Serializable {
 private Long id;
 private Long singerId;
 private String title;
 private Date releaseDate;

 public void setId(Long id) {
 this.id = id;
 }

 public Long getId() {
 return this.id;
 }

 public void setSingerId(Long singerId) {
 this.singerId = singerId;
 }

 public Long getSingerId() {
 return this.singerId;
 }

Chapter 6 ■ Spring JDBC Support

303

 public void setTitle(String title) {
 this.title = title;
 }

 public String getTitle() {
 return this.title;
 }

 public void setReleaseDate(Date releaseDate) {
 this.releaseDate = releaseDate;
 }

 public Date getReleaseDate() {
 return this.releaseDate;
 }

 @Override
 public String toString() {
 return "Album - Id: " + id + ", Singer id: " + singerId
 + ", Title: " + title + ", Release Date: " + releaseDate;
 }
}

Let’s start with a simple interface for SingerDao that encapsulates all the data access services for singer
information. The code is as follows:

package com.apress.prospring5.ch6.dao;

import com.apress.prospring5.ch6.entities.Singer;

import java.util.List;

public interface SingerDao {
 List<Singer> findAll();
 List<Singer> findByFirstName(String firstName);
 String findLastNameById(Long id);
 String findFirstNameById(Long id);
 void insert(Singer singer);
 void update(Singer singer);
 void delete(Long singerId);
 List<Singer> findAllWithDetail();
 void insertWithDetail(Singer singer);
}

In the previous interface, we define two finder methods and the insert, update, and delete methods,
respectively. They correspond to the CRUD terms (create, read, update, delete).

Finally, to facilitate testing, let’s modify the logback.xml configuration file to turn the log level to DEBUG
for all classes. At the DEBUG level, the Spring JDBC module will output all the underlying SQL statements
being fired to the database so you know what exactly is going on; this is especially useful for troubleshooting
SQL statement syntax errors. The following configuration sample depicts the contents of the logback.xml
file (residing under src/main/resources with the source code files for the Chapter 6 project) with the DEBUG
level turned on.

http://dx.doi.org/10.1007/978-1-4842-2808-1_6

Chapter 6 ■ Spring JDBC Support

304

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <contextListener class="ch.qos.logback.classic.jul.LevelChangePropagator">
 <resetJUL>true</resetJUL>
 </contextListener>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>

 <pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{5} - %msg%n</pattern>

 </encoder>
 </appender>

 <logger name="com.apress.prospring5.ch5" level="debug"/>

 <logger name="org.springframework" level="off"/>

 <root level="debug">
 <appender-ref ref="console" />
 </root>
</configuration>

Exploring the JDBC Infrastructure
JDBC provides a standard way for Java applications to access data stored in a database. The core of the JDBC
infrastructure is a driver that is specific to each database; it is this driver that allows Java code to access the
database.

Once a driver is loaded, it registers itself with a java.sql.DriverManager class. This class manages a list
of drivers and provides static methods for establishing connections to the database. The DriverManager’s
getConnection() method returns a driver-implemented java.sql.Connection interface. This interface
allows you to run SQL statements against the database.

The JDBC framework is quite complex and well tested; however, with this complexity comes difficulty
in development. The first level of complexity lies in making sure your code manages the connections to
the database. A connection is a scarce resource and is very expensive to establish. Generally, the database
creates a thread or spawns a child process for each connection. Also, the number of concurrent connections
is usually limited, and an excessive number of open connections will slow down the database.

We will show you how Spring helps manage this complexity, but before we can proceed any further, we
need to show you how to select, delete, and update data in pure JDBC.

All projects covered in this chapter need special databases libraries as dependencies: mysql-connector,
spring-jdbc, dbcp, and so on. Just look in the build.gradle configuration files for each project and in the
pro-spring-15/build.gradle for the version and libraries used.

Chapter 6 ■ Spring JDBC Support

305

Let’s create a plain form of implementation of the SingerDao interface for interacting with the database
via pure JDBC. Keeping in mind what we already know about database connections, we will take the
cautious and expensive (in terms of performance) approach of creating a connection for each statement.
This greatly degrades the performance of Java and adds extra stress to the database because a connection
has to be established for each query. However, if we kept a connection open, we could bring the database
server to a halt. The following code snippet shows the code required for managing a JDBC connection, using
MySQL as an example:

package com.apress.prospring5.ch6.dao;
...
public class PlainSingerDao implements SingerDao {

 private static Logger logger =
 LoggerFactory.getLogger(PlainSingerDao.class);

 static {
 try {
 Class.forName("com.mysql.cj.jdbc.Driver");
 } catch (ClassNotFoundException ex) {
 logger.error("Prblem loadng DB dDiver!", ex);
 }
 }

 private Connection getConnection() throws SQLException {
 return DriverManager.getConnection(
 "jdbc:mysql://localhost:3306/musicdb?useSSL=true",
 "prospring5", "prospring5");
 }

 private void closeConnection(Connection connection) {
 if (connection == null) {
 return;
 }
 try {
 connection.close();
 } catch (SQLException ex) {
 logger.error("Problem closing connection to the database!",ex);
 }
 }
...

This code is far from complete, but it gives you an idea of the steps you need in order to manage a
JDBC connection. This code does not even deal with connection pooling, which is a common technique
for managing connections to the database more effectively. We do not discuss connection pooling at this
point (connection pooling is discussed in the “Database Connections and DataSources” section later in this
chapter); instead, the following code snippet shows an implementation of the findAll(), insert(), and
delete() methods of the SingerDao interface using plain JDBC:

package com.apress.prospring5.ch6.dao;
...
public class PlainSingerDao implements SingerDao {
 @Override

Chapter 6 ■ Spring JDBC Support

306

 public List<Singer> findAll() {
 List<Singer> result = new ArrayList<>();
 Connection connection = null;
 try {
 connection = getConnection();
 PreparedStatement statement =
 connection.prepareStatement("select * from singer");
 ResultSet resultSet = statement.executeQuery();
 while (resultSet.next()) {
 Singer singer = new Singer();
 singer.setId(resultSet.getLong("id"));
 singer.setFirstName(resultSet.getString("first_name"));
 singer.setLastName(resultSet.getString("last_name"));
 singer.setBirthDate(resultSet.getDate("birth_date"));
 result.add(singer);
 }
 statement.close();
 } catch (SQLException ex) {
 logger.error("Problem when executing SELECT!",ex);
 } finally {
 closeConnection(connection);
 }
 return result;
 }

 @Override
 public void insert(Singer singer) {
 Connection connection = null;
 try {
 connection = getConnection();
 PreparedStatement statement = connection.prepareStatement(
 "insert into Singer (first_name, last_name, birth_date)
 values (?, ?, ?)"
 , Statement.RETURN_GENERATED_KEYS);
 statement.setString(1, singer.getFirstName());
 statement.setString(2, singer.getLastName());
 statement.setDate(3, singer.getBirthDate());
 statement.execute();
 ResultSet generatedKeys = statement.getGeneratedKeys();
 if (generatedKeys.next()) {
 singer.setId(generatedKeys.getLong(1));
 }
 statement.close();
 } catch (SQLException ex) {
 logger.error("Prblem executing INSERT", ex);
 } finally {
 closeConnection(connection);
 }
 }

 @Override
 public void delete(Long singerId) {

Chapter 6 ■ Spring JDBC Support

307

 Connection connection = null;
 try {
 connection = getConnection();
 PreparedStatement statement = connection.prepareStatement
 ("delete from singer where id=?");
 statement.setLong(1, singerId);
 statement.execute();
 statement.close();
 } catch (SQLException ex) {
 logger.error("Prblem executing DELETE", ex);
 } finally {
 closeConnection(connection);
 }
 }
 ...
}

To test the PlainSingerDao class, you can use the following class:

package com.apress.prospring5.ch6;

import com.apress.prospring5.ch6.dao.PlainSingerDao;
import com.apress.prospring5.ch6.dao.SingerDao;
import com.apress.prospring5.ch6.entities.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.sql.Date;
import java.util.GregorianCalendar;
import java.util.List;

public class PlainJdbcDemo {
 private static SingerDao singerDao = new PlainSingerDao();
 private static Logger logger = LoggerFactory.getLogger(PlainJdbcDemo.class);

 public static void main(String... args) {
 logger.info("Listing initial singer data:");

 listAllSingers();

 logger.info("-------------");
 logger.info("Insert a new singer");

 Singer singer = new Singer();
 singer.setFirstName("Ed");
 singer.setLastName("Sheeran");
 singer.setBirthDate(new Date
 ((new GregorianCalendar(1991, 2, 1991)).getTime().getTime()));
 singerDao.insert(singer);

 logger.info("Listing singer data after new singer created:");

Chapter 6 ■ Spring JDBC Support

308

 listAllSingers();

 logger.info("-------------");
 logger.info("Deleting the previous created singer");

 singerDao.delete(singer.getId());

 logger.info("Listing singer data after new singer deleted:");

 listAllSingers();
 }

 private static void listAllSingers() {
 List<Singer> singers = singerDao.findAll();

 for (Singer singer: singers) {
 logger.info(singer.toString());
 }
 }
}

As you can notice, we will now use a logger to print the messages in the console. Running the previous
program yields the following result (assuming you have a locally installed MySQL database called MUSICDB
that has a username and password set to prospring5 and the sample data was loaded):

INFO c.a.p.c.PlainJdbcDemo - Listing initial singer data:
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-15
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 2, First name: Eric, Last name: Clapton,
 Birthday: 1945-03-29
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-03-31
INFO c.a.p.c.PlainJdbcDemo - -------------
INFO c.a.p.c.PlainJdbcDemo - Insert a new singer
INFO c.a.p.c.PlainJdbcDemo - Listing singer data after new singer created:
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-15
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 2, First name: Eric, Last name: Clapton,
 Birthday: 1945-03-29
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-03-31
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 5, First name: Ed, Last name: Sheeran,
 Birthday: 1996-08-10
INFO c.a.p.c.PlainJdbcDemo - -------------
INFO c.a.p.c.PlainJdbcDemo - Deleting the previous created singer
INFO c.a.p.c.PlainJdbcDemo - Listing singer data after new singer deleted:
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-15
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 2, First name: Eric, Last name: Clapton,
 Birthday: 1945-03-29
INFO c.a.p.c.PlainJdbcDemo - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-03-31

Chapter 6 ■ Spring JDBC Support

309

As shown in the output, the first block of lines shows the initial data. The second block of lines shows that
the new record was added. The final block of lines shows that the newly created singer (Ed Sheeran) was deleted.

As you can see in the previous code samples, a lot of code needs to be moved to a helper class or,
even worse, duplicated in each DAO class. This is the main disadvantage of JDBC from the application
programmer’s point of view; you just do not have time to write repetitive code in every DAO class. Instead,
you want to concentrate on writing code that actually does what you need the DAO class to do: select,
update, and delete the data. The more helper code you need to write, the more checked exceptions you need
to handle, and the more bugs you may introduce in your code.

This is where a DAO framework and Spring come in. A framework eliminates the code that does not
actually perform any custom logic and allows you to forget about all the housekeeping that needs to be
performed. In addition, Spring’s extensive JDBC support makes your life a lot easier.

Spring JDBC Infrastructure
The code we discussed in the first part of the chapter is not very complex, but it is tedious, and because there
is so much of it to write, the likelihood of coding errors is quite high. It is time to take a look at how Spring
makes things easier and more elegant.

Overview and Used Packages
JDBC support in Spring is divided into the five packages detailed in Table 6-1; each handles different aspects
of JDBC access.

Table 6-1.  Spring JDBC Packages

Package Description

org.springframework.jdbc.core This contains the foundations of JDBC classes in Spring. It
includes the core JDBC class, JdbcTemplate, which simplifies
programming database operations with JDBC. Several
subpackages provide support of JDBC data access with more
specific purposes (e.g., a JdbcTemplate class that supports
named parameters) and related support classes as well.

org.springframework.jdbc.datasource This contains helper classes and DataSource implementations
that you can use to run JDBC code outside a JEE container. Several
subpackages provide support for embedded databases, database
initialization, and various data source lookup mechanisms.

org.springframework.jdbc.object This contains classes that help convert the data returned from
the database into objects or lists of objects. These objects and
lists are plain Java objects and therefore are disconnected from
the database.

org.springframework.jdbc.support The most important class in this package is SQLException
translation support. This allows Spring to recognize error
codes used by the database and map them to higher-level
exceptions.

org.springframework.jdbc.config This contains classes that support JDBC configuration within
Spring’s ApplicationContext. For example, it contains a
handler class for the jdbc namespace (e.g., <jdbc:embedded-
database> tags).

Chapter 6 ■ Spring JDBC Support

310

Let’s start the discussion of Spring JDBC support by looking at the lowest-level functionality. The first
thing that needs to be done before running SQL queries is establishing a connection to the database.

Database Connections and DataSources
You can use Spring to manage the database connection for you by providing a bean that implements javax.
sql.DataSource. The difference between a DataSource and a Connection is that a DataSource provides and
manages Connections.

DriverManagerDataSource (under the package org.springframework.jdbc.datasource) is the
simplest implementation of a DataSource. By looking at the class name, you can guess that it simply calls
DriverManager to obtain a connection. The fact that DriverManagerDataSource doesn’t support database
connection pooling makes this class unsuitable for anything other than testing. The configuration of
DriverManagerDataSource is quite simple, as you can see in the following code snippet; you just need to
supply the driver class name, a connection URL, a username, and a password (drivermanager-cfg-01.xml).

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="${jdbc.driverClassName}"
 p:url="${jdbc.url}" p:username="${jdbc.username}"
 p:password="${jdbc.password}"/>

 <context:property-placeholder location="classpath:db/jdbc.properties"/>
</beans>

You most likely recognize the properties in the listing. They represent the values you normally
pass to JDBC to obtain a Connection interface. The database connection information typically is stored
in a properties file for easy maintenance and substitution in different deployment environments. The
following snippet shows a sample jdbc.properties from which Spring’s property placeholder will load the
connection information:

jdbc.driverClassName=com.mysql.cj.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/
musicdb?useSSL=true
jdbc.username=prospring5
jdbc.password=prospring5

By adding the util namespace in the mix, the same configuration can be written like this as well
(drivermanager-cfg-02.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Chapter 6 ■ Spring JDBC Support

311

 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd">

 <bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource"
 p:driverClassName="#{jdbc.driverClassName}"
 p:url="#{jdbc.url}"
 p:username="#{jdbc.username}"
 p:password="#{jdbc.password}"/>

 <util:properties id="jdbc" location="classpath:db/jdbc2.properties"/>

</beans>

One change is required here. The properties are loaded into a java.util.Properties bean named
jdbc, so you need to change the name of the property names in the properties file to be able to access them
with the jdbc prefix. Here’s jdbc2.properties file content:

driverClassName=com.mysql.cj.jdbc.Driver
url=jdbc:mysql://localhost:3306/musicdb?useSSL=true
username=prospring5
password=prospring5

Since this book is focused more on Java Configuration classes, here is a configuration class as well:

package com.apress.prospring5.ch6.config;

import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Lazy;
import org.springframework.context.annotation.PropertySource;
import org.springframework.context.support.PropertySourcesPlaceholderConfigurer;
import org.springframework.jdbc.datasource.SimpleDriverDataSource;
import org.springframework.jdbc.datasource.init.DatabasePopulatorUtils;

import javax.sql.DataSource;
import java.sql.Driver;

@Configuration
@PropertySource("classpath:db/jdbc2.properties")
public class DbConfig {

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;
 @Value("${username}")

Chapter 6 ■ Spring JDBC Support

312

 private String username;
 @Value("${password}")
 private String password;

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Lazy
 @Bean
 public DataSource dataSource() {
 try {
 SimpleDriverDataSource dataSource =
 new SimpleDriverDataSource();
 Class<? extends Driver> driver =
 (Class<? extends Driver>) Class.forName(driverClassName);
 dataSource.setDriverClass(driver);
 dataSource.setUrl(url);
 dataSource.setUsername(username);
 dataSource.setPassword(password);
 return dataSource;
 } catch (Exception e) {
 return null;
 }
 }
}

To test any of these classes, you can use the following test class:

package com.apress.prospring5.ch6;

import com.apress.prospring5.ch6.config.DbConfig;
import org.junit.Test;
...
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;

public class DbConfigTest {

 private static Logger logger = LoggerFactory.getLogger(DbConfigTest.class);

 @Test
 public void testOne() throws SQLException {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/drivermanager-cfg-01.xml");
 ctx.refresh();

Chapter 6 ■ Spring JDBC Support

313

 DataSource dataSource = ctx.getBean("dataSource", DataSource.class);
 assertNotNull(dataSource);
 testDataSource(dataSource);

 ctx.close();
 }

 @Test
 public void testTwo() throws SQLException {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(DbConfig.class);

 DataSource dataSource = ctx.getBean("dataSource", DataSource.class);
 assertNotNull(dataSource);
 testDataSource(dataSource);

 ctx.close();
 }

 private void testDataSource(DataSource dataSource) throws SQLException{
 Connection connection = null;
 try {
 connection = dataSource.getConnection();
 PreparedStatement statement =
 connection.prepareStatement("SELECT 1");
 ResultSet resultSet = statement.executeQuery();
 while (resultSet.next()) {
 int mockVal = resultSet.getInt("1");
 assertTrue(mockVal== 1);
 }
 statement.close();
 } catch (Exception e) {
 logger.debug("Something unexpected happened.", e);
 } finally {
 if (connection != null) {
 connection.close();
 }
 }
 }
}

Again, a test class was used because it is more practical to reuse some of the code and also teach you to
work with JUnit to quickly write tests for any piece of code you write. The first method, testOne(), is used
to test XML configurations, and the second is used to test the DbConfig configuration class. After obtaining
the dataSource bean from any configuration, the mock query SELECT 1 is used to test the connection to the
MySQL database.

Chapter 6 ■ Spring JDBC Support

314

In real-world applications, you can use the Apache Commons BasicDataSource3 or a DataSource
implemented by a JEE application server (for example, JBoss, WebSphere, WebLogic, or GlassFish), which
may further increase the performance of the application. You could use a DataSource in the plain JDBC code
and get the same pooling benefits; however, in most cases, you would still miss a central place to configure
the DataSource. Spring, on the other hand, allows you to declare a dataSource bean and set the connection
properties in the ApplicationContext definition files. See the following configuration sample; the file name
is datasource-dbcp.xml:

<beans ...>

 <bean id="dataSource"
 class="org.apache.commons.dbcp2.BasicDataSource"
 destroy-method="close"
 p:driverClassName="#{jdbc.driverClassName}"
 p:url="#{jdbc.url}"
 p:username="#{jdbc.username}"
 p:password="#{jdbc.password}"/>

 <util:properties id="jdbc" location="classpath:db/jdbc2.properties"/>

</beans>

This particular Spring-managed DataSource is implemented in org.apache.commons.dbcp.
BasicDataSource. The most important bit is that the dataSource bean implements javax.sql.DataSource,
and you can immediately start using it in your data access classes.

Another way to configure a dataSource bean is to use JNDI. If the application you are developing is
going to run in a JEE container, we can take advantage of the container-managed connection pooling. To use
a JNDI-based data source, you need to change the dataSource bean declaration, as shown in the following
example (datasource-jndi.xml):

<beans ...>
 <bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean"

 p:jndiName="java:comp/env/jdbc/musicdb"/>
</beans>

In the previous example, we use Spring’s JndiObjectFactoryBean to obtain the data source by JNDI
lookup. Starting from version 2.5, Spring provides the jee namespace, which further simplifies the configuration.
Here you can see the same JNDI data source configuration using the jee namespace (datasource-jee.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee.xsd">

 <jee:jndi-lookup jndi-name="java:comp/env/jdbc/prospring5ch6"/>
</beans>

3Here is the official site: http://commons.apache.org/dbcp.

http://commons.apache.org/dbcp

Chapter 6 ■ Spring JDBC Support

315

In the previous configuration snippet, we declare the jee namespace in the <beans> tag and then the
<jee:jndi-lookup> tag to declare the data source. If you take the JNDI approach, you must not forget to add
a resource reference (resourceref) in the application descriptor file. See the following code snippet:

<root-node>
 <resource-ref>
 <res-ref-name>jdbc/musicdb</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</root-node>

<root-node> is a placeholder value; you need to change it depending on how your module is packaged.
For example, it becomes <web-app> in the web deployment descriptor (WEB-INF/web.xml) if the application
is a web module. Most likely, you will need to configure resource-ref in an application server–specific
descriptor file as well. However, notice that the resource-ref element configures the jdbc/musicdb
reference name and that the dataSource bean’s jndiName is set to java:comp/env/jdbc/musicdb.

As you can see, Spring allows you to configure the DataSource in almost any way you like, and it hides
the actual implementation or location of the data source from the rest of the application’s code. In other
words, your DAO classes do not know and do not need to know where the DataSource points.

The connection management is also delegated to the dataSource bean, which in turn performs the
management itself or uses the JEE container to do all the work.

Embedded Database Support
Starting from version 3.0, Spring also offers embedded database support, which automatically starts an
embedded database and exposes it as a DataSource for the application. The following configuration snippet
shows the configuration of an embedded database (embedded-h2-cfg.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:c="http://www.springframework.org/schema/c"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd">

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:db/h2/schema.sql"/>
 <jdbc:script location="classpath:db/h2/test-data.sql"/>
 </jdbc:embedded-database>

</beans>

Chapter 6 ■ Spring JDBC Support

316

In the previous listing, we first declare the jdbc namespace in the <beans> tag. Afterward, we use
<jdbc:embedded-database> to declare the embedded database and assign it an ID of dataSource.
Within the tag, we also instruct Spring to execute the scripts specified to create the database schema and
populate testing data accordingly. Note that the order of the scripts is important, and the file that contains
Data Definition Language (DDL) should always appear first, followed by the file with Data Manipulation
Language (DML). For the type attribute, we specify the type of embedded database to use. As of version 4.0,
Spring supports HSQL (the default), H2, and DERBY.

Embedded databases can be configured using Java Configuration classes too. The class to use is
EmbeddedDatabaseBuilder, which uses the database creation and loading data scripts as arguments to
create an instance of EmbeddedDatabase that implements DataSource.

package com.apress.prospring5.ch6.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

import javax.sql.DataSource;

@Configuration
public class EmbeddedJdbcConfig {

 private static Logger logger =
 LoggerFactory.getLogger(EmbeddedJdbcConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder =
 new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:db/h2/schema.sql",
 "classpath:db/h2/test-data.sql").build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }
...
}

The embedded database support is extremely useful for local development or unit testing. Throughout
the rest of this chapter, we use the embedded database to run the sample code, so your machine doesn’t
require a database to be installed in order to run the samples.

Not only can you utilize the embedded database support via the JDBC namespace but also initialize a
database instance running elsewhere, such as MySQL, Oracle, and so on. Rather than specifying type and
embedded-database, simply use initialize-database, and your scripts will execute against the intended
dataSource just as they would with an embedded database.

Chapter 6 ■ Spring JDBC Support

317

Using DataSources in DAO Classes
The Data Access Object (DAO) pattern is used to separate low-level data accessing APIs or operations from
high-level business services. The Data Access Object pattern requires the following components:

•	 DAO interface: This defines the standard operations to be performed on a model
object (or objects).

•	 DAO implementation: This class provides a concrete implementation for the DAO
interface. Typically this uses a JDBC connection or data source to handle model
object (or objects).

•	 Model objects also called data objects or entities: This is a simple POJO mapping to a
table record.

Let’s create a SingerDao interface to implement for the sample, as shown here:

package com.apress.prospring5.ch6.dao;

public interface SingerDao {
 String findNameById(Long id);
}

For the simple implementation, first we will add a dataSource property to the JdbcSingerDao
implementation class. The reason we want to add the dataSource property to the implementation class
rather than the interface should be quite obvious: the interface does not need to know how the data is going
to be retrieved and updated. By adding DataSource mutator methods to the interface, in the best-case
scenario this forces the implementations to declare the getter and setter stubs. Clearly, this is not a very good
design practice. Take a look at the simple JdbcSingerDao class shown here:

import com.apress.prospring5.ch6.dao.SingerDao;
import com.apress.prospring5.ch6.entities.Singer;
import org.apache.commons.lang3.NotImplementedException;
import org.springframework.beans.factory.BeanCreationException;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.jdbc.core.JdbcTemplate;

import javax.sql.DataSource;
import java.util.List;

public class JdbcSingerDao implements SingerDao, InitializingBean {

 private DataSource dataSource;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public void afterPropertiesSet() throws Exception {
 if (dataSource == null) {
 throw new BeanCreationException(
 "Must set dataSource on SingerDao");
 }

Chapter 6 ■ Spring JDBC Support

318

 }
...
}

We can now instruct Spring to configure our singerDao bean by using the JdbcSingerDao implementation
and set the dataSource property as shown in the following EmbeddedJdbcConfig configuration class:

package com.apress.prospring5.ch6.config;

...
@Configuration
public class EmbeddedJdbcConfig {

 private static Logger logger =
 LoggerFactory.getLogger(EmbeddedJdbcConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder =
 new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:db/h2/schema.sql",
 "classpath:db/h2/test-data.sql").build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
}

 @Bean
 public SingerDao singerDao(){
 JdbcSingerDao dao = new JdbcSingerDao();
 dao.setDataSource(dataSource());
 return dao;
 }
}

Spring supports quite a few embedded databases, but they have to be added as dependencies to the
projects. Here you can see a few database-specific libraries being configured for use in pro-spring-15\
gradle.build:

ext {
 derbyVersion = '10.13.1.1'
 dbcpVersion = '2.1'
 mysqlVersion = '6.0.6'
 h2Version = '1.4.194'
 ...

 db = [
 mysql: "mysql:mysql-connector-java:$mysqlVersion",
 derby: "org.apache.derby:derby:$derbyVersion",

Chapter 6 ■ Spring JDBC Support

319

 dbcp : "org.apache.commons:commons-dbcp2:$dbcpVersion",
 h2 : "com.h2database:h2:$h2Version"
]
}

Spring now creates the singerDao bean by instantiating the JdbcSingerDao class with the dataSource
property set to the dataSource bean. It is good practice to make sure that all required properties on a bean
have been set. The easiest way to do this is to implement the InitializingBean interface and provide an
implementation for the afterPropertiesSet() method. This way, we make sure that all required properties
have been set on our JdbcSingerDao. For further discussion of bean initialization, refer to Chapter 4.

The code we have looked at so far uses Spring to manage the data source and introduces the SingerDao
interface and its JDBC implementation. We also set the dataSource property on the JdbcSingerDao class in
the Spring ApplicationContext file. Now we expand the code by adding the actual DAO operations to the
interface and implementation.

Exception Handling
Because Spring advocates using runtime exceptions rather than checked exceptions, you need a mechanism
to translate the checked SQLException into a runtime Spring JDBC exception. Because Spring’s SQL
exceptions are runtime exceptions, they can be much more granular than checked exceptions. By definition,
this is not a feature of runtime exceptions, but it is inconvenient to have to declare a long list of checked
exceptions in the throws clause; hence, checked exceptions tend to be much more coarse-grained than their
runtime equivalents.

Spring provides a default implementation of the SQLExceptionTranslator interface, which
takes care of translating the generic SQL error codes into Spring JDBC exceptions. In most cases, this
implementation is sufficient enough, but you can extend Spring’s default implementation and set your new
SQLExceptionTranslator implementation to be used in JdbcTemplate, as shown in the following code sample:

package com.apress.prospring5.ch6;

import java.sql.SQLException;

import org.springframework.dao.DataAccessException;
import org.springframework.dao.DeadlockLoserDataAccessException;
import org.springframework.jdbc.support.SQLErrorCodeSQLExceptionTranslator;

public class MySQLErrorCodesTranslator extends
 SQLErrorCodeSQLExceptionTranslator {
 @Override
 protected DataAccessException customTranslate(String task,
 String sql, SQLException sqlex) {
 if (sqlex.getErrorCode() == -12345) {
 return new DeadlockLoserDataAccessException(task, sqlex);
 }
 return null;
 }
}

http://dx.doi.org/10.1007/978-1-4842-2808-1_4

Chapter 6 ■ Spring JDBC Support

320

At the same time, we need to add the dependency on spring-jdbc into the project. Here you can see
spring-jdbc being configured for use in pro-spring-15/gradle.build:

ext {
 springVersion = '5.0.0.M4'
 ...

 spring = [
 jdbc : "org.springframework:spring-jdbc:$springVersion",
 ...
]
}

This library is added as a dependency to all JDBC projects used as samples for this chapter.

//chapter06/spring-jdbc-embedded/build.gradle
dependencies {
 compile spring.jdbc
 compile db.h2, db.derby
}

To use the custom translator, we need to pass it into JdbcTemplate in the DAO classes. The following code
snippet represents a piece of the enhanced JdbcSingerDao.setDataSource() method to illustrate its usage:

...
public class JdbcSingerDao implements SingerDao, InitializingBean {

 private DataSource dataSource;
 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 JdbcTemplate jdbcTemplate = new JdbcTemplate();
 jdbcTemplate.setDataSource(dataSource);
 MySQLErrorCodesTranslator errorTranslator =
 new MySQLErrorCodesTranslator();
 errorTranslator.setDataSource(dataSource);
 jdbcTemplate.setExceptionTranslator(errorTranslator);
 this.jdbcTemplate = jdbcTemplate;
 }
...
}

Having the custom SQL exception translator in place, Spring will invoke it upon SQL exceptions
detected when executing SQL statements against the database, and custom exception translation will
happen when the error code is -12345. For other errors, Spring will fall back to its default mechanism for
exception translation. Obviously, nothing can stop you from creating SQLExceptionTranslator as a Spring-
managed bean and using the JdbcTemplate bean in your DAO classes. Don’t worry if you don’t remember
reading about the JdbcTemplate class; we are going to discuss it in more detail.

Chapter 6 ■ Spring JDBC Support

321

The JdbcTemplate Class
This class represents the core of Spring’s JDBC support. It can execute all types of SQL statements. In the
most simplistic view, you can classify the data definition and data manipulation statements. Data definition
statements cover creating various database objects (tables, views, stored procedures, and so on).
Data manipulation statements manipulate the data and can be classified as select and update statements.
A select statement generally returns a set of rows; each row has the same set of columns. An update
statement modifies the data in the database but does not return any results.

The JdbcTemplate class allows you to issue any type of SQL statement to the database and return any
type of result.

In this section, we will go through several common use cases for JDBC programming in Spring with the
JdbcTemplate class.

Initializing JdbcTemplate in a DAO Class
Before discussing how to use JdbcTemplate, let’s take a look at how to prepare JdbcTemplate for use in the
DAO class. It’s straightforward; most of the time you just need to construct the class by passing in the data
source object (which should be injected by Spring into the DAO class). The following code snippet shows the
code snippet that will initialize the JdbcTemplate object:

public class JdbcSingerDao implements SingerDao, InitializingBean {

 private DataSource dataSource;
 private JdbcTemplate jdbcTemplate;

 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 JdbcTemplate jdbcTemplate = new JdbcTemplate();
 jdbcTemplate.setDataSource(dataSource);
 }
 ...
}

The general practice is to initialize JdbcTemplate within the setDataSource method so that once the
data source is injected by Spring, JdbcTemplate will also be initialized and ready for use.

Once configured, JdbcTemplate is thread-safe. That means you can also choose to initialize a single
instance of JdbcTemplate in Spring’s configuration and have it injected into all DAO beans. A configuration
like this is depicted here:

package com.apress.prospring5.ch6.config;
...
@Configuration
public class EmbeddedJdbcConfig {

 private static Logger logger =
 LoggerFactory.getLogger(EmbeddedJdbcConfig.class);

 @Bean
 public DataSource dataSource() {
 try {

Chapter 6 ■ Spring JDBC Support

322

 EmbeddedDatabaseBuilder dbBuilder =
 new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:db/h2/schema.sql",
 "classpath:db/h2/test-data.sql").build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean public JdbcTemplate jdbcTemplate(){
 JdbcTemplate jdbcTemplate = new JdbcTemplate();
 jdbcTemplate.setDataSource(dataSource());
 return jdbcTemplate;
 }

 @Bean
 public SingerDao singerDao() {
 JdbcSingerDao dao = new JdbcSingerDao();
 dao.setJdbcTemplate(jdbcTemplate());
 return dao;
 }
}

Retrieving a Single-Value by Using JdbcTemplate

Let’s start with a simple query that returns a single value. For example, we want to be able to retrieve the
name of a singer by its ID. Using jdbcTemplate, we can retrieve the value easily. The following code snippet
shows the implementation of the findNameById() method in the JdbcSingerDao class. For other methods,
empty implementations were created.

...
public class JdbcSingerDao implements SingerDao, InitializingBean {

 private JdbcTemplate jdbcTemplate;

 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Override public String findNameById(Long id) {
 return jdbcTemplate.queryForObject(
 "select first_name || ' ' || last_name from singer where id = ?",
 new Object{id}, String.class);
 }

 @Override public void insert(Singer singer) {
 throw new NotImplementedException("insert");
 }

...
}

Chapter 6 ■ Spring JDBC Support

323

In the previous listing, we use the queryForObject() method of JdbcTemplate to retrieve the value of
the first name. The first argument is the SQL string, and the second argument consists of the parameters
to be passed to the SQL for parameter binding in object array format. The last argument is the type to be
returned, which is String in this case. Besides Object, you can also query for other types such as Long and
Integer. Let’s take a look at the outcome. The following code snippet shows the testing program. Again, a
JUnit test class will be used because this allows us to run test methods separately, and as tests are run when
executing glade build, we are also ensuring that our build remains stable.

package com.apress.prospring5.ch6;
...
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;

public class JdbcCfgTest {

 @Test
 public void testH2DB() {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();
 ctx.load("classpath:spring/embedded-h2-cfg.xml");
 ctx.refresh();
 testDao(ctx.getBean(SingerDao.class));
 ctx.close();
 }

 private void testDao(SingerDao singerDao) {
 assertNotNull(singerDao);
 String singerName = singerDao.findNameById(1l);
 assertTrue("John Mayer".equals(singerName));
 }
}

When executing the test method testH2DB(), we expect the John Mayer string to be returned by the
singerDao.findNameById(1l) call, and we test this assumption using the asertTrue method. If there were
any problems when initializing the database, this test will fail.

Using Named Parameters with NamedParameterJdbcTemplate
In the previous example, we are using the normal placeholder (the ? character) as a query parameter, and
we need to pass the parameter values as an Object array. When using a normal placeholder, the order is
important, and the order that you put the parameters into the array should be the same as the order of the
parameters in the query.

Some developers prefer to use named parameters to ensure that each parameter is being bound exactly
as intended. In Spring, an extension of the JdbcTemplate class, called NamedParameterJdbcTemplate (under
the package org.springframework.jdbc.core.namedparam), provides support for this.

Chapter 6 ■ Spring JDBC Support

324

The initialization of NamedParameterJdbcTemplate is the same as JdbcTemplate, so we just need to
declare a bean of type NamedParameterJdbcTemplate and inject it in the Dao class. In the following code, you
can see the new and improved JdbcSingerDao:

package com.apress.prospring5.ch6;

public class JdbcSingerDao implements
 SingerDao, InitializingBean {

 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;
 @Override
 public String findNameById(Long id) {
 String sql = "SELECT first_name ||' '|| last_name
 FROM singer WHERE id = :singerId";
 Map<String, Object> namedParameters = new HashMap<>();
 namedParameters.put("singerId", id);
 return namedParameterJdbcTemplate.queryForObject(sql,
 namedParameters, String.class);
 }

 public void setNamedParameterJdbcTemplate
 (NamedParameterJdbcTemplate namedParameterJdbcTemplate) {
 this.namedParameterJdbcTemplate = namedParameterJdbcTemplate;
 }

 @Override
 public void afterPropertiesSet() throws Exception {
 if (namedParameterJdbcTemplate == null) {
 throw new BeanCreationException
 ("Null NamedParameterJdbcTemplate on SingerDao");
 }
 }
 ...
}

You will see that instead of the ? placeholder, the named parameter (prefixed by a semicolon) is used
instead: :singerId. The following code snippet can used to test the new JdbcSingerDao:

public class NamedJdbcCfgTest {

 @Test
 public void testCfg(){
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(NamedJdbcCfg.class);

 SingerDao singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 String singerName = singerDao.findNameById(1l);
 assertTrue("John Mayer".equals(singerName));

 ctx.close();
 }
}

Chapter 6 ■ Spring JDBC Support

325

When executing the test method testCfg(), we expect the John Mayer string to be returned by the
singerDao.findNameById(1l) call, and we test this assumption using the asertTrue method. If there were
any problems when initializing the database, this test will fail.

Retrieving Domain Objects with RowMapper<T>
Rather than retrieving a single value, most of the time you will want to query one or more rows and then
transform each row into the corresponding domain object or entity. Spring’s RowMapper<T> interface (under
the package org.springframework.jdbc.core) provides a simple way for you to perform mapping from
a JDBC result set to POJOs. Let’s see it in action by implementing the findAll() method of the SingerDao
using the RowMapper<T> interface. In the following code snippet, you can see the implementation of the
findAll() method:

package com.apress.prospring5.ch6;
...
public class JdbcSingerDao implements
 SingerDao, InitializingBean {

 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

 public void setNamedParameterJdbcTemplate(
 NamedParameterJdbcTemplate namedParameterJdbcTemplate) {
 this.namedParameterJdbcTemplate = namedParameterJdbcTemplate;
 }

 @Override
 public List<Singer> findAll() {
 String sql = "select id, first_name, last_name, birth_date from singer";
 return namedParameterJdbcTemplate.query(sql, new SingerMapper());
 }

 private static final class SingerMapper
 implements RowMapper<Singer> {

 @Override
 public Singer mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 Singer singer = new Singer();
 singer.setId(rs.getLong("id"));
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));
 return singer;
 }
 }

 @Override
 public void afterPropertiesSet() throws Exception {
 if (namedParameterJdbcTemplate == null) {
 throw new BeanCreationException(
 "Null NamedParameterJdbcTemplate on SingerDao");
 }
 }
}

Chapter 6 ■ Spring JDBC Support

326

In the previous code snippet, we define a static inner class called SingerMapper that implements the
RowMapper<Singer> interface. The class needs to provide the mapRow() implementation, which transforms
the values in a specific record of the ResultSet into the domain object you want. Making it a static inner
class allows you to share the RowMapper<Singer> among multiple finder methods.

The class SingerMapper explicit implementation can be skipped altogether using Java 8 lambda
expressions; thus, the findAll() method can be refactored like this:

public List<Singer> findAll() {
 String sql = "select id, first_name, last_name, birth_date from singer";
 return namedParameterJdbcTemplate.query(sql, (rs, rowNum) -> {
 Singer singer = new Singer();
 singer.setId(rs.getLong("id"));
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));
 return singer;
 });
}

Afterward, the findAll() method just needs to invoke the query method and pass in the query string
and the row mapper. If the query requires parameters, the query() method provides an overloaded method
that accepts the query parameters. The following test class contains a test method for the findAll()
method:

public class RowMapperTest {

 @Test
 public void testRowMapper() {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(NamedJdbcCfg.class);
 SingerDao singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 List<Singer> singers = singerDao.findAll();
 assertTrue(singers.size() == 3);

 singers.forEach(singer -> {
 System.out.println(singer);
 if (singer.getAlbums() != null) {
 for (Album album :
 singer.getAlbums()) {
 System.out.println("---" + album);
 }
 }
 });

 ctx.close();
 }
}

Chapter 6 ■ Spring JDBC Support

327

If you run the testRowMapper method, the test must pass, and the following must be produced:

Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01

The albums are not printed because the RowMapper<Singer> implementation does not actually set them
on the returned Singer instances.

Retrieving Nested Domain Objects with ResultSetExtractor
Let’s proceed to a somewhat more complicated example, in which we need to retrieve the data from the
parent (SINGER) and child (ALBUM) tables with a join and then transform the data back into the nested object
(Album within Singer) accordingly.

The previously mentioned RowMapper<T> is suitable only for row mapping to a single domain object. For
a more complicated object structure, we need to use the ResultSetExtractor interface. To demonstrate its
use, let’s add one more method, findAllWithAlbums(), into the SingerDao interface. The method should
populate the list of singers with their album details.

The following code snippet shows the addition of the findAllWithAlbums() method to the interface
and the implementation of the method using ResultSetExtractor:

package com.apress.prospring5.ch6;
...
public class JdbcSingerDao implements SingerDao, InitializingBean {

 private NamedParameterJdbcTemplate namedParameterJdbcTemplate;

 public void setNamedParameterJdbcTemplate(
 NamedParameterJdbcTemplate namedParameterJdbcTemplate) {
 this.namedParameterJdbcTemplate = namedParameterJdbcTemplate;
 }

 @Override
 public List<Singer> findAllWithAlbums() {
 String sql = "select s.id, s.first_name, s.last_name, s.birth_date" +
 ", a.id as a.album_id, a.title, a.release_date from singer s " +
 "left join album a on s.id = a.singer_id";
 return namedParameterJdbcTemplate.query(sql, new SingerWithDetailExtractor());
 }

 private static final class SingerWithDetailExtractor implements
 ResultSetExtractor<List<Singer>> {

 @Override
 public List<Singer> extractData(ResultSet rs) throws SQLException,
 DataAccessException {
 Map<Long, Singer> map = new HashMap<>();
 Singer singer;
 while (rs.next()) {
 Long id = rs.getLong("id");
 singer = map.get(id);

Chapter 6 ■ Spring JDBC Support

328

 if (singer == null) {
 singer = new Singer();
 singer.setId(id);
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));
 singer.setAlbums(new ArrayList<>());
 map.put(id, singer);
 }
 Long albumId = rs.getLong("singer_tel_id");
 if (albumId > 0) {
 Album album = new Album();
 album.setId(albumId);
 album.setSingerId(id);
 album.setTitle(rs.getString("title"));
 album.setReleaseDate(rs.getDate("release_date"));
 singer.addAbum(album);
 }
 }
 return new ArrayList<>(map.values());
 }
 }

 @Override
 public void afterPropertiesSet() throws Exception {
 if (namedParameterJdbcTemplate == null) {
 throw new BeanCreationException(
 "Null NamedParameterJdbcTemplate on SingerDao");
 }
 }
}

The code looks quite like the RowMapper sample, but this time we declare an inner class that implements
ResultSetExtractor. Then we implement the extractData() method to transform the result set into a list of
Singer objects accordingly. For the findAllWithDetail() method, the query uses a left join to join the two
tables so that singers with no albums will also be retrieved. The result is a Cartesian product of the two tables.
Finally, we use the JdbcTemplate.query() method, passing in the query string and the result set extractor.

Of course, the SingerWithDetailExtractor inner class is not actually necessary because lambda
expressions are used. Here you can see the findAllWithAlbums() version that makes use of Java 8 lambda
expressions:

public List<Singer> findAllWithAlbums() {
 String sql = "select s.id, s.first_name, s.last_name, s.birth_date" +
 ", a.id as a.album_id, a.title, a.release_date from singer s " +
 "left join album a on s.id = a.singer_id";
 return namedParameterJdbcTemplate.query(sql, rs -> {
 Map<Long, Singer> map = new HashMap<>();
 Singer singer;
 while (rs.next()) {
 Long id = rs.getLong("id");
 singer = map.get(id);
 if (singer == null) {

Chapter 6 ■ Spring JDBC Support

329

 singer = new Singer();
 singer.setId(id);
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));
 singer.setAlbums(new ArrayList<>());
 map.put(id, singer);
 }
 Long albumId = rs.getLong("singer_tel_id");
 if (albumId > 0) {
 Album album = new Album();
 album.setId(albumId);
 album.setSingerId(id);
 album.setTitle(rs.getString("title"));
 album.setReleaseDate(rs.getDate("release_date"));
 singer.addAbum(album);
 }
 }
 return new ArrayList<>(map.values());
 });

}

The following test class contains a test method for the findAllWithAlbums() method:

public class ResultSetExtractorTest {

 @Test
 public void testResultSetExtractor() {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(NamedJdbcCfg.class);
 SingerDao singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 List<Singer> singers = findAllWithAlbums();
 assertTrue(singers.size() == 3);

 singers.forEach(singer -> {
 System.out.println(singer);
 if (singer.getAlbums() != null) {
 for (Album album :
 singer.getAlbums()) {
 System.out.println("\t--> " + album);
 }
 }
 });

 ctx.close();
 }
}

Chapter 6 ■ Spring JDBC Support

330

If you run the testResultSetExtractor() method, the test must pass, and the following must be produced:

Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
 --> Album - Id: 2, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-17
 --> Album - Id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
 --> Album - Id: 3, Singer id: 2, Title: From The Cradle,
 Release Date: 1994-09-13
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01

You can see the singers and their album details are listed accordingly. The data is based on the data
population script that you can find in resources/db/test-data.sql for each of the JDBC sample projects.
So far, you have seen how to use JdbcTemplate to perform some common query operations. JdbcTemplate
(and the NamedParameterJdbcTemplate class too) provides a number of overloading update() methods that
support data update operations, including insert, update, delete, and so on. However, the update() method
is quite self-explanatory, so we leave it as an exercise for you to explore. On the other side, as you will see in
later sections, we will use the Spring-provided SqlUpdate class to perform data update operations.

Spring Classes That Model JDBC Operations
In the preceding section, you saw how JdbcTemplate and the related data mapper utility classes greatly
simplify the programming model in developing data access logic with JDBC. Built on top of JdbcTemplate,
Spring also provides a number of useful classes that model JDBC data operations and let developers
maintain the query and transformation logic from ResultSet to domain objects in a more object-oriented
fashion. Specifically, this section presents the following classes:

•	 MappingSqlQuery<T>: The MappingSqlQuery<T> class allows you to wrap the query
string together with the mapRow() method into a single class.

•	 SqlUpdate: The SqlUpdate class allows you to wrap any SQL update statement into
it. It also provides a lot of useful functions for you to bind SQL parameters, retrieve
the RDBMS-generated key after a new record is inserted, and so on.

•	 BatchSqlUpdate: As its name indicates, this class allows you to perform batch update
operations. For example, you can loop through a Java List object and have the
BatchSqlUpdate queue up the records and submit the update statements for you in a
batch. You can set the batch size and flush the operation at any time.

•	 SqlFunction<T>: The SqlFunction<T> class allows you to call stored functions in
the database with argument and return types. Another class, StoredProcedure, also
exists that helps you invoke stored procedures.

•	 Setting up JDBC DAO by using annotations

First let’s take a look at how to set up the DAO implementation class by using annotations. The following
example code implements the SingerDao interface method by method until we have a full SingerDao
implementation. The following code snippet shows the SingerDao interface class with a complete listing of
the data access services it provides:

package com.apress.prospring5.ch6.dao;

import com.apress.prospring5.ch6.entities.Singer;

Chapter 6 ■ Spring JDBC Support

331

import java.util.List;

public interface SingerDao {

 List<Singer> findAll();
 List<Singer> findByFirstName(String firstName);
 String findNameById(Long id);
 String findLastNameById(Long id);
 String findFirstNameById(Long id);
 List<Singer> findAllWithAlbums();

 void insert(Singer singer);
 void update(Singer singer);
 void delete(Long singerId);
 void insertWithAlbum(Singer singer);
}

At the beginning of the book, stereotype annotations were introduced, and @Repository was introduced
as a specialization of the @Component annotation, which is designed to be used for beans handling database
operations.4 The following code snippet shows the initial declaration and injection of the data source
property into a @Repository annotated DAO class using the JSR-250 annotation:

package com.apress.prospring5.ch6.dao;
...
@Repository("singerDao")
public class JdbcSingerDao implements SingerDao {

 private static final Log logger =
 LogFactory.getLog(JdbcSingerDao.class);
 private DataSource dataSource;

 @Resource(name = "dataSource")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 public DataSource getDataSource() {
 return dataSource;
 }
 ...
}

In the previous listing, we use @Repository to declare the Spring bean with a name of singerDao, and
since the class contains data access code, @Repository also instructs Spring to perform database-specific
SQL exceptions to the more application-friendly DataAccessException hierarchy in Spring.

We also declare the log variable by using SL4J logging to log the message within the program. We use
JSR-250’s @Resource for the dataSource property to let Spring inject the data source with a name of dataSource.

4This indicates that the annotated class is a repository, originally defined by Domain-Driven Design (Evans, 2003) as
“a mechanism for encapsulating storage, retrieval, and search behavior which emulates a collection of objects.”

Chapter 6 ■ Spring JDBC Support

332

In the following code sample, you can see the Java configuration class for the situation when
annotations are used to declare DAO handling beans:

package com.apress.prospring5.ch6.config;

import org.apache.commons.dbcp2.BasicDataSource;
...
@Configuration
@PropertySource("classpath:db/jdbc2.properties")
@ComponentScan(basePackages = "com.apress.prospring5.ch6")
public class AppConfig {

 private static Logger logger =
 LoggerFactory.getLogger(AppConfig.class);

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;
 @Value("${username}")
 private String username;
 @Value("${password}")
 private String password;

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Bean(destroyMethod = "close")
 public DataSource dataSource() {
 try {
 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setDriverClassName(driverClassName);
 dataSource.setUrl(url);
 dataSource.setUsername(username);
 dataSource.setPassword(password);
 return dataSource;
 } catch (Exception e) {
 logger.error("DBCP DataSource bean cannot be created!", e);
 return null;
 }
 }
}

In this configuration, we declare a MySQL database, which is being accessed using a poolable
BasicDataSource, and use component scanning for automatic Spring bean discovery. You were instructed
at the beginning of the chapter how to install and set up a MySQL database and create the musicdb schema.
Having the infrastructure in place, we can now proceed to the implementation of JDBC operations.

Chapter 6 ■ Spring JDBC Support

333

Querying Data by Using MappingSqlQuery<T>
Spring provides the MappingSqlQuery<T> class for modeling query operations. Basically, we construct a
MappingSqlQuery<T> class by using the data source and the query string. We then implement the mapRow()
method to map each ResultSet record into the corresponding domain object.

Let’s begin by creating the SelectAllSingers class (which represents the query operation for selecting
all singers) that extends the MappingSqlQuery<T> abstract class. The SelectAllSingers class is shown here:

package com.apress.prospring5.ch6;

import java.sql.ResultSet;
import java.sql.SQLException;

import javax.sql.DataSource;

import com.apress.prospring5.ch6.entities.Singer;
import org.springframework.jdbc.object.MappingSqlQuery;

public class SelectAllSingers extends MappingSqlQuery<Singer> {
 private static final String SQL_SELECT_ALL_SINGER =
 "select id, first_name, last_name, birth_date from singer";

 public SelectAllSingers(DataSource dataSource) {
 super(dataSource, SQL_SELECT_ALL_SINGER);
 }

 protected Singer mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 Singer singer = new Singer();

 singer.setId(rs.getLong("id"));
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));

 return singer;
 }
}

Within the SelectAllSingers class, the SQL for selecting all singers is declared. In the class constructor,
the super() method is called to construct the class, using the DataSource as well as the SQL statement.
Moreover, the MappingSqlQuery<T>.mapRow() method is implemented to provide the mapping of the result
set to the Singer domain object.

Having the SelectAllSingers class in place, we can implement the findAll() method in the
JdbcSingerDao class. The following code snippet depicts a section of the JdbcSingerDao class:

package com.apress.prospring5.ch6;
@Repository("singerDao")
public class JdbcSingerDao implements SingerDao {
 private DataSource dataSource;
 private SelectAllSingers selectAllSingers;

Chapter 6 ■ Spring JDBC Support

334

 @Resource(name = "dataSource")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.selectAllSingers = new SelectAllSingers(dataSource);
 }

 @Override
 public List<Singer> findAll() {
 return selectAllSingers.execute();
 }

 ...
}

In the setDataSource() method, upon the injection of the DataSource, an instance of the
SelectAllSingers class is constructed. In the findAll() method, we simply invoke the execute() method,
which is inherited from the SqlQuery<T> abstract class indirectly. That’s all we need to do. The following
code snippet shows the method used to test the findAll() method implemented this way:

com.apress.prospring5.ch6;
public class AnnotationJdbcTest {

 private GenericApplicationContext ctx;
 private SingerDao singerDao;

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 }

 @Test
 public void testFindAll() {
 List<Singer> singers = singerDao.findAll();
 assertTrue(singers.size() == 3);
 singers.forEach(singer -> {
 System.out.println(singer);
 if (singer.getAlbums() != null) {
 for (Album album : singer.getAlbums()) {
 System.out.println("\t--> " + album);
 }
 }
 });
 ctx.close();
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Chapter 6 ■ Spring JDBC Support

335

Running the testing method, if the test passes, yields the following output:

Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-15
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-29
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-03-31

If DEBUG logging is enabled for the org.springframework.jdbc package by editing the logback-test.
xml configuration file and adding the following element:

<logger name="org.springframework.jdbc" level="debug"/>

then in the console you will also see the query that was submitted by Spring, as shown here:

DEBUG o.s.j.c.JdbcTemplate - Executing prepared SQL query
DEBUG o.s.j.c.JdbcTemplate - Executing prepared SQL statement
 [select id, first_name, last_name, birth_date from singer]

Let’s proceed to implement the findByFirstName() method, which takes one named parameter. As in the
previous sample, we create the class SelectSingerByFirstName for the operation, which is depicted here:

package com.apress.prospring5.ch6;
...
import org.springframework.jdbc.core.SqlParameter;

public class SelectSingerByFirstName extends MappingSqlQuery<Singer> {

 private static final String SQL_FIND_BY_FIRST_NAME =
 "select id, first_name, last_name, birth_date from
 singer where first_name = :first_name";

 public SelectSingerByFirstName(DataSource dataSource) {
 super(dataSource, SQL_FIND_BY_FIRST_NAME);
 super.declareParameter(new SqlParameter("first_name", Types.VARCHAR));
 }

 protected Singer mapRow(ResultSet rs, int rowNum) throws SQLException {
 Singer singer = new Singer();

 singer.setId(rs.getLong("id"));
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));

 return singer;
 }
}

The SelectSingerByFirstName class is similar to the SelectAllSingers class. First, the SQL
statement is different and carries a named parameter called first_name. In the constructor method, the
declareParameter() method is called (which is inherited from the org.springframework.jdbc.object.
RdbmsOperation abstract class indirectly). Let’s proceed to implement the findByFirstName() method in
the JdbcSingerDao class. Here you can see the updated code:

Chapter 6 ■ Spring JDBC Support

336

package com.apress.prospring5.ch6.dao;
...
@Repository("singerDao")
public class JdbcSingerDao implements SingerDao {

 private static Logger logger = LoggerFactory.getLogger(JdbcSingerDao.class);
 private DataSource dataSource;
 private SelectSingerByFirstName selectSingerByFirstName;

 @Resource(name = "dataSource")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.selectSingerByFirstName =
 new SelectSingerByFirstName(dataSource);
 }

 @Override
 public List<Singer> findByFirstName(String firstName) {
 Map<String, Object> paramMap = new HashMap<>();
 paramMap.put("first_name", firstName);
 return selectSingerByFirstName.executeByNamedParam(paramMap);
 }
...
}

Upon data source injection, an instance of SelectSingerByFirstName is constructed. Afterward, in the
findByFirstName() method, a HashMap is constructed with the named parameters and values. Finally, the
executeByNamedParam() method (inherited from the SqlQuery<T> abstract class indirectly) is called. Let’s
test this method by executing the testFindByFirstName() test method shown here:

package com.apress.prospring5.ch6;
...
import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;

public class AnnotationJdbcTest {

 private GenericApplicationContext ctx;
 private SingerDao singerDao;

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 }

Chapter 6 ■ Spring JDBC Support

337

 @Test
 public void testFindByFirstName() {
 List<Singer> singers = singerDao.findByFirstName("John");
 assertTrue(singers.size() == 1);
 listSingers(singers);
 ctx.close();
 }

 private void listSingers(List<Singer> singers){
 singers.forEach(singer -> {
 System.out.println(singer);
 if (singer.getAlbums() != null) {
 for (Album album : singer.getAlbums()) {
 System.out.println("\t--> " + album);
 }
 }
 });
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Running the testing method, if the test passes, yields the following output:

Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-15

One point worth noting here is that MappingSqlQuery<T> is suitable only for mapping a single row to a
domain object. For a nested object, you still need to use JdbcTemplate with ResultSetExtractor, like the
example method findAllWithAlbums() presented in the JdbcTemplate class section.

Updating Data by Using SqlUpdate
For updating data, Spring provides the SqlUpdate class. The following code snippet shows the UpdateSinger
class that extends the SqlUpdate class for update operations:

package com.apress.prospring5.ch6;

import java.sql.Types;

import javax.sql.DataSource;

import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.SqlUpdate;

public class UpdateSinger extends SqlUpdate {
 private static final String SQL_UPDATE_SINGER =
 "update singer set first_name=:first_name, last_name=:last_name,
 birth_date=:birth_date where id=:id";

Chapter 6 ■ Spring JDBC Support

338

 public UpdateSinger(DataSource dataSource) {
 super(dataSource, SQL_UPDATE_SINGER);
 super.declareParameter(new SqlParameter("first_name", Types.VARCHAR));
 super.declareParameter(new SqlParameter("last_name", Types.VARCHAR));
 super.declareParameter(new SqlParameter("birth_date", Types.DATE));
 super.declareParameter(new SqlParameter("id", Types.INTEGER));
 }
}

The preceding listing should be familiar to you now. An instance of the SqlUpdate class is constructed
with the query, and the named parameters are declared too. The following code snippet shows the
implementation of the update() method in the JdbcSingerDao class:

package com.apress.prospring5.ch6.dao;
...
@Repository("singerDao")
public class JdbcSingerDao implements SingerDao {

 private static Logger logger =
 LoggerFactory.getLogger(JdbcSingerDao.class);
 private DataSource dataSource;
 private UpdateSinger updateSinger;

 @Override
 public void update(Singer singer) {
 Map<String, Object> paramMap = new HashMap<String, Object>();
 paramMap.put("first_name", singer.getFirstName());
 paramMap.put("last_name", singer.getLastName());
 paramMap.put("birth_date", singer.getBirthDate());
 paramMap.put("id", singer.getId());
 updateSinger.updateByNamedParam(paramMap);
 logger.info("Existing singer updated with id: " + singer.getId());
 }

 @Resource(name = "dataSource")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.updateSinger = new UpdateSinger(dataSource);
 }
 ...
}

Upon data source injection, an instance of UpdateSinger is constructed. In the update() method, a HashMap
of named parameters is constructed from the passed-in Singer object, and then updateByNamedParam() is called
to update the contact record. To test the operation, let’s add a new method to the AnnotationJdbcTest.

package com.apress.prospring5.ch6;
...
public class AnnotationJdbcTest {

 private GenericApplicationContext ctx;
 private SingerDao singerDao;

Chapter 6 ■ Spring JDBC Support

339

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 }

 @Test
 public void testSingerUpdate() {
 Singer singer = new Singer();
 singer.setId(1L);
 singer.setFirstName("John Clayton");
 singer.setLastName("Mayer");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()));
 singerDao.update(singer);

 List<Singer> singers = singerDao.findAll();
 listSingers(singers);
 }

 private void listSingers(List<Singer> singers){
 singers.forEach(singer -> {
 System.out.println(singer);
 if (singer.getAlbums() != null) {
 for (Album album : singer.getAlbums()) {
 System.out.println("\t--> " + album);
 }
 }
 });
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Here we simply construct a Singer object and then invoke the update() method. Running the program
produces the following output from the last listSingers() method. Running the testing method, if the test
passes, yields the following output:

Singer - Id: 1, First name: John Clayton, Last name: Mayer, Birthday: 1977-10-16
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-29
Singer - Id: 3, First name: Jimi, Last name: Hendrix, Birthday: 1942-11-26

Chapter 6 ■ Spring JDBC Support

340

Inserting Data and Retrieving the Generated Key
For inserting data, we can also use the SqlUpdate class. One interesting point is how the primary key is
generated (which is typically the id column). This value is available only after the insert statement has
completed; that’s because the RDBMS generates the identity value for the record on insert. The column ID
is declared with the attribute AUTO_INCREMENT and is the primary key, and this value will be assigned by the
RDBMS during the insert operation. If you are using Oracle, you will probably get a unique ID first from an
Oracle sequence and then execute an insert statement with the query result.

In old versions of JDBC, the method is a bit tricky. For example, if we are using MySQL, you need to
execute the SQL select last_insert_id() and select @@IDENTITY statements for Microsoft SQL Server.

Luckily, starting from JDBC version 3.0, a new feature was added that allows the retrieval of an RDBMS-
generated key in a unified fashion. The following code snippet shows the implementation of the insert()
method, which also retrieves the generated key for the inserted contact record. It will work in most databases
(if not all); just make sure you are using a JDBC driver that is compatible with JDBC 3.0 or newer.

We start by creating the InsertSinger class for the insert operation, which extends the SqlUpdate class.

package com.apress.prospring5.ch6;

import java.sql.Types;

import javax.sql.DataSource;

import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.SqlUpdate;

public class InsertSinger extends SqlUpdate {
 private static final String SQL_INSERT_SINGER =
 "insert into singer (first_name, last_name, birth_date)
 values (:first_name, :last_name, :birth_date)";

 public InsertSinger(DataSource dataSource) {
 super(dataSource, SQL_INSERT_SINGER);
 super.declareParameter(new SqlParameter("first_name", Types.VARCHAR));
 super.declareParameter(new SqlParameter("last_name", Types.VARCHAR));
 super.declareParameter(new SqlParameter("birth_date", Types.DATE));
 super.setGeneratedKeysColumnNames(new String {"id"});
 super.setReturnGeneratedKeys(true);
 }
}

The InsertSinger class is almost the same as the UpdateSinger class; we need to do just
two more things. When constructing the InsertSinger class, we call the method SqlUpdate.
setGeneratedKeysColumnNames() to declare the name of the ID column. The method SqlUpdate.
setReturnGeneratedKeys() then instructs the underlying JDBC driver to retrieve the generated key. In the
following code, you can see the implementation of the insert() method in the JdbcSingerDao class:

package com.apress.prospring5.ch6.dao;
...
@Repository("singerDao")
public class JdbcSingerDao implements SingerDao {

Chapter 6 ■ Spring JDBC Support

341

 private static Logger logger =
 LoggerFactory.getLogger(JdbcSingerDao.class);
 private DataSource dataSource;
 private InsertSinger insertSinger;

 @Override
 public void insert(Singer singer) {
 Map<String, Object> paramMap = new HashMap<>();
 paramMap.put("first_name", singer.getFirstName());
 paramMap.put("last_name", singer.getLastName());
 paramMap.put("birth_date", singer.getBirthDate());
 KeyHolder keyHolder = new GeneratedKeyHolder();
 insertSinger.updateByNamedParam(paramMap, keyHolder);
 singer.setId(keyHolder.getKey().longValue());
 logger.info("New singer inserted with id: " + singer.getId());
 }

 @Resource(name = "dataSource")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 this.insertSinger = new InsertSinger(dataSource);
 }
...
}

Upon data source injection, an instance of InsertSinger is constructed. In the insert() method, we
also use the SqlUpdate.updateByNamedParam() method. Additionally, we pass in an instance of KeyHolder
to the method, which will have the generated ID stored in it. After the data is inserted, we can then retrieve
the generated key from the KeyHolder. Let’s see how the test method looks for insert().

package com.apress.prospring5.ch6;
...
public class AnnotationJdbcTest {
 private GenericApplicationContext ctx;
 private SingerDao singerDao;

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 }

 @Test
 public void testSingerInsert(){
 Singer singer = new Singer();
 singer.setFirstName("Ed");
 singer.setLastName("Sheeran");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1991, 1, 17)).getTime().getTime()));
 singerDao.insert(singer);

Chapter 6 ■ Spring JDBC Support

342

 List<Singer> singers = singerDao.findAll();
 listSingers(singers);
 }

 private void listSingers(List<Singer> singers){
 singers.forEach(singer -> {
 System.out.println(singer);
 if (singer.getAlbums() != null) {
 for (Album album : singer.getAlbums()) {
 System.out.println("\t--> " + album);
 }
 }
 });
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Running the testing method, if the test passes, yields the following output:

Singer - Id: 1, First name: John Clayton, Last name: Mayer, Birthday: 1977-10-16
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-29
Singer - Id: 3, First name: Jimi, Last name: Hendrix, Birthday: 1942-11-26
Singer - Id: 6, First name: Ed, Last name: Sheeran, Birthday: 1991-02-17

Batching Operations with BatchSqlUpdate
For batch operations, we use the BatchSqlUpdate class. The new insertWithAlbum() method will insert
both the singer and its released album into the database. To be able to insert the album record, we need to
create the InsertSingerAlbum class, which is shown here:

package com.apress.prospring5.ch6;

import java.sql.Types;

import javax.sql.DataSource;

import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.BatchSqlUpdate;

public class InsertSingerAlbum extends BatchSqlUpdate {
 private static final String SQL_INSERT_SINGER_ALBUM =
 "insert into album (singer_id, title, release_date)
 values (:singer_id, :title, :release_date)";

 private static final int BATCH_SIZE = 10;

Chapter 6 ■ Spring JDBC Support

343

 public InsertSingerAlbum(DataSource dataSource) {
 super(dataSource, SQL_INSERT_SINGER_ALBUM);

 declareParameter(new SqlParameter("singer_id", Types.INTEGER));
 declareParameter(new SqlParameter("title", Types.VARCHAR));
 declareParameter(new SqlParameter("release_date", Types.DATE));

 setBatchSize(BATCH_SIZE);
 }
}

Note that in the constructor, we call the BatchSqlUpdate.setBatchSize() method to set the batch size
for the JDBC insert operation. Here you can see the implementation of the insertWithAlbum() method in
the JdbcSingerDao class:

package com.apress.prospring5.ch6.dao;
...
@Repository("singerDao")
public class JdbcSingerDao implements SingerDao {

 private static Logger logger =
 LoggerFactory.getLogger(JdbcSingerDao.class);
 private DataSource dataSource;
 private InsertSingerAlbum insertSingerAlbum;

 @Override
 public void insertWithAlbum(Singer singer) {
 insertSingerAlbum = new InsertSingerAlbum(dataSource);
 Map<String, Object> paramMap = new HashMap<>();
 paramMap.put("first_name", singer.getFirstName());
 paramMap.put("last_name", singer.getLastName());
 paramMap.put("birth_date", singer.getBirthDate());
 KeyHolder keyHolder = new GeneratedKeyHolder();
 insertSinger.updateByNamedParam(paramMap, keyHolder);
 singer.setId(keyHolder.getKey().longValue());
 logger.info("New singer inserted with id: " + singer.getId());
 List<Album> albums = singer.getAlbums();
 if (albums != null) {
 for (Album album : albums) {
 paramMap = new HashMap<>();
 paramMap.put("singer_id", singer.getId());
 paramMap.put("title", album.getTitle());
 paramMap.put("release_date", album.getReleaseDate());
 insertSingerAlbum.updateByNamedParam(paramMap);
 }
 }
 insertSingerAlbum.flush();
 }
 @Resource(name = "dataSource")
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }

Chapter 6 ■ Spring JDBC Support

344

 @Override
 public List<Singer> findAllWithAlbums() {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(getDataSource());
 String sql = "SELECT s.id, s.first_name, s.last_name, s.birth_date" +
 ", a.id AS album_id, a.title, a.release_date FROM singer s " +
 "LEFT JOIN album a ON s.id = a.singer_id";
 return jdbcTemplate.query(sql, new SingerWithAlbumExtractor());
 }

 private static final class SingerWithAlbumExtractor
 implements ResultSetExtractor<List<Singer>> {

 public List<Singer> extractData(ResultSet rs) throws
 SQLException, DataAccessException {
 Map<Long, Singer> map = new HashMap<>();
 Singer singer;
 while (rs.next()) {
 Long id = rs.getLong("id");
 singer = map.get(id);
 if (singer == null) {
 singer = new Singer();
 singer.setId(id);
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));
 singer.setAlbums(new ArrayList<>());
 map.put(id, singer);
 }
 Long albumId = rs.getLong("album_id");
 if (albumId > 0) {
 Album album = new Album();
 album.setId(albumId);
 album.setSingerId(id);
 album.setTitle(rs.getString("title"));
 album.setReleaseDate(rs.getDate("release_date"));
 singer.getAlbums().add(album);
 }
 }
 return new ArrayList<>(map.values());
 }
 }
...
}

Each time the insertWithAlbum() method is called, a new instance of InsertSingerAlbum is
constructed because the BatchSqlUpdate class is not thread safe. Then we use it just like SqlUpdate.
The main difference is that the BatchSqlUpdate class will queue up the insert operations and submit them
to the database in batch. Every time the number of records equals the batch size, Spring will execute a bulk
insert operation to the database for the pending records. On the other hand, upon completion, we call
the BatchSqlUpdate.flush() method to instruct Spring to flush all pending operations (that is, the insert
operations being queued that still haven’t reached the batch size yet). Finally, we loop through the list of

Chapter 6 ■ Spring JDBC Support

345

Album objects in the Singer object and invoke the BatchSqlUpdate.updateByNamedParam() method.
To facilitate testing, the insertWithAlbum() method is also implemented. As this implementation is
pretty big, it can be reduced by making use of Java 8 lambda expressions.

public List<Singer> findAllWithAlbums() {
 JdbcTemplate jdbcTemplate = new JdbcTemplate(getDataSource());
 String sql = "SELECT s.id, s.first_name, s.last_name, s.birth_date" +
 ", a.id AS album_id, a.title, a.release_date FROM singer s " +
 "LEFT JOIN album a ON s.id = a.singer_id";
 return jdbcTemplate.query(sql, rs -> {
 Map<Long, Singer> map = new HashMap<>();
 Singer singer;
 while (rs.next()) {
 Long id = rs.getLong("id");
 singer = map.get(id);
 if (singer == null) {
 singer = new Singer();
 singer.setId(id);
 singer.setFirstName(rs.getString("first_name"));
 singer.setLastName(rs.getString("last_name"));
 singer.setBirthDate(rs.getDate("birth_date"));
 singer.setAlbums(new ArrayList<>());
 map.put(id, singer);
 }
 Long albumId = rs.getLong("album_id");
 if (albumId > 0) {
 Album album = new Album();
 album.setId(albumId);
 album.setSingerId(id);
 album.setTitle(rs.getString("title"));
 album.setReleaseDate(rs.getDate("release_date"));
 singer.getAlbums().add(album);
 }
 }
 return new ArrayList<>(map.values());
 });
}

Let’s see how the test method looks for insertWithAlbum().

package com.apress.prospring5.ch6;
...
public class AnnotationJdbcTest {

 private GenericApplicationContext ctx;
 private SingerDao singerDao;

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 }

Chapter 6 ■ Spring JDBC Support

346

 @Test
 public void testSingerInsertWithAlbum(){
 Singer singer = new Singer();
 singer.setFirstName("BB");
 singer.setLastName("King");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1940, 8, 16)).getTime().getTime()));

 Album album = new Album();
 album.setTitle("My Kind of Blues");
 album.setReleaseDate(new Date(
 (new GregorianCalendar(1961, 7, 18)).getTime().getTime()));
 singer.addAbum(album);

 album = new Album();
 album.setTitle("A Heart Full of Blues");
 album.setReleaseDate(new Date(
 (new GregorianCalendar(1962, 3, 20)).getTime().getTime()));
 singer.addAbum(album);

 singerDao.insertWithAlbum(singer);

 List<Singer> singers = singerDao.findAllWithAlbums();
 listSingers(singers);
 }

 private void listSingers(List<Singer> singers){
 singers.forEach(singer -> {
 System.out.println(singer);
 if (singer.getAlbums() != null) {
 for (Album album : singer.getAlbums()) {
 System.out.println("\t--> " + album);
 }
 }
 });
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Running the testing method, if the test passes, yields the following output:

Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-15
 --> Album - Id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-19
 --> Album - Id: 2, Singer id: 1, Title: Paradise Valley,
 Release Date: 2013-08-19
 --> Album - Id: 3, Singer id: 1, Title: Born and Raised,
 Release Date: 2012-05-22

Chapter 6 ■ Spring JDBC Support

347

 --> Album - Id: 4, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-16
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-29
 --> Album - Id: 5, Singer id: 2, Title: From The Cradle,
 Release Date: 1994-09-13
Singer - Id: 3, First name: Jimi, Last name: Hendrix, Birthday: 1942-11-26
Singer - Id: 4, First name: BB, Last name: King, Birthday: 1940-09-15
 --> Album - Id: 6, Singer id: 4, Title: My Kind of Blues,
 Release Date: 1961-08-17
 --> Album - Id: 7, Singer id: 4, Title: A Heart Full of Blues,
 Release Date: 1962-04-19

Calling Stored Functions by Using SqlFunction
Spring also provides classes to simplify the execution of stored procedures/functions using JDBC. In this
section, we show you how to execute a simple function by using the SqlFunction class. We show how to use
MySQL for the database, create a stored function, and call it by using the SqlFunction<T> class.

We’re assuming you have a MySQL database with a schema called musicdb, with a username and
password both equaling prospring5 (the same as the example in the section “Exploring the JDBC
Infrastructure”). Let’s create a stored function called getFirstNameById(), which accepts the contact’s ID
and returns the first name of the contact. The following code shows the script to create the stored function in
MySQL (stored-function.sql). Run the script against the MySQL database.

DELIMITER //
CREATE FUNCTION getFirstNameById(in_id INT)
 RETURNS VARCHAR(60)
 BEGIN
 RETURN (SELECT first_name FROM singer WHERE id = in_id);
 END //
DELIMITER ;

The stored function simply accepts the ID and returns the first name of the singer record with the ID.
Next we create a StoredFunctionFirstNameById class to represent the stored function operation, which
extends the SqlFunction<T> class. You can see the content of the class in the following code snippet:

package com.apress.prospring5.ch6;

import java.sql.Types;

import javax.sql.DataSource;

import org.springframework.jdbc.core.SqlParameter;
import org.springframework.jdbc.object.SqlFunction;

public class StoredFunctionFirstNameById extends SqlFunction<String> {
 private static final String SQL = "select getfirstnamebyid(?)";

 public StoredFunctionFirstNameById (DataSource dataSource) {
 super(dataSource, SQL);
 declareParameter(new SqlParameter(Types.INTEGER));
 compile();
 }
}

Chapter 6 ■ Spring JDBC Support

348

Here the class extends SqlFunction<T> and passes in the type String, which indicates the return type of
the function. Then we declare the SQL to call the stored function in MySQL. Afterward, in the constructor, the
parameter is declared, and we compile the operation. The class is now ready for use in the implementation
class. The following code snippet shows the updated JdbcSingerDao class to use the stored function:

package com.apress.prospring5.ch6.dao;
...
@Repository("singerDao")
public class JdbcSingerDao implements SingerDao {

 private static Logger logger = LoggerFactory.getLogger(JdbcSingerDao.class);
 private DataSource dataSource;
 private StoredFunctionFirstNameById storedFunctionFirstNameById;

 @Override
 public String findFirstNameById(Long id) {
 List<String> result = storedFunctionFirstNameById.execute(id);
 return result.get(0);
 }
 ...
}

Upon data source injection, an instance of StoredFunctionFirstNameById is constructed. Then in the
findFirstNameById() method, its execute() method is called, passing in the contact ID. The method will
return a list of Strings, and we need only the first one, because there should be only one record returned in
the result set. Testing this functionality is quite simple.

package com.apress.prospring5.ch6;
...
public class AnnotationJdbcTest {

 private GenericApplicationContext ctx;
 private SingerDao singerDao;

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 }

 @Test
 public void testFindFirstNameById(){
 String firstName = singerDao.findFirstNameById(2L);
 assertEquals("Eric", firstName);
 System.out.println("Retrieved value: " + firstName);
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Chapter 6 ■ Spring JDBC Support

349

In the program, we pass an ID of 2 into the stored function. This will return Eric, which is the first name of
the record with ID equal to 2 if you run the test-data.sql against the MySQL database. Running the program
produces the following output:

o.s.j.c.JdbcTemplate - Executing prepared SQL query
o.s.j.c.JdbcTemplate - Executing prepared SQL statement
 [select getfirstnamebyid?]
o.s.j.d.DataSourceUtils - Fetching JDBC Connection from DataSource
o.s.j.d.DataSourceUtils - Returning JDBC Connection to DataSource
Retrieved value: Eric

You can see that the first name is retrieved correctly. What is presented here is just a simple sample
to demonstrate the Spring JDBC module’s function capabilities. Spring also provides other classes (for
example, StoredProcedure) for you to invoke complex stored procedures that return complex data types. We
recommend you refer to Spring’s reference manual in case you need to access stored procedures using JDBC.

Spring Data Project: JDBC Extensions
In recent years, database technology has evolved so quickly with the rise of so many purpose-specific databases,
nowadays an RDBMS is not the only choice for an application’s back-end database. In response to this database
technology evolution and the developer community’s needs, Spring created the Spring Data project (http://
springsource.org/spring-data). The major objective of the project is to provide useful extensions on top of
Spring’s core data access functionality to interact with databases other than traditional RDBMSs.

The Spring Data project comes with various extensions. One that we would like to mention here is JDBC
Extensions (http://springsource.org/spring-data/jdbc-extensions). As its name implies, the extension
provides some advanced features to facilitate the development of JDBC applications using Spring. The main
features that JDBC Extensions provides are listed here:

•	 QueryDSL support: QueryDSL (http://querydsl.com) is a domain-specific language
that provides a framework for developing type-safe queries. Spring Data’s JDBC
Extensions provides QueryDslJdbcTemplate to facilitate the development of JDBC
applications using QueryDSL instead of SQL statements.

•	 Advanced support for Oracle Database: The extension provides advanced features for
Oracle Database users. On the database connection side, it supports Oracle-specific
session settings, as well as Fast Connection Failover technology when working
with Oracle RAC. Also, classes that integrate with Oracle Advanced Queueing are
provided. On the data type side, native support for Oracle’s XML types, STRUCT and
ARRAY, and so on, are provided.

If you are developing JDBC applications using Spring with Oracle Database, JDBC Extensions is really
worth a look.

Considerations for Using JDBC
With this rich feature set, you can see how Spring can make your life much easier when using JDBC
to interact with the underlying RDBMS. However, there is still quite a lot of code you need to develop,
especially when transforming the result set into the corresponding domain objects.

On top of JDBC, a lot of open source libraries have been developed to help close the gap between the
relational data structure and Java’s OO model. For example, iBATIS is a popular DataMapper framework that
is also based on SQL mapping. iBATIS lets you map objects with stored procedures or queries to an XML

http://springsource.org/spring-data
http://springsource.org/spring-data
http://springsource.org/spring-data/jdbc-extensions
http://querydsl.com/

Chapter 6 ■ Spring JDBC Support

350

descriptor file. Like Spring, iBATIS provides a declarative way to query object mapping, greatly saving you
the time it takes to maintain SQL queries that may be scattered around various DAO classes.

There are also many other ORM frameworks that focus on the object model, rather than the query.
Popular ones include Hibernate, EclipseLink (also known as TopLink), and OpenJPA. All of them comply
with the JCP’s JPA specification.

In recent years, these ORM tools and mapping frameworks have become much more mature so that
most developers will settle on one of them, instead of using JDBC directly. However, in cases where you need
to have absolute control over the query that will be submitted to the database for performance purposes (for
example, using a hierarchical query in Oracle), Spring JDBC is really a viable option. And when using Spring,
one great advantage is that you can mix and match different data access technologies. For example, you can
use Hibernate as the main ORM and then JDBC as a supplement for some of the complex query logic or
batch operations; you can mix and match them in a single business operation and then wrap them under the
same database transaction. Spring will help you handle those situations easily.

Spring Boot JDBC
As we’ve already introduced Spring Boot for web and simple console applications, it is only logical to cover
a Spring Boot starter library for JDBC in this book. It helps you remove boilerplate configurations and jump
directly into implementation.

When spring-boot-starter-jdbc is added as a dependency to a project, a set of libraries is added to
the project. What is not added is a database driver. That decision must be taken by the developer. The project
that will be covered in this section is spring-boot-jdbc and is a submodule of the chapter06 project. Its
Gradle dependencies and versions are specified in the following parent build.gradle file:

ext {
 h2Version = '1.4.194'
 bootVersion = '2.0.0.BUILD-SNAPSHOT'

 boot = [
 springBootPlugin:
 "org.springframework.boot:spring-boot-gradle-plugin:$bootVersion",
 Starter :
 "org.springframework.boot:spring-boot-starter:$bootVersion",
 starterWeb :
 "org.springframework.boot:spring-boot-starter-web:$bootVersion",
 Actuator :
 "org.springframework.boot:spring-boot-starter-actuator:$bootVersion",
 starterTest :
 "org.springframework.boot:spring-boot-starter-test:$bootVersion",
 starterAop :
 "org.springframework.boot:spring-boot-starter-aop:$bootVersion",
 starterJdbc :
 "org.springframework.boot:spring-boot-starter-jdbc:$bootVersion"
]

 db = [
 h2 : "com.h2database:h2:$h2Version",
 ..
]
 ...
}

Chapter 6 ■ Spring JDBC Support

351

They are declared as dependencies in the spring-boot-jdbc\build.gradle configuration file, only by
using their property names.

buildscript {
 repositories {
 mavenLocal() mavenCentral()
 maven { url "http://repo.spring.io/release" }
 maven { url "http://repo.spring.io/milestone" }
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/libs-snapshot" }
 }
 dependencies {
 classpath boot.springBootPlugin
 }
}

apply plugin: 'org.springframework.boot'

dependencies {
 compile project(':chapter06:plain-jdbc')
 compile boot.starterJdbc, db.h2
}

The autoconfigured libraries are depicted in Figure 6-3 in the IntelliJ IDEA Gradle Projects view.
The spring-boot-starter-jdbc library uses tomcat-jdbc to configure the DataSource bean. Thus, if there
is no DataSource bean explicitly configured and there is an embedded database driver in the classpath,
Spring Boot will automatically register the DataSource bean using in-memory database settings. Spring Boot
also registers the following beans automatically:

•	 A JdbcTemplate bean

•	 A NamedParameterJdbcTemplate bean

•	 A PlatformTransactionManager (DataSourceTransactionManager) bean

Figure 6-3.  Spring Boot JDBC starter dependencies

Chapter 6 ■ Spring JDBC Support

352

Here are other things that might be interesting that reduce the amount of environment setup work:

•	 Spring Boot looks for embedded database initialization files under src/main/
resources. It expects to find a file named schema.sql that contains SQL DDL
statements (for example, CREATE TABLE statements) and a file named data.sql
that contains DML statements (for example, INSERT statements). It uses this file to
initialize a database at boot time.

•	 The location and names for these files can be configured in the application.
properties files, which is located under src/main/resources as well. A sample
configuration file that would allow the Spring Boot application to use SQL files is
shown here:

spring.datasource.schema=db/schema.sql
spring.datasource.data=db/test-data.sql

•	 By default Spring Boot initializes the database at boot time, but this could be
changed as well by adding the property spring.datasource.initialize=false to
the application.properties file.

Aside from all that was mentioned, what is left to do with Spring Boot is to provide some domain classes
or entities and a DAO bean. The Singer bean is the same as the one used everywhere in this chapter, and its
implementation resides in the chapter06/plain-jdbc project, which is added as a dependency everywhere.
The JdbcSingerDao class to use is shown here:

package com.apress.prospring5.ch6;

import com.apress.prospring5.ch6.dao.SingerDao;
import com.apress.prospring5.ch6.entities.Singer;
import org.apache.commons.lang3.NotImplementedException;
import org.springframework.beans.factory.BeanCreationException; import org.springframework.
beans.factory.InitializingBean; import org.springframework.beans.factory.annotation.
Autowired; import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class JdbcSingerDao implements SingerDao, InitializingBean {
 private JdbcTemplate jdbcTemplate;

 @Autowired
 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Override public String findNameById(Long id) {
 return jdbcTemplate.queryForObject(
 "SELECT first_name || ' ' || last_name FROM singer WHERE id = ?",
 new Object{id}, String.class);
 }
 ...
}

Chapter 6 ■ Spring JDBC Support

353

The Spring Boot entrypoint class, the one annotated with @SpringBootApplication, is shown in the
following code sample. Notice how how simple it is.

package com.apress.prospring5.ch6;

import com.apress.prospring5.ch6.dao.SingerDao;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

@SpringBootApplication
public class Application {

 private static Logger logger =
 LoggerFactory.getLogger(Application.class);

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 assert (ctx != null);

 SingerDao singerDao = ctx.getBean(SingerDao.class);
 String singerName = singerDao.findNameById(1L);
 logger.info("Retrieved singer: " + singerName);

 System.in.read();
 ctx.close();
 }
}

Summary
This chapter showed you how to use Spring to simplify JDBC programming. You learned how to connect to a
database and perform selects, updates, deletes, and inserts, as well as call database stored functions. Using
the core Spring JDBC class, JdbcTemplate, was discussed in detail. We covered other Spring classes that are
built on top of JdbcTemplate and that help you model various JDBC operations. We also showed how to
use the new lambda expressions from Java 8 where appropriate. In addition, Spring Boot JDBC was covered
because whatever helps you focus more on the implementation of the business logic of an application and
less on the configurations is a great tool to know. In the next couple of chapters, we discuss how to use
Spring with popular ORM technologies when developing data access logic.

355© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_7

CHAPTER 7

Using Hibernate in Spring

In the previous chapter, you saw how to use JDBC in Spring applications. However, even though Spring goes
a long way toward simplifying JDBC development, you still have a lot of code to write. In this chapter, we
cover one of the object-relational mapping (ORM) libraries called Hibernate.

If you have experience developing data access applications using EJB entity beans (prior to EJB 3.0),
you may remember the painful process. Tedious configuration of mappings, transaction demarcation, and
much boilerplate code in each bean to manage its life cycle greatly reduced productivity when developing
enterprise Java applications.

Just like Spring was developed to embrace POJO-based development and declarative configuration
management rather than EJB’s heavy and clumsy setup, the developer community realized that a simpler,
lightweight, and POJO-based framework could ease the development of data access logic. Since then, many
libraries have appeared; they are generally referred to as ORM libraries. The main objectives of an ORM
library are to close the gap between the relational data structure in the relational database management
system (RDBMS) and the object-oriented (OO) model in Java so that developers can focus on programming
with the object model and at the same time easily perform actions related to persistence.

Out of the ORM libraries available in the open source community, Hibernate is one of the most
successful. Its features, such as a POJO-based approach, ease of development, and support of sophisticated
relationship definitions, have won the heart of the mainstream Java developer community.

Hibernate’s popularity has also influenced the JCP, which developed the Java Data Objects (JDO)
specification as one of the standard ORM technologies in Java EE. Starting from EJB 3.0, the EJB entity bean
was even replaced with the Java Persistence API (JPA). JPA has a lot of concepts that were influenced by
popular ORM libraries such as Hibernate, TopLink, and JDO. The relationship between Hibernate and JPA
is also very close. Gavin King, the founder of Hibernate, represented JBoss as one of the JCP expert group
members in defining the JPA specification. Starting from version 3.2, Hibernate provides an implementation
of JPA. That means when you develop applications with Hibernate, you can choose to use either Hibernate’s
own API or the JPA API with Hibernate as the persistence service provider.

Having offered a brief history of Hibernate, this chapter will cover how to use Spring with Hibernate
when developing data access logic. Hibernate is such an extensive ORM library that covering every aspect in
just one chapter is simply not possible, and numerous books are dedicated to discussing Hibernate.

This chapter covers the basic ideas and main use cases of Hibernate in Spring. In particular, we discuss
the following topics:

•	 Configuring the Hibernate SessionFactory: The core concept of Hibernate revolves
around the Session interface, which is managed by SessionFactory. We show you
how to configure Hibernate’s session factory to work in a Spring application.

•	 Major concepts of ORMs using Hibernate: We go through the major concepts of how
to use Hibernate to map a POJO to the underlying relational database structure.
Some commonly used relationships, including one-to-many and many-to-many, are
also discussed.

https://doi.org/10.1007/978-1-4842-2808-1_7

Chapter 7 ■ Using Hibernate in Spring

356

•	 Data operations: We present examples of how to perform data operations
(query, insert, update, delete) by using Hibernate in the Spring environment.
When working with Hibernate, its Session interface is the main interface that you
will interact with.

  When defining object-to-relational mappings, Hibernate supports two configuration styles. One is
configuring the mapping information in XML files, and the other is using Java annotations within the entity classes
(in the ORM or JPA world, a Java class that is mapped to the underlying relational database structure is called an
entity class). This chapter focuses on using the annotation approach for object-relational mapping. For the mapping
annotation, we use the JPA standards (for example, under the javax.persistence package) because they are
interchangeable with Hibernate’s own annotations and will help you with future migrations to a JPA environment.

Sample Data Model for Example Code
Figure 7-1 shows the data model used in this chapter.

As shown in this data model, two new tables were added, namely, INSTRUMENT and SINGER_INSTRUMENT
(the join table). SINGER_INSTRUMENT models the many-to-many relationships between the SINGER and
INSTRUMENT tables. A VERSION column was added to the SINGER and ALBUM tables for optimistic locking,
which will be discussed in detail later. In the examples in this chapter, we will use the embedded H2
database, so the database name is not required. Here are the scripts to create the tables needed for the
examples in this chapter:

CREATE TABLE SINGER (
 ID INT NOT NULL AUTO_INCREMENT
 , FIRST_NAME VARCHAR(60) NOT NULL
 , LAST_NAME VARCHAR(40) NOT NULL
 , BIRTH_DATE DATE

Figure 7-1.  Sample data model

Chapter 7 ■ Using Hibernate in Spring

357

 , VERSION INT NOT NULL DEFAULT 0
 , UNIQUE UQ_SINGER_1 (FIRST_NAME, LAST_NAME)
 , PRIMARY KEY (ID)
);

CREATE TABLE ALBUM (
 ID INT NOT NULL AUTO_INCREMENT
 , SINGER_ID INT NOT NULL
 , TITLE VARCHAR(100) NOT NULL
 , RELEASE_DATE DATE
 , VERSION INT NOT NULL DEFAULT 0
 , UNIQUE UQ_SINGER_ALBUM_1 (SINGER_ID, TITLE)
 , PRIMARY KEY (ID)
 , CONSTRAINT FK_ALBUM_SINGER FOREIGN KEY (SINGER_ID)
 REFERENCES SINGER (ID)
);

CREATE TABLE INSTRUMENT (
 INSTRUMENT_ID VARCHAR(20) NOT NULL
 , PRIMARY KEY (INSTRUMENT_ID)
);

CREATE TABLE SINGER_INSTRUMENT (
 SINGER_ID INT NOT NULL
 , INSTRUMENT_ID VARCHAR(20) NOT NULL
 , PRIMARY KEY (SINGER_ID, INSTRUMENT_ID)
 , CONSTRAINT FK_SINGER_INSTRUMENT_1 FOREIGN KEY (SINGER_ID)
 REFERENCES SINGER (ID) ON DELETE CASCADE
 , CONSTRAINT FK_SINGER_INSTRUMENT_2 FOREIGN KEY (INSTRUMENT_ID)
 REFERENCES INSTRUMENT (INSTRUMENT_ID)
);

The following SQL is the script for data population:

insert into singer (first_name, last_name, birth_date)
 values ('John', 'Mayer', '1977-10-16');
insert into singer (first_name, last_name, birth_date)
 values ('Eric', 'Clapton', '1945-03-30');
insert into singer (first_name, last_name, birth_date)
 values ('John', 'Butler', '1975-04-01');

insert into album (singer_id, title, release_date)
 values (1, 'The Search For Everything', '2017-01-20');
insert into album (singer_id, title, release_date)
 values (1, 'Battle Studies', '2009-11-17');
insert into album (singer_id, title, release_date)
 values (2, 'From The Cradle ', '1994-09-13');

insert into instrument (instrument_id) values ('Guitar');
insert into instrument (instrument_id) values ('Piano');
insert into instrument (instrument_id) values ('Voice');
insert into instrument (instrument_id) values ('Drums');
insert into instrument (instrument_id) values ('Synthesizer');

Chapter 7 ■ Using Hibernate in Spring

358

insert into singer_instrument(singer_id, instrument_id) values (1, 'Guitar');
insert into singer_instrument(singer_id, instrument_id) values (1, 'Piano');
insert into singer_instrument(singer_id, instrument_id) values (2, 'Guitar');

Configuring Hibernate’s SessionFactory
As mentioned earlier in this chapter, the core concept of Hibernate is based on the Session interface, which
is obtained from SessionFactory. Spring provides classes to support the configuration of Hibernate’s session
factory as a Spring bean with the desired properties. To use Hibernate, you must add the Hibernate dependency
as a dependency to the project. Here is the Gradle configuration used for the projects in this chapter:

//pro-spring-15/build.gradle
ext {
 hibernateVersion = '5.2.10.Final'
 ...
 hibernate = [
 validator: "org.hibernate:hibernate-validator:5.1.3.Final",
 ehcache : "org.hibernate:hibernate-ehcache:$hibernateVersion",
 [em] : "org.hibernate:hibernate-entitymanager:$hibernateVersion"
]
 ...
}
//chapter07.gradle
dependencies {
 //we specify these dependencies for all submodules,
 except the boot module, that defines its own
 if !project.name.contains"boot" {
 compile spring.contextSupport, spring.orm,
 misc.slf4jJcl, misc.logback, db.h2, misc.lang3, [hibernate.em]
 }
 testCompile testing.junit
}

In the following configuration, you can see the XML elements needed to configure the application
sample for this chapter:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd

Chapter 7 ■ Using Hibernate in Spring

359

 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:sql/schema.sql"/>
 <jdbc:script location="classpath:sql/test-data.sql"/>
 </jdbc:embedded-database>

 <bean id="transactionManager"
 class="org.springframework.orm.hibernate5.HibernateTransactionManager"
 p:sessionFactory-ref="sessionFactory"/>

 <tx:annotation-driven/>

 <context:component-scan base-package=
 "com.apress.prospring5.ch7"/>

 <bean id="sessionFactory"
 class="org.springframework.orm.hibernate5.LocalSessionFactoryBean"
 p:dataSource-ref="dataSource"
 p:packagesToScan="com.apress.prospring5.ch7.entities"
 p:hibernateProperties-ref="hibernateProperties"/>

 <util:properties id="hibernateProperties">
 <prop key="hibernate.dialect">org.hibernate.dialect.H2Dialect</prop>
 <prop key="hibernate.max_fetch_depth">3</prop>
 <prop key="hibernate.jdbc.fetch_size">50</prop>
 <prop key="hibernate.jdbc.batch_size">10</prop>
 <prop key="hibernate.hbm2ddl.auto">create-drop</prop>
 <prop key="hibernate.format_sql">true</prop>
 <prop key="hibernate.use_sql_comments">true</prop>
 </util:properties>
</beans>

The equivalent Java configuration class is depicted next, and the components for these two
configurations are explained in parallel after the code snippet:

package com.apress.prospring5.ch7.config;

import com.apress.prospring5.ch6.CleanUp;
import org.hibernate.SessionFactory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.hibernate5.HibernateTransactionManager;
import org.springframework.orm.hibernate5.LocalSessionFactoryBean;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

Chapter 7 ■ Using Hibernate in Spring

360

import javax.sql.DataSource;
import java.io.IOException;
import java.util.Properties;

@Configuration
@ComponentScan(basePackages =
 "com.apress.prospring5.ch7")
@EnableTransactionManagement
public class AppConfig {

 private static Logger logger =
 LoggerFactory.getLogger(AppConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder =
 new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:sql/schema.sql",
 "classpath:sql/test-data.sql").build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

 private Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.format_sql", true);
 hibernateProp.put("hibernate.use_sql_comments", true);
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean public SessionFactory sessionFactory()
 throws IOException {
 LocalSessionFactoryBean sessionFactoryBean = new LocalSessionFactoryBean();
 sessionFactoryBean.setDataSource(dataSource());
 sessionFactoryBean.setPackagesToScan("com.apress.prospring5.ch7.entities");
 sessionFactoryBean.setHibernateProperties(hibernateProperties());
 sessionFactoryBean.afterPropertiesSet();
 return sessionFactoryBean.getObject();
 }

 @Bean public PlatformTransactionManager transactionManager()
 throws IOException {
 return new HibernateTransactionManager(sessionFactory());
 }
}

Chapter 7 ■ Using Hibernate in Spring

361

In the previous configuration, several beans were declared to be able to support Hibernate’s session
factory. The main configurations are listed here:

•	 The dataSource bean: The database used is an H2 embedded one, declared as
previously explained in Chapter 6.

•	 The transactionManager bean: The Hibernate session factory requires a transaction
manager for transactional data access. Spring provides a transaction manager
specifically for Hibernate 5 declared in package org.springframework.orm.
hibernate5.HibernateTransactionManager. The bean was declared with the
ID transactionManager assigned. By default, when using XML configuration,
Spring will look up the bean with the name transactionManager within its
ApplicationContext whenever transaction management is required. Java
configuration is a little more flexible when the bean is being searched by its type,
not by its name. We discuss transactions in detail in Chapter 9. In addition, we
declare the tag <tx:annotation-driven> to support the declaration of transaction
demarcation requirements using annotations. The equivalent for the Java
configuration is the @EnableTransactionManagement annotation.

•	 Component scan: This tag and the @ComponentScan annotation should be familiar
to you. We instruct Spring to scan the components under the package com.apress.
prospring5.ch7 to detect the beans annotated with @Repository.

•	 Hibernate SessionFactory bean: The sessionFactory bean is the most important
part. Within the bean, several properties are provided. First, we need to inject the
dataSource bean into the session factory. Second, we instruct Hibernate to scan
for the domain objects under the package com.apress.prospring5.ch.entities.
Finally, the hibernateProperties property provides configuration details for
Hibernate. There are many configuration parameters, and we define only a few
important properties that should be provided for every application. Table 7-1 lists the
main configuration parameters for the Hibernate session factory.

http://dx.doi.org/10.1007/978-1-4842-2808-1_6
http://dx.doi.org/10.1007/978-1-4842-2808-1_9

Chapter 7 ■ Using Hibernate in Spring

362

For the full list of properties that Hibernate supports, please refer to Hibernate’s ORM user guide,
specifically, Section 23, at https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/
Hibernate_User_Guide.html.

ORM Mapping Using Hibernate Annotations
Having the configuration in place, the next step is to model the Java POJO entity classes and their mapping to
the underlying relational data structure.

There are two approaches to the mapping. The first one is to design the object model and then generate
the database scripts based on the object model. For example, for the session factory configuration, you can
pass in the Hibernate property hibernate.hbm2ddl.auto to have Hibernate automatically export the schema
DDL to the database. The second approach is to start with the data model and then model the POJOs with
the desired mappings. We prefer the latter approach because we can have more control over the data model,
which is useful in optimizing the performance of data access. But the first will be covered later in the chapter
to depict a different way of configuring a Spring application with Hibernate. Based on the data model,
Figure 7-2 shows the corresponding OO model with a class diagram.

Table 7-1.  Hibernate Properties

Property Description

hibernate.dialect Specifies the database dialect for the queries that Hibernate should
use. Hibernate supports the SQL dialects for many databases. Those
dialects are subclasses of org.hibernate.dialect.Dialect. Major
dialects include H2Dialect, Oracle10gDialect, PostgreSQLDialect,
MySQLDialect, SQLServerDialect, and so on.

hibernate.max_fetch_depth Declares the “depth” for outer joins when the mapping objects have
associations with other mapped objects. This setting prevents Hibernate
from fetching too much data with a lot of nested associations. A
commonly used value is 3.

hibernate.jdbc.fetch_size Specifies the number of records from the underlying JDBC ResultSet
that Hibernate should use to retrieve the records from the database for
each fetch. For example, a query was submitted to the database, and
ResultSet contains 500 records. If the fetch size is 50, Hibernate will
need to fetch 10 times to get all the data.

ibernate.jdbc.batch_size Instructs Hibernate on the number of update operations that should
be grouped together into a batch. This is useful for performing batch
job operations in Hibernate. Obviously, when we are doing a batch job
updating hundreds of thousands of records, we would like Hibernate to
group the queries in batches, rather than submit the updates one by one.

hibernate.show_sql Indicates whether Hibernate should output the SQL queries to the log
file or console. You should turn this on in a development environment,
which can greatly help in the testing and troubleshooting process.

hibernate.format_sql Indicates whether SQL output in the log or console should be formatted.

hibernate..use_sql_comments If set to true, Hibernate generates comments inside the SQL for easier
debugging.

https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html
https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html

Chapter 7 ■ Using Hibernate in Spring

363

You can see there is a one-to-many relationship between Singer and Album, while there’s a many-to-
many relationship between the Singer and Instrument objects.

Simple Mappings
First let’s start by mapping the simple attributes of the class. The following code snippet shows the Singer
class with the mapping annotations:

package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;
import java.util.HashSet;
import java.util.Set;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer")
public class Singer implements Serializable {

 private Long id;
 private String firstName;
 private String lastName;
 private Date birthDate;
 private int version;

 public void setId(Long id) {
 this.id = id;
 }

Figure 7-2.  Class diagram for the sample data model

Chapter 7 ■ Using Hibernate in Spring

364

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 public Long getId() {
 return this.id;
 }

 @Version
 @Column(name = "VERSION")
 public int getVersion() {
 return version;
 }

 @Column(name = "FIRST_NAME")
 public String getFirstName() {
 return this.firstName;
 }

 @Column(name = "LAST_NAME")
 public String getLastName() {
 return this.lastName;
 }

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 public Date getBirthDate() {
 return birthDate;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public void setBirthDate(Date birthDate) {
 this.birthDate = birthDate;
 }

 public void setVersion(int version) {
 this.version = version;
 }

 public String toString() {
 return "Singer - Id: " + id + ", First name: " + firstName
 + ", Last name: " + lastName + ", Birthday: " + birthDate;
 }
}

First we annotate the type with @Entity, which means that this is a mapped entity class. The @Table
annotation defines the table name in the database that this entity is being mapped to. For each mapped
attribute, you annotate it with the @Column annotation, with the column names provided.

Chapter 7 ■ Using Hibernate in Spring

365

 T able and column names can be skipped if the type and attribute names are the same as the table and
column names.

About the mappings, we would like to highlight a few points.

•	 For the birthDate attribute, we annotate it with @Temporal, using the
TemporalType.DATE value as an argument. This means we would like to map the
data type from the Java date type (java.util.Date) to the SQL date type
(java.sql.Date). This allows us to access the attribute birthDate in the Singer
object by using java.util.Date as usual in our application.

•	 For the id attribute, we annotate it with @Id. This means it’s the primary key of the
object. Hibernate will use it as the unique identifier when managing the contact
entity instances within its session. Additionally, the @GeneratedValue annotation
tells Hibernate how the id value was generated. The IDENTITY strategy means that
the id value was generated by the back end during insert.

•	 For the version attribute, we annotate it with @Version. This instructs Hibernate
that we would like to use an optimistic locking mechanism, using the version
attribute as a control. Every time Hibernate updates a record, it compares the
version of the entity instance to that of the record in the database. If both versions
are the same, it means that no one updated the data before, and Hibernate will
update the data and increment the version column. However, if the version is not
the same, it means that someone has updated the record before, and Hibernate
will throw a StaleObjectStateException exception, which Spring will translate to
HibernateOptimisticLockingFailureException. The example we used an integer
for version control. In addition to an integer, Hibernate supports using a timestamp.
However, using an integer for version control is recommended since Hibernate
will always increment the version number by 1 after each update. When using a
timestamp, Hibernate will update the latest timestamp after each update.
A timestamp is slightly less safe because two concurrent transactions may both load
and update the same item in the same millisecond.

Another mapped object is Album, as shown here:

package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "album")
public class Album implements Serializable {

 private Long id;
 private String title;
 private Date releaseDate;
 private int version;

Chapter 7 ■ Using Hibernate in Spring

366

 public void setId(Long id) {
 this.id = id;
 }

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 public Long getId() {
 return this.id;
 }

 @Version
 @Column(name = "VERSION")
 public int getVersion() {
 return version;
 }

 @Column
 public String getTitle() {
 return this.title;
 }

 @Temporal(TemporalType.DATE)
 @Column(name = "RELEASE_DATE")
 public Date getReleaseDate() {
 return this.releaseDate;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public void setReleaseDate(Date releaseDate) {
 this.releaseDate = releaseDate;
 }

 public void setVersion(int version) {
 this.version = version;
 }

 @Override
 public String toString() {
 return "Album - Id: " + id + ", Title: " +
 title + ", Release Date: " + releaseDate;
 }
}

Here is the third entity class used in the examples for this chapter:

package com.apress.prospring5.ch7.entities;

Chapter 7 ■ Using Hibernate in Spring

367

import javax.persistence.*;
import java.io.Serializable;
import java.util.HashSet;
import java.util.Set;

@Entity
@Table(name = "instrument")
public class Instrument implements Serializable {
 private String instrumentId;

 @Id
 @Column(name = "INSTRUMENT_ID")
 public String getInstrumentId() {
 return this.instrumentId;
 }

 public void setInstrumentId(String instrumentId) {
 this.instrumentId = instrumentId;
 }

 @Override
 public String toString() {
 return "Instrument :" + getInstrumentId();
 }
}

One-to-Many Mappings
Hibernate has the capability to model many kinds of associations. The most common associations are one-
to-many and many-to-many. Each Singer will have zero or more albums, so it’s a one-to-many association
(in ORM terms, the one-to-many association is used to model both zero-to-many and one-to-many
relationships within the data structure). The following code snippet depicts the properties and the methods
necessary to define the one-to-many relationship between the Singer and Album entities:

package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;
import java.util.HashSet;
import java.util.Set;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer")
public class Singer implements Serializable {

 private Long id;
 private String firstName;
 private String lastName;
 private Date birthDate;
 private int version;

Chapter 7 ■ Using Hibernate in Spring

368

 private Set<Album> albums = new HashSet<>();
 ...
 @OneToMany(mappedBy = "singer", cascade=CascadeType.ALL,
 orphanRemoval=true)

 public Set<Album> getAlbums() {
 return albums;
 }

 public boolean addAbum(Album album) {
 album.setSinger(this);
 return getAlbums().add(album);
 }

 public void removeAlbum(Album album) {
 getAlbums().remove(album);
 }

 public void setAlbums(Set<Album> albums) {
 this.albums = albums;
 }
 ...
}

The getter method of the attribute contactTelDetails is annotated with @OneToMany, which indicates
the one-to-many relationship with the Album class. Several attributes are passed to the annotation. The
mappedBy attribute indicates the property in the Album class that provides the association (that is, linked up
by the foreign-key definition in the FK_ALBUM_SINGER table). The cascade attribute means that the update
operation should “cascade” to the child. The orphanRemoval attribute means that after the albums have been
updated, those entries that no longer exist in the set should be deleted from the database. The following
code snippet shows the updated code in the Album class for the association mapping:

package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "album")
public class Album implements Serializable {

 private Long id;
 private String title;
 private Date releaseDate;
 private int version;

 private Singer singer;

Chapter 7 ■ Using Hibernate in Spring

369

 @ManyToOne
 @JoinColumn(name = "SINGER_ID")
 public Singer getSinger() {
 return this.singer;
 }

 public void setSinger(Singer singer) {
 this.singer = singer;
 }
 ...
}

We annotate the getter method of the singer attribute with @ManyToOne, which indicates it’s the other side
of the association from Singer. We also specify the @JoinColumn annotation for the underlying foreign-key
column name. Finally, the toString() method is overridden to facilitate testing by printing its output to the
console in the example code later.

Many-to-Many Mappings
Every singer can play zero or more instruments, and each instrument is also associated with zero or more
singers, which means it’s a many-to-many mapping. A many-to-many mapping requires a join table, which
is SINGER_INSTRUMENT. The following code sample shows the code that needs to be added to the Singer class
to implement this relationship:

package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;
import java.util.HashSet;
import java.util.Set;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer")
public class Singer implements Serializable {

 private Long id;
 private String firstName;
 private String lastName;
 private Date birthDate;
 private int version;

 private Set<Instrument> instruments = new HashSet<>();

 @ManyToMany
 @JoinTable(name = "singer_instrument",
 joinColumns = @JoinColumn(name = "SINGER_ID"),
 inverseJoinColumns = @JoinColumn(name = "INSTRUMENT_ID"))
 public Set<Instrument> getInstruments() {
 return instruments;
 }

Chapter 7 ■ Using Hibernate in Spring

370

 public void setInstruments(Set<Instrument> instruments) {
 this.instruments = instruments;
 }
 ...
}

The getter method of the attribute instruments in the Singer class is annotated with @ManyToMany.
We also provide @JoinTable to indicate the underlying join table that Hibernate should look for. The name
is the join table’s name, joinColumns defines the column that is the foreign key to the SINGER table, and
inverseJoinColumns defines the column that is the foreign key to the other side of the association (that is,
the INSTRUMENT table). The following is the Instrument class with the code to implement the other side of
this relationship added:

package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.HashSet;
import java.util.Set;

@Entity
@Table(name = "instrument")
public class Instrument implements Serializable {
 private String instrumentId;
 private Set<Singer> singers = new HashSet<>();

 @Id
 @Column(name = "INSTRUMENT_ID")
 public String getInstrumentId() {
 return this.instrumentId;
 }

 @ManyToMany
 @JoinTable(name = "singer_instrument",
 joinColumns = @JoinColumn(name = "INSTRUMENT_ID"),
 inverseJoinColumns = @JoinColumn(name = "SINGER_ID"))
 public Set<Singer> getSingers() {
 return this.singers;
 }

 public void setSingers(Set<Singer> singers) {
 this.singers = singers;
 }

 public void setInstrumentId(String instrumentId) {
 this.instrumentId = instrumentId;
 }

 @Override
 public String toString() {
 return "Instrument :" + getInstrumentId();
 }
}

Chapter 7 ■ Using Hibernate in Spring

371

The mapping is more or less the same as the one for Singer, but the joinColumns and
inverseJoinColumns attributes are reversed to reflect the association.

The Hibernate Session Interface
In Hibernate, when interacting with the database, the main interface you need to deal with is the Session
interface, which is obtained from SessionFactory.

The following code snippet shows the SingerDaoImpl class used in the samples in this chapter and has
the configured Hibernate SessionFactory injected into the class:

package com.apress.prospring5.ch7.dao;

import com.apress.prospring5.ch7.entities.Singer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.hibernate.SessionFactory;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.Resource;
import java.util.List;

@Transactional
@Repository("singerDao")
public class SingerDaoImpl implements SingerDao {

 private SessionFactory sessionFactory;

 public SessionFactory getSessionFactory() {
 return sessionFactory;
 }

 @Resource(name = "sessionFactory")
 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
 ...
}

As usual, we declare the DAO class as a Spring bean by using the @Repository annotation.
The @Transactional annotation defines the transaction requirements that we discuss further in
Chapter 9. The sessionFactory attribute is injected by using the @Resource annotation.

package com.apress.prospring5.ch7.dao;

import com.apress.prospring5.ch7.entities.Singer;

import java.util.List;

public interface SingerDao {

http://dx.doi.org/10.1007/978-1-4842-2808-1_9

Chapter 7 ■ Using Hibernate in Spring

372

 List<Singer> findAll();
 List<Singer> findAllWithAlbum();
 Singer findById(Long id);
 Singer save(Singer contact);
 void delete(Singer contact);
}

The interface is simple; it has just three finder methods, one save method, and one delete method. The
save() method will perform both the insert and update operations.

Querying Data by Using the Hibernate Query Language
Hibernate, together with other ORM tools such as JDO and JPA, is engineered around the object model. So,
after the mappings are defined, we don’t need to construct SQL to interact with the database. Instead, for
Hibernate, we use the Hibernate Query Language (HQL) to define our queries. When interacting with the
database, Hibernate will translate the queries into SQL statements on our behalf.

When coding HQL queries, the syntax is quite like SQL. However, you need to think on the object side
rather than database side. We will take you through several examples in the following sections.

Simple Querying with Lazy Fetching
Let’s begin by implementing the findAll() method, which simply retrieves all the contacts from the
database. The following code sample shows the updated code for this functionality:

package com.apress.prospring5.ch7.dao;

import com.apress.prospring5.ch7.entities.Singer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.hibernate.SessionFactory;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.Resource;
import java.util.List;

@Transactional
@Repository("singerDao")
public class SingerDaoImpl implements SingerDao {

 private static final Log logger = LogFactory.getLog(SingerDaoImpl.class);
 private SessionFactory sessionFactory;

 @Transactional(readOnly = true)
 public List<Singer> findAll() {
 return sessionFactory.getCurrentSession()
 .createQuery("from Singer s").list();
 }
 ...
}

Chapter 7 ■ Using Hibernate in Spring

373

The method SessionFactory.getCurrentSession() gets hold of Hibernate’s Session interface. Then,
the Session.createQuery() method is called, passing in the HQL statement. The statement from Singer
s simply retrieves all contacts from the database. An alternative syntax for the statement is select s from
Singer s. The @Transactional(readOnly=true) annotation means we want the transaction to be set as
read-only. Setting that attribute for read-only methods will result in better performance.

The following code snippet shows a simple testing program for SingerDaoImpl:

package com.apress.prospring5.ch7;

import com.apress.prospring5.ch7.config.AppConfig;
import com.apress.prospring5.ch7.dao.SingerDao;
import com.apress.prospring5.ch7.entities.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

public class SpringHibernateDemo {

 private static Logger logger =
 LoggerFactory.getLogger(SpringHibernateDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 SingerDao singerDao = ctx.getBean(SingerDao.class);
 singerDao.delete(singer);
 listSingers(singerDao.findAll());

 ctx.close();
 }

 private static void listSingers(List<Singer> singers) {
 logger.info(" ---- Listing singers:");
 for (Singer singer : singers) {
 logger.info(singer.toString());
 }
 }
}

Running the previous class yields the following output:

---- Listing singers:
Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30

Chapter 7 ■ Using Hibernate in Spring

374

Although the singer records were retrieved, what about the albums and instruments? Let’s modify
the testing class to print the details information. In the following code snippet, you can see the method
listSingers() being replaced with listSingersWithAlbum():

package com.apress.prospring5.ch7;

import com.apress.prospring5.ch7.config.AppConfig;
import com.apress.prospring5.ch7.dao.SingerDao;
import com.apress.prospring5.ch7.entities.Album;
import com.apress.prospring5.ch7.entities.Instrument;
import com.apress.prospring5.ch7.entities.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

public class SpringHibernateDemo {

 private static Logger logger =
 LoggerFactory.getLogger(SpringHibernateDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 SingerDao singerDao = ctx.getBean(SingerDao.class);
 Singer singer = singerDao.findById(2l);
 singerDao.delete(singer);
 listSingersWithAlbum(singerDao.findAllWithAlbum());

 ctx.close();
 }

 private static void listSingersWithAlbum(List<Singer> singers) {
 logger.info(" ---- Listing singers with instruments:");
 for (Singer singer : singers) {
 logger.info(singer.toString());
 if (singer.getAlbums() != null) {
 for (Album album :
 singer.getAlbums()) {
 logger.info("\t" + album.toString());
 }
 }
 if (singer.getInstruments() != null) {
 for (Instrument instrument : singer.getInstruments()) {
 logger.info("\t" + instrument.getInstrumentId());
 }
 }
 }
 }
}

Chapter 7 ■ Using Hibernate in Spring

375

If you run the program again, you will see the following exception:

---- Listing singers with instruments:
Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
org.hibernate.LazyInitializationException: failed to lazily initialize a
 collection of role: com.apress.prospring5.ch7.entities.Singer.albums,
 could not initialize proxy - no Session

You will see Hibernate throw the LazyInitializationException when you try to access the
associations.

This is because, by default, Hibernate will fetch the associations lazily, which means that Hibernate
will not join the association tables (that is, ALBUM) for records. The rationale behind this is for performance;
as you can imagine, if a query is retrieving thousands of records and all the associations are retrieved, the
massive amount of data transfer will degrade performance.

Querying with Associations Fetching
To have Hibernate fetch the data from associations, there are two options. First, you can define the
association with the fetch mode EAGER, for example, @ManyToMany(fetch=FetchType.EAGER). This tells
Hibernate to fetch the associated records in every query. However, as discussed, this will impact data
retrieval performance.

The other option is to force Hibernate to fetch the associated records in the query when required. If you
use the Criteria query, you can call the function Criteria.setFetchMode() to instruct Hibernate to eagerly
fetch the association. When using NamedQuery, you can use the fetch operator to instruct Hibernate to fetch
the association eagerly.

Let’s take a look at the implementation of the findAllWithAlbum() method, which will retrieve all
contact information together with their telephone details and hobbies. This example will use the NamedQuery
approach. NamedQuery can be externalized into an XML file or declared using an annotation on the entity
class. Here you can see the revised Singer domain object with the named query defined using annotations:

package com.apress.prospring5.ch7.entities;

import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
...

@Entity
@Table(name = "singer")
@NamedQueries({
 @NamedQuery(name="Singer.findAllWithAlbum",
 query="select distinct s from Singer s " +
 "left join fetch s.albums a " +
 "left join fetch s.instruments i")
})
public class Singer implements Serializable {
 ...
}

Chapter 7 ■ Using Hibernate in Spring

376

First you define a NamedQuery instance called Singer.findAllWithAlbum. Then we define the query
in HQL. Pay attention to the left join fetch clause, which instructs Hibernate to fetch the association
eagerly. You also need to use select distinct; otherwise, Hibernate will return duplicate objects (two
singer objects will be returned if a single singer has two albums associated with him).

Here is the implementation of the findAllWithAlbum() method:

package com.apress.prospring5.ch7.dao;
...

@Transactional
@Repository("singerDao")
public class SingerDaoImpl implements SingerDao {
 @Transactional(readOnly = true)
 public List<Singer> findAllWithAlbum() {
 return sessionFactory.getCurrentSession().
 getNamedQuery("Singer.findAllWithAlbum").list();
 }
}

This time we use the Session.getNamedQuery() method, passing in the name of the NamedQuery
instance. Modifying the testing program (SpringHibernateDemo) to call singerDao.findAllWithAlbum()
will yield the following output:

---- Listing singers with instruments:
Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
 Album - Id: 2, Singer id: 1, Title: Battle Studies, Release Date: 2009-11-17
 Album - Id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
 Instrument: Guitar
 Instrument: Piano
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
 Album - Id: 3, Singer id: 2, Title: From The Cradle , Release Date: 1994-09-13
 Instrument: Guitar

Now all the singers with details were retrieved correctly. Let’s see another example with NamedQuery
with parameters. This time, we will implement the findById() method and would like to fetch the
associations as well. The following code snippet shows the Singer class with the new named query added:

package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;
import java.util.HashSet;
import java.util.Set;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer")

Chapter 7 ■ Using Hibernate in Spring

377

@NamedQueries({
 @NamedQuery(name="Singer.findById",
 query="select distinct s from Singer s " +
 "left join fetch s.albums a " +
 "left join fetch s.instruments i " +
 "where s.id = :id"),
 @NamedQuery(name="Singer.findAllWithAlbum",
 query="select distinct s from Singer s " +
 "left join fetch s.albums a " +
 "left join fetch s.instruments i")
})
public class Singer implements Serializable {
 ...
}

From the named query with the name Singer.findById, we declare a named parameter: id. Here you
can see the implementation of the findById() method in SingerDaoImpl:

package com.apress.prospring5.ch7.dao;

import com.apress.prospring5.ch7.entities.Singer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.hibernate.SessionFactory;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.Resource;
import java.util.List;

@Transactional
@Repository("singerDao")
public class SingerDaoImpl implements SingerDao {

 private static final Log logger = LogFactory.getLog(SingerDaoImpl.class);
 private SessionFactory sessionFactory;

 @Transactional(readOnly = true)
 public Singer findById(Long id) {
 return (Singer) sessionFactory.getCurrentSession().
 getNamedQuery("Singer.findById").
 setParameter("id", id).uniqueResult();
 }
 ...
}

In this listing, we use the same Session.getNameQuery() method. But then we also call the
setParameter() method, passing in the named parameter with its value. For multiple parameters, you can
use the setParameterList() or setParameters() method of the Query interface.

Chapter 7 ■ Using Hibernate in Spring

378

There are also some more advanced query methods, such as native query and criteria query, which we
discuss in the next chapter when we talk about JPA. To test the method, the SpringHibernateDemo class must
be modified accordingly.

package com.apress.prospring5.ch7;
...

public class SpringHibernateDemo {

 private static Logger logger =
 LoggerFactory.getLogger(SpringHibernateDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);
 SingerDao singerDao = ctx.getBean(SingerDao.class);
 Singer singer = singerDao.findById(2l);
 logger.info(singer.toString());

 ctx.close();
 }
}

Running the program produces the following output:

Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16

Inserting Data
Inserting data with Hibernate is simple. One other fancy thing is retrieving the database-generated
primary key. In the previous chapter on JDBC, we needed to explicitly declare that we wanted to retrieve
the generated key, pass in the KeyHolder instance, and get the key back from it after executing the insert
statement. With Hibernate, all those actions are not required. Hibernate will retrieve the generated
key and populate the domain object after the insert operation. The following code snippet shows the
implementation of the save() method:

package com.apress.prospring5.ch7.dao;

import com.apress.prospring5.ch7.entities.Singer;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.hibernate.SessionFactory;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import javax.annotation.Resource;
import java.util.List;

@Transactional
@Repository("singerDao")
public class SingerDaoImpl implements SingerDao {

Chapter 7 ■ Using Hibernate in Spring

379

 private static final Log logger = LogFactory.getLog(SingerDaoImpl.class);
 private SessionFactory sessionFactory;

 public Singer save(Singer singer) {
 sessionFactory.getCurrentSession().saveOrUpdate(singer);
 logger.info("Singer saved with id: " + singer.getId());
 return singer;
 }
 ...
}

We just need to invoke the Session.saveOrUpdate() method, which can be used for both insert and update
operations. We also log the ID of the saved singer object that will be populated by Hibernate after the object is
persisted. The following code snippet shows the code for inserting a new singer record in the SINGER table with
two child records in the ALBUM table and testing that the insertion succeeded. Also, because now we are modifying
the contents of the tables, a JUnit class is more suitable to test each operation in isolation.

package com.apress.prospring5.ch7;

import com.apress.prospring5.ch7.config.AppConfig;
import com.apress.prospring5.ch7.dao.SingerDao;
import com.apress.prospring5.ch7.entities.Album;
import com.apress.prospring5.ch7.entities.Instrument;
import com.apress.prospring5.ch7.entities.Singer;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.Date;
import java.util.GregorianCalendar;
import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

public class SingerDaoTest {
 private static Logger logger =
 LoggerFactory.getLogger(SingerDaoTest.class);

 private GenericApplicationContext ctx;
 private SingerDao singerDao;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(AppConfig.class);
 singerDao = ctx.getBean(SingerDao.class);
 assertNotNull(singerDao);
 }

Chapter 7 ■ Using Hibernate in Spring

380

 @Test
 public void testInsert(){
 Singer singer = new Singer();
 singer.setFirstName("BB");
 singer.setLastName("King");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1940, 8, 16)).getTime().getTime()));

 Album album = new Album();
 album.setTitle("My Kind of Blues");
 album.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(1961, 7, 18)).getTime().getTime()));
 singer.addAbum(album);

 album = new Album();
 album.setTitle("A Heart Full of Blues");
 album.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(1962, 3, 20)).getTime().getTime()));
 singer.addAbum(album);

 singerDao.save(singer);
 assertNotNull(singer.getId());

 List<Singer> singers = singerDao.findAllWithAlbum();
 assertEquals(4, singers.size());
 listSingersWithAlbum(singers);
 }

 @Test
 public void testFindAll(){
 List<Singer> singers = singerDao.findAll();
 assertEquals(3, singers.size());
 listSingers(singers);
 }

 @Test
 public void testFindAllWithAlbum(){
 List<Singer> singers = singerDao.findAllWithAlbum();
 assertEquals(3, singers.size());
 listSingersWithAlbum(singers);
 }

 @Test
 public void testFindByID(){
 Singer singer = singerDao.findById(1L);
 assertNotNull(singer);
 logger.info(singer.toString());
 }

 private static void listSingers(List<Singer> singers) {
 logger.info(" ---- Listing singers:");
 for (Singer singer : singers) {
 logger.info(singer.toString());
 }
 }

Chapter 7 ■ Using Hibernate in Spring

381

 private static void listSingersWithAlbum(List<Singer> singers) {
 logger.info(" ---- Listing singers with instruments:");
 for (Singer singer : singers) {
 logger.info(singer.toString());
 if (singer.getAlbums() != null) {
 for (Album album :
 singer.getAlbums()) {
 logger.info("\t" + album.toString());
 }
 }
 if (singer.getInstruments() != null) {
 for (Instrument instrument : singer.getInstruments()) {
 logger.info("\tInstrument: " + instrument.getInstrumentId());
 }
 }
 }
 }

 @After
 public void tearDown(){
 ctx.close();
 }
}

As shown in the previous code, in the testInsert() method, we add two albums, and save the object.
Afterward, we list all the singers again by calling listSingersWithAlbum. Running the testInsert() method
yields the following output:

...
INFO o.h.d.Dialect - HHH000400:
 Using dialect: org.hibernate.dialect.H2Dialect
INFO o.h.h.i.QueryTranslatorFactoryInitiator - HHH000397:
 Using ASTQueryTranslatorFactory
Hibernate:
 /* insert com.apress.prospring5.ch7.entities.Singer
 */ insert
 into
 singer
 (ID, BIRTH_DATE, FIRST_NAME, LAST_NAME, VERSION)
 values
 (null, ?, ?, ?, ?)
Hibernate:
 /* insert com.apress.prospring5.ch7.entities.Album
 */ insert
 into
 album
 (ID, RELEASE_DATE, SINGER_ID, title, VERSION)
 values
 (null, ?, ?, ?, ?)

Chapter 7 ■ Using Hibernate in Spring

382

Hibernate:
 /* insert com.apress.prospring5.ch7.entities.Album
 */ insert
 into
 album
 (ID, RELEASE_DATE, SINGER_ID, title, VERSION)
 values
 (null, ?, ?, ?, ?)
INFO c.a.p.c.d.SingerDaoImpl - Singer saved with id: 4
...
INFO - ---- Listing singers with instruments:
INFO - Singer - Id: 4, First name: BB, Last name: King,
 Birthday: 1940-09-16
INFO - Album - Id: 5, Singer id: 4, Title: A Heart Full of Blues,
 Release Date: 1962-04-20
INFO - Album - Id: 4, Singer id: 4, Title: My Kind of Blues,
 Release Date: 1961-08-18
INFO - Singer - Id: 1, First name: John, Last name: Mayer,
Birthday: 1977-10-16
INFO - Album - Id: 2, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-17
INFO - Album - Id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
INFO - Instrument: Piano
INFO - Instrument: Guitar
INFO - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-04-01
INFO - Singer - Id: 2, First name: Eric, Last name: Clapton,
 Birthday: 1945-03-30
INFO - Album - Id: 3, Singer id: 2, Title: From The Cradle ,
 Release Date: 1994-09-13
INFO - Instrument: Guitar

The logging configuration has been modified so that more detailed Hibernate information is printed.
From the INFO log record, we can see that the ID of the newly saved contact was populated correctly.
Hibernate will also show all the SQL statements being executed against the database so you know what is
happening behind the scenes.

Updating Data
Updating a record is as easy as inserting data. Suppose for the singer with an ID of 1 we want to update
the first name and remove one album. To test the update operation, the following code snippet shows the
testUpdate() method:

package com.apress.prospring5.ch7;
...
public class SingerDaoTest {

 private GenericApplicationContext ctx;
 private SingerDao singerDao;
 ...

Chapter 7 ■ Using Hibernate in Spring

383

 @Test
 public void testUpdate(){
 Singer singer = singerDao.findById(1L);
 //making sure such singer exists
 assertNotNull(singer);

 //making sure we got expected singer
 assertEquals("Mayer", singer.getLastName());

 //retrieve the album
 Album album = singer.getAlbums().stream().filter(
 a -> a.getTitle().equals("Battle Studies")).findFirst().get();

 singer.setFirstName("John Clayton");
 singer.removeAlbum(album);
 singerDao.save(singer);

 // test the update
 listSingersWithAlbum(singerDao.findAllWithAlbum());
 }
 ...
}

As shown in the previous code sample, we first retrieve the record with an ID of 1. Afterward, the first
name is changed. We then loop through the album objects, retrieve the one with the title Battle Studies, and
remove it from the singer’s albums property. Finally, we call the singerDao.save() method again. When you
run the program, you will see the following output:

INFO o.h.h.i.QueryTranslatorFactoryInitiator - HHH000397:
 Using ASTQueryTranslatorFactory
...
INFO - Singer saved with id: 1
Hibernate:
 /* update
 com.apress.prospring5.ch7.entities.Album */ update
 album
 set
 RELEASE_DATE=?,
 SINGER_ID=?,
 title=?,
 VERSION=?
 where
 ID=?
 and VERSION=?
Hibernate:
 /* delete com.apress.prospring5.ch7.entities.Album */ delete
 from
 album
 where
 ID=?
 and VERSION=?

Chapter 7 ■ Using Hibernate in Spring

384

INFO ----- Listing singers with instruments:
INFO - Singer - Id: 1, First name: John Clayton, Last name: Mayer,
 Birthday: 1977-10-16
INFO - Album - Id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
INFO - Instrument: Guitar
INFO - Instrument: Piano
INFO - Singer - Id: 2, First name: Eric, Last name: Clapton,
 Birthday: 1945-03-30
INFO - Album - Id: 3, Singer id: 2, Title: From The Cradle ,
 Release Date: 1994-09-13
INFO - Instrument: Guitar
INFO - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-04-01

You will see the first name is updated, and the Battle Studies album is removed. The album can be
removed because of the orphanRemoval=true attribute we pass into the one-to-many association, which
instructs Hibernate to remove all orphan records that exist in the database but are no longer found in the
object when persisted.

Deleting Data
Deleting data is simple as well. Just call the Session.delete() method and pass in the contact object. The
following code snippet shows the code for deletion:

package com.apress.prospring5.ch7.dao;
...
@Transactional
@Repository("singerDao")
public class SingerDaoImpl implements SingerDao {

 private static final Log logger =
 LogFactory.getLog(SingerDaoImpl.class);
 private SessionFactory sessionFactory;

 public void delete(Singer singer) {
 sessionFactory.getCurrentSession().delete(singer);
 logger.info("Singer deleted with id: " + singer.getId());
 }
 ...
}

The delete operation will delete the singer record, together with all its associated information, including
albums and instruments, as we defined cascade=CascadeType.ALL in the mapping. The following code
snippet shows the code for testing the delete method, testDelete():

package com.apress.prospring5.ch7;
...
public class SingerDaoTest {
 private static Logger logger =
 LoggerFactory.getLogger(SingerDaoTest.class);

Chapter 7 ■ Using Hibernate in Spring

385

 private GenericApplicationContext ctx;
 private SingerDao singerDao;

 @Test
 public void testDelete(){
 Singer singer = singerDao.findById(2l);
 //making sure such singer exists
 assertNotNull(singer);
 singerDao.delete(singer);

 listSingersWithAlbum(singerDao.findAllWithAlbum());
 }
}

The previous listing retrieves the singer with an ID of 2 and then calls the delete method to delete the
singer information. Running the program will produce the following output:

INFO o.h.h.i.QueryTranslatorFactoryInitiator - HHH000397:
 Using ASTQueryTranslatorFactory
...
INFO c.a.p.c.d.SingerDaoImpl - Singer deleted with id: 2
Hibernate:
 /* delete collection com.apress.prospring5.ch7.entities.
 Singer.instruments */ delete
 from
 singer_instrument
 where
 SINGER_ID=?
Hibernate:
 /* delete com.apress.prospring5.ch7.entities.Album */ delete
 from
 album
 where
 ID=?
 and VERSION=?
Hibernate:
 /* delete com.apress.prospring5.ch7.entities.Singer */ delete
 from
 singer
 where
 ID=?
 and VERSION=?
INFO - ---- Listing singers with instruments:
INFO - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-16
INFO - Album - Id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
INFO - Album - Id: 2, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-17
INFO - Instrument: Piano
INFO - Instrument: Guitar
INFO - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-04-01

Chapter 7 ■ Using Hibernate in Spring

386

You can see that the singer with an ID of 2 was deleted together with its child records in the ALBUM and
SINGER_INSTRUMENT tables.

Configuring Hibernate to Generate Tables from Entities
In startup applications using Hibernate, it is common behavior to first write the entity classes and then
generate the database tables based on their contents. This is done by using the hibernate.hbm2ddl.auto
Hibernate property. When the application is started the first time, this property value is set to create; this
will make Hibernate scan the entities and generate tables and keys (primary, foreign, unique) according to
the relationships defined using JPA and Hibernate annotations.

If the entities are configured correctly and the resulting database objects are exactly as expected, the value
of the property should be changed to update. This will tell Hibernate to update the existing database with any
changes performed later on entities and keep the original database and any data that has been inserted into it.

In production applications, it is practical to write unit and integration tests that run on a pseudo-
database that is discarded after all test cases are executed. Usually the test database is an in-memory
database and Hibernate is told to create the database and discard it after the execution of the tests by setting
the hibernate.hbm2ddl.auto value to create-drop.

You can find the full list of values for the hibernate.hbm2ddl.auto property in the Hibernate official
documentation.1

The following code snippet shows the Java configuration AdvancedConfig class. As you can see,
hibernate.hbm2ddl.auto is introduced, and the data source used is a DBCP pooled data source.

package com.apress.prospring5.ch7.config;

import com.apress.prospring5.ch6.CleanUp;
import org.apache.commons.dbcp2.BasicDataSource;
import org.hibernate.SessionFactory;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.context.support.PropertySourcesPlaceholderConfigurer;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.orm.hibernate5.HibernateTransactionManager;
import org.springframework.orm.hibernate5.LocalSessionFactoryBuilder;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.sql.DataSource;
import java.io.IOException;
import java.util.Properties;

@Configuration
@ComponentScan(basePackages = "com.apress.prospring5.ch7")
@EnableTransactionManagement
@PropertySource("classpath:db/jdbc.properties")
public class AdvancedConfig {

1See Table 3.7 at https://docs.jboss.org/hibernate/orm/5.0/manual/en-US/html/ch03.html.

https://docs.jboss.org/hibernate/orm/5.0/manual/en-US/html/ch03.html

Chapter 7 ■ Using Hibernate in Spring

387

 private static Logger logger =
 LoggerFactory.getLogger(AdvancedConfig.class);

 @Value("${driverClassName}")
 private String driverClassName;
 @Value("${url}")
 private String url;
 @Value("${username}")
 private String username;
 @Value("${password}")
 private String password;

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Bean(destroyMethod = "close")
 public DataSource dataSource() {
 try {
 BasicDataSource dataSource = new BasicDataSource();
 dataSource.setDriverClassName(driverClassName);
 dataSource.setUrl(url);
 dataSource.setUsername(username);
 dataSource.setPassword(password);
 return dataSource;
 } catch (Exception e) {
 logger.error("DBCP DataSource bean cannot be created!", e);
 return null;
 }
 }

 private Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 hibernateProp.put("hibernate.format_sql", true);
 hibernateProp.put("hibernate.use_sql_comments", true);
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public SessionFactory sessionFactory() {
 return new LocalSessionFactoryBuilder(dataSource())
 .scanPackages("com.apress.prospring5.ch7.entities")
 .addProperties(hibernateProperties())
 .buildSessionFactory();
 }

Chapter 7 ■ Using Hibernate in Spring

388

 @Bean public PlatformTransactionManager transactionManager()
 throws IOException {
 return new HibernateTransactionManager(sessionFactory());
 }
}

The jdbc.properties file contains the properties necessary to access an in-memory database.

driverClassName=org.h2.Driver
url=jdbc:h2:musicdb
username=prospring5
password=prospring5

But in this case how do we initially populate the data? You can use a DatabasePopulator instance, a
library like DbUnit,2 or a custom populator bean similar to the DbIntializer bean, as shown here:

package com.apress.prospring5.ch7.config;

import com.apress.prospring5.ch7.dao.InstrumentDao;
import com.apress.prospring5.ch7.dao.SingerDao;
import com.apress.prospring5.ch7.entities.Album;
import com.apress.prospring5.ch7.entities.Instrument;
import com.apress.prospring5.ch7.entities.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import javax.annotation.PostConstruct;
import java.util.Date;
import java.util.GregorianCalendar;

@Service
public class DBInitializer {
 private Logger logger =
 LoggerFactory.getLogger(DBInitializer.class);

 @Autowired SingerDao singerDao;
 @Autowired InstrumentDao instrumentDao;

 @PostConstruct
 public void initDB(){
 logger.info("Starting database initialization...");

 Instrument guitar = new Instrument();
 guitar.setInstrumentId("Guitar");
 instrumentDao.save(guitar);
 ...

2We will find the official DbUnit site at http://dbunit.sourceforge.net/.

http://dbunit.sourceforge.net/

Chapter 7 ■ Using Hibernate in Spring

389

 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()));
 singer.addInstrument(guitar);
 singer.addInstrument(piano);

 Album album1 = new Album();
 album1.setTitle("The Search For Everything");
 album1.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(2017, 0, 20)).getTime().getTime()));
 singer.addAbum(album1);

 Album album2 = new Album();
 album2.setTitle("Battle Studies");
 album2.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(2009, 10, 17)).getTime().getTime()));
 singer.addAbum(album2);

 singerDao.save(singer);
 ...
 logger.info("Database initialization finished.");
 }
}

DbIntializer is just a simple bean, in which the repositories get injected as dependencies and that
has an initialization method defined by the annotation @PostConstruct in which objects are created
and persisted to the database. The bean was annotated with the @Service annotation to mark it as a
bean providing the service of initializing the contents of a database. This bean will be created when
ApplicationContext is created, and the initialization method will be executed, which will ensure the
database will be populated before the context is used.

Using the AdvancedConfig configuration class, the same sets of tests run previously will pass.

Annotating Methods or Fields?
In the previous example, the entities had JPA annotations on their getters. But JPA annotations can be used
directly on the fields, which has a few advantages.

•	 Entity configuration is clearer and located in the fields section, instead of being
scattered in the whole class content. This is obviously true only if the code was
written following clean code recommendations to keep all field declarations in a
class in the same continuous section.

•	 Annotating entity fields does not enforce providing setter/getters. This is useful
for the @Version annotated field, which should never be modified manually; only
Hibernate should have access to it.

•	 Annotating fields allows to do extra processing in setters (for example, encrypting/
calculating the value after loading it from the database). The problem with the
property access is that the setters are also called when the object is loaded.

Chapter 7 ■ Using Hibernate in Spring

390

There are a lot of discussions on the Internet over which one is better. From a performance point of view,
there isn’t any difference. The decision is eventually up to the developer because there might be some valid
cases when annotating accessors makes more sense. But keep in mind in the database the state of the objects
is actually saved, and the state of the object is defined by the values of its fields, not the values returned by
accessors. This also means that an object can be accurately re-created from the database exactly the way it
was persisted. So, in a way, setting the annotations on the getters can be seen as breaking encapsulation.

Here you can see the Singer entity class that was rewritten to have annotated fields and that extends the
abstract class AbstractEntity, which contains the two fields common to all Hibernate entity classes in an
application:

// AbstractEntity.java
package com.apress.prospring5.ch7.entities;

import javax.persistence.*;
import java.io.Serializable;

@MappedSuperclass
public abstract class AbstractEntity implements Serializable {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(updatable = false)
 protected Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }
}

//Singer.java
@Entity
@Table(name = "singer")
@NamedQueries({
 @NamedQuery(name=Singer.FIND_SINGER_BY_ID,
 query="select distinct s from Singer s " +
 "left join fetch s.albums a " +
 "left join fetch s.instruments i " +
 "where s.id = :id"),
 @NamedQuery(name=Singer.FIND_ALL_WITH_ALBUM,
 query="select distinct s from Singer s " +
 "left join fetch s.albums a " +
 "left join fetch s.instruments i")
})

Chapter 7 ■ Using Hibernate in Spring

391

public class Singer extends AbstractEntity {

 public static final String FIND_SINGER_BY_ID = "Singer.findById";
 public static final String FIND_ALL_WITH_ALBUM = "Singer.findAllWithAlbum";

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

 @OneToMany(mappedBy = "singer", cascade=CascadeType.ALL,
 orphanRemoval=true)
 private Set<Album> albums = new HashSet<>();

 @ManyToMany

 @JoinTable(name = "singer_instrument",
 joinColumns = @JoinColumn(name = "SINGER_ID"),
 inverseJoinColumns = @JoinColumn(name = "INSTRUMENT_ID"))
 private Set<Instrument> instruments = new HashSet<>();
 ...
}

Considerations When Using Hibernate
As shown in the examples of this chapter, once all the object-to-relational mapping, associations, and
queries are properly defined, Hibernate can provide an environment for you to focus on programming
with the object model, rather than composing SQL statements for each operation. In the past few years,
Hibernate has been evolving quickly and has been widely adopted by Java developers as the data access
layer library, both in the open source community and in enterprises.

However, there are some points you need to bear in mind. First, because you don’t have control over
the generated SQL, you should be careful when defining the mappings, especially the associations and their
fetching strategy. Second, you should observe the SQL statements generated by Hibernate to verify that all
perform as you expect.

Understanding the internal mechanism of how Hibernate manages its session is also important,
especially in batch job operations. Hibernate will keep the managed objects in session and will flush
and clear them regularly. Poorly designed data access logic may cause Hibernate to flush the session too
frequently and greatly impact the performance. If you want absolute control over the query, you can use a
native query, which we discuss in the next chapter.

Finally, the settings (batch size, fetch size, and so forth) play an important role in tuning Hibernate’s
performance. You should define them in your session factory and adjust them while load testing your
application to identify the optimal value.

After all, Hibernate, and its excellent JPA support that we discuss in the next chapter, is a natural
decision for Java developers looking for an OO way to implement data access logic.

Chapter 7 ■ Using Hibernate in Spring

392

Summary
In this chapter, we discussed the basic concepts of Hibernate and how to configure it within a Spring
application. Then we covered common techniques for defining ORM mappings, and we covered
associations and how to use the HibernateTemplate class to perform various database operations. With
regard to Hibernate, we covered only a small piece of its functionality and features. For those interested
in using Hibernate with Spring, we highly recommend you study Hibernate’s standard documentation.
Also, numerous books discuss Hibernate in detail. We recommend Beginning Hibernate: For Hibernate 5
by Joseph Ottinger, Jeff Linwood, and Dave Minter (Apress, 2016),3 as well as Pro JPA 2 by Mike Keith and
Merrick Schincariol (Apress, 2013).4 In the next chapter, you will take a look at JPA and how to use it when
using Spring. Hibernate provides excellent support for JPA, and we will continue to use Hibernate as the
persistence provider for the examples in the next chapter. For query and update operations, JPA act likes
Hibernate. In the next chapter, we discuss advanced topics including native and criteria query and how we
can use Hibernate as well as its JPA support.

3Download the e-book from the Apress official site: http://apress.com/us/book/9781484223185.
4Download the e-book from the Apress official site: http://apress.com/us/book/9781430249269.

http://apress.com/us/book/9781484223185
http://apress.com/us/book/9781430249269

393© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_8

CHAPTER 8

Data Access in Spring with JPA2

In the previous chapter, we discussed how to use Hibernate with Spring when implementing data access
logic with the ORM approach. We demonstrated how to configure Hibernate’s SessionFactory in Spring’s
configuration and how to use the Session interface for various data access operations. However, that is
just one way Hibernate can be used. Another way of adopting Hibernate in a Spring application is to use
Hibernate as a persistence provider of the standard Java Persistence API (JPA).

Hibernate’s POJO mapping and its powerful query language (HQL) have gained great success and also
influenced the development of data access technology standards in the Java world. After Hibernate, the JCP
developed the Java Data Objects (JDO) standard and then JPA.

At the time of this writing, JPA has reached version 2.1 and provides concepts that were standardized
such as PersistenceContext, EntityManager, and the Java Persistence Query Language (JPQL). These
standardizations provide a way for developers to switch between JPA persistence providers such as
Hibernate, EclipseLink, Oracle TopLink, and Apache OpenJPA. As a result, most new JEE applications are
adopting JPA as the data access layer.

Spring also provides excellent support for JPA. For example, a number of EntityManagerFactoryBean
implementations are provided for bootstrapping a JPA entity manager with support for all of the JPA
providers mentioned earlier. The Spring Data project also provides a subproject called Spring Data JPA,
which provides advanced support for using JPA in Spring applications. The main features of the Spring Data
JPA project include concepts of a repository and specification and support for the Query Domain-Specific
Language (QueryDSL).

This chapter covers how to use JPA 2.1 with Spring, using Hibernate as the underlying persistence
provider. You will learn how to implement various database operations by using JPA’s EntityManager
interface and JPQL. Then you will see how Spring Data JPA can further help simplify JPA development.
Finally, we present advanced topics related to ORM, including native queries and criteria queries.

Specifically, we discuss the following topics:

•	 Core concepts of Java Persistence API (JPA): We cover some of the major concepts of JPA.

•	 Configuring the JPA entity manager: We discuss the types of EntityManagerFactory
that Spring supports and how to configure the most commonly used one,
LocalContainerEntityManagerFactoryBean, in Spring’s XML configuration.

•	 Data operations: We show how to implement basic database operations in JPA,
which is much like the concepts when using Hibernate on its own.

•	 Advanced query operations: We discuss how to use native queries in JPA and the
strongly typed criteria API in JPA for more flexible query operations.

•	 Introducing Spring Data Java Persistence API (JPA): We discuss the Spring Data JPA
project and demonstrate how it can help simplify the development of data access logic.

https://doi.org/10.1007/978-1-4842-2808-1_8

Chapter 8 ■ Data Access in Spring with JPA2

394

•	 Tracking entity changes and auditing: In database update operations, it’s a common
requirement to keep track of the date an entity was created or last updated and who
made the change. Also, for critical information such as a customer, a history table
that stores each version of the entity is usually required. We discuss how Spring
DataJPA and Hibernate Envers (Hibernate Entity Versioning System) can help ease
the development of such logic.

  Like Hibernate, JPA supports the definition of mappings either in XML or in Java annotations. This chapter
focuses on the annotation type of mapping because its usage tends to be much more popular than the XML style.

Introducing JPA 2.1
Like other Java specification requests (JSRs), the objective of the JPA 2.1 specification (JSR-338) is to
standardize the ORM programming model in both the JSE and JEE environments. It defines a common set
of concepts, annotations, interfaces, and other services that a JPA persistence provider should implement.
When programming to the JPA standard, developers have the option of switching the underlying provider at
will, just like switching to another JEE-compliant application server for applications developed on the JEE
standards.

Within JPA, the core concept is the EntityManager interface, which comes from factories of the type
EntityManagerFactory. The main job of EntityManager is to maintain a persistence context, in which
all the entity instances managed by it will be stored. The configuration of EntityManager is defined as
a persistence unit, and there can be more than one persistence unit in an application. If you are using
Hibernate, you can think of the persistence context in the same way as the Session interface, while
EntityManagerFactory is the same as SessionFactory. In Hibernate, the managed entities are stored in
the session, which you can directly interact with via Hibernate’s SessionFactory or Session interface.
In JPA, however, you can’t interact with the persistence context directly. Instead, you need to rely on
EntityManager to do the work for you.

JPQL is similar to HQL, so if you have used HQL before, JPQL should be easy to pick up. However, in JPA
2, a strongly typed Criteria API was introduced, which relies on the mapped entities’ metadata to construct
the query. Given this, any errors will be discovered at compile time rather than runtime.

For a detailed discussion of JPA 2, we recommend the book Pro JPA 2 by Mike Keith and Merrick
Schincariol (Apress, 2013).1 In this section, we discuss the basic concepts of JPA, the sample data model that
will be used in this chapter, and how to configure Spring’s ApplicationContext to support JPA.

Sample Data Model for Example Code
In this chapter, we use the same data model as used in Chapter 7. However, when we discuss how to
implement the auditing features, we will add a few columns and a history table for demonstration. To get
started, we will begin with the same database creation scripts used in the previous chapter. If you skipped
Chapter 7, take a look at the data model presented in that chapter’s “Sample Data Model for Example Code”
section, which can help you understand the sample code in this chapter.

1Get it online from at www.apress.com/us/book/9781430249269.

http://dx.doi.org/10.1007/978-1-4842-2808-1_7
http://dx.doi.org/10.1007/978-1-4842-2808-1_7
http://www.apress.com/us/book/9781430249269

Chapter 8 ■ Data Access in Spring with JPA2

395

Configuring JPA’s EntityManagerFactory
As mentioned earlier in this chapter, to use JPA in Spring, we need to configure EntityManagerFactory,
just like SessionFactory used in Hibernate. Spring supports three types of EntityManagerFactory
configurations.

The first one uses the LocalEntityManagerFactoryBean class. It’s the simplest one, which requires only
the persistence unit name. However, since it doesn’t support the injection of DataSource and hence isn’t
able to participate in global transactions, it’s suitable only for simple development purposes.

The second option is for use in a JEE-compliant container, in which the application server bootstraps
the JPA persistence unit based on the information in the deployment descriptors. This allows Spring to look
up the entity manager via JNDI lookup. The following configuration snippet depicts the element needed for
looking up an entity manager via JNDI:

<beans ...>
 <jee:jndi-lookup id="prospring5Emf"
 jndi-name="persistence/prospring5PersistenceUnit"/>
</beans>

In the JPA specification, a persistence unit should be defined in the configuration file META-INF/
persistence.xml. However, as of Spring 3.1, a new feature has been added that eliminates this need; we
show you how to use it later in this chapter.

The third option, which is the most common and is used in this chapter, is the
LocalContainerEntityManagerFactoryBean class that supports the injection of DataSource and
can participate in both local and global transactions. The following configuration snippet shows the
corresponding XML configuration file (app-context-annotation.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:sql/schema.sql"/>
 <jdbc:script location="classpath:sql/test-data.sql"/>
 </jdbc:embedded-database>

 <bean id="transactionManager" class=
 "org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="emf"/>
 </bean>

Chapter 8 ■ Data Access in Spring with JPA2

396

 <tx:annotation-driven transaction-manager="transactionManager" />

 <bean id="emf" class=
 "org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="jpaVendorAdapter">
 <bean class=
 "org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter" />
 </property>
 <property name="packagesToScan" value="com.apress.prospring5.ch8.entities"/>
 <property name="jpaProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.H2Dialect
 </prop>
 <prop key="hibernate.max_fetch_depth">3</prop>
 <prop key="hibernate.jdbc.fetch_size">50</prop>
 <prop key="hibernate.jdbc.batch_size">10</prop>
 <prop key="hibernate.show_sql">true</prop>
 </props>
 </property>
 </bean>

 <context:component-scan base-package="com.apress.prospring5.ch8" />
</beans>

You probably expect that there is an equivalent configuration using Java configuration classes. There is,
as shown here:

package com.apress.prospring5.ch8.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableTransactionManagement
@ComponentScan(basePackages = {"com.apress.prospring5.ch8.service"})

Chapter 8 ■ Data Access in Spring with JPA2

397

public class JpaConfig {

 private static Logger logger = LoggerFactory.getLogger(JpaConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder =
 new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:db/schema.sql", "classpath:db/test-data.sql").build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.format_sql", true);
 hibernateProp.put("hibernate.use_sql_comments", true);
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch8.entities");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }
}

Chapter 8 ■ Data Access in Spring with JPA2

398

In the previous configurations, several beans are declared in order to be able to support the
configuration of LocalContainerEntityManagerFactoryBean with Hibernate as the persistence provider.
The main configurations are as follows:

•	 The dataSource bean: We declared the data source with an embedded database using
H2. Because it’s an embedded database, the database name is not required.

•	 The transactionManager bean: EntityManagerFactory requires a transaction
manager for transactional data access. Spring provides a transaction manager
specifically for JPA (org.springframework.orm.jpa.JpaTransactionManager).
The bean is declared with an ID of transactionManager assigned. We discuss
transactions in detail in Chapter 9. We declare the tag <tx:annotation-driven>
to support a declaration of the transaction demarcation requirements using
annotations. Its equivalent annotation is @EnableTransactionManagement, which
must be placed on a class annotated with @Configuration.

•	 Component scan: The tag should be familiar to you. We instruct Spring to scan the
components under the package com.apress.prospring5.ch8.

•	 JPA EntityManagerFactory bean: The emf bean is the most important part. First, we
declare the bean to use LocalContainerEntityManagerFactoryBean. Within the
bean, several properties are provided. First, as you might have expected, we need to
inject the DataSource bean. Second, we configure the property jpaVendorAdapter
with the class HibernateJpaVendorAdapter because we are using Hibernate. Third,
we instruct the entity factory to scan for the domain objects with ORM annotations
under the package com.apress.prospring5.ch8 (specified by the <property
name="packagesToScan"> tag). Note that this feature has been available only
since Spring 3.1, and with the support of domain class scanning, you can skip the
definition of the persistence unit in the META-INF/persistence.xml file. Finally, the
jpaProperties property provides configuration details for the persistence provider
Hibernate. You will see that the configuration options are the same as those we used
in Chapter 7, so we can skip the explanation here.

Using JPA Annotations for ORM Mapping
Hibernate influenced the design of JPA in many ways. For the mapping annotations, they are so close that
the annotations we used in Chapter 7 for mapping the domain objects to the database are the same in JPA.
If you take a look at the domain classes’ source code in Chapter 7, you will see that all mapping annotations
are under the package javax.persistence, which means those annotations are already JPA compatible.

Once EntityManagerFactory has been properly configured, injecting it into your classes is simple. The
following code snippet shows the code for the SingerServiceImpl class, which we will use as the sample for
performing database operations using JPA:

package com.apress.prospring5.ch8.service;

import com.apress.prospring5.ch8.entities.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Service;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;
import org.apache.commons.lang3.NotImplementedException;

http://dx.doi.org/10.1007/978-1-4842-2808-1_9
http://dx.doi.org/10.1007/978-1-4842-2808-1_7
http://dx.doi.org/10.1007/978-1-4842-2808-1_7
http://dx.doi.org/10.1007/978-1-4842-2808-1_7

Chapter 8 ■ Data Access in Spring with JPA2

399

import java.util.List;

import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.TypedQuery;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findAll() {
 throw new NotImplementedException("findAll");
 }

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findAllWithAlbum() {
 throw new NotImplementedException("findAllWithAlbum");
 }

 @Transactional(readOnly=true)
 @Override
 public Singer findById(Long id) {
 throw new NotImplementedException("findById");
 }

 @Override
 public Singer save(Singer singer) {
 throw new NotImplementedException("save");
 }

 @Override
 public void delete(Singer singer) {
 throw new NotImplementedException("delete");
 }

Chapter 8 ■ Data Access in Spring with JPA2

400

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findAllByNativeQuery() {
 throw new NotImplementedException("findAllByNativeQuery");
 }
}

Several annotations are applied to the class. The @Service annotation is used to identify the class as
being a Spring component that provides business services to another layer and assigns the Spring bean
the name jpaSingerService. The @Repository annotation indicates that the class contains data access
logic and instructs Spring to translate the vendor-specific exceptions to Spring’s DataAccessException
hierarchy. As you are already familiar with, the @Transactional annotation is used for defining transaction
requirements.

To inject EntityManager, we use the @PersistenceContext annotation, which is the standard JPA
annotation for entity manager injection. It may be questionable as to why we’re using the name
@PersistenceContext to inject an entity manager, but if you consider that the persistence context itself is
managed by EntityManager, the annotation naming makes perfect sense. If you have multiple persistence
units in your application, you can also add the unitName attribute to the annotation to specify which
persistence unit you want to be injected. Typically, a persistence unit represents an individual back-end
DataSource.

Performing Database Operations with JPA
This section covers how to perform database operations in JPA. The following code snippet shows the
SingerService interface, which indicates the singer information services we are going to provide:

package com.apress.prospring5.ch8.service;

import com.apress.prospring5.ch8.entities.Singer;

import java.util.List;

public interface SingerService {
 List<Singer> findAll();
 List<Singer> findAllWithAlbum();
 Singer findById(Long id);
 Singer save(Singer singer);
 void delete(Singer singer);
 List<Singer> findAllByNativeQuery();
}

The interface is very simple; it has just three finder methods, one save method, and one delete method.
The save method will serve both the insert and update operations.

Using the Java Persistence Query Language to Query Data
The syntax for JPQL and HQL is similar, and in fact, all the HQL queries that we used in Chapter 7 are
reusable to implement the three finder methods within the SingerService interface. To use JPA and
Hibernate, you need to add the following dependencies to the project:

http://dx.doi.org/10.1007/978-1-4842-2808-1_7

Chapter 8 ■ Data Access in Spring with JPA2

401

//pro-spring-15/build.gradle
ext {
 hibernateVersion = '5.2.10.Final'
 hibernateJpaVersion = '1.0.0.Final'
 ..
 hibernate = [
 em :
 "org.hibernate:hibernate-entitymanager:$hibernateVersion",
 jpaApi :
 "org.hibernate.javax.persistence:hibernate-jpa-2.1-api:$hibernateJpaVersion"
]
}

//chapter08.gradle
dependencies {
 //we specify these dependencies for all submodules,
 //except the boot module, that defines its own
 if !project.name.contains"boot" {
 compile spring.contextSupport, spring.orm, spring.context,
 misc.slf4jJcl, misc.logback, db.h2, misc.lang3,
 hibernate.em, hibernate.jpaApi
 }
 testCompile testing.junit
}

The following code snippet recaps the code for the Singer domain object model classes from Chapter 7:

//Singer.java
package com.apress.prospring5.ch8.entities;

import static javax.persistence.GenerationType.IDENTITY;

import java.io.Serializable;
import java.util.Date;
import java.util.HashSet;
import java.util.Set;
import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;
import javax.persistence.Version;
import javax.persistence.Temporal;
import javax.persistence.TemporalType;
import javax.persistence.OneToMany;
import javax.persistence.ManyToMany;
import javax.persistence.JoinTable;
import javax.persistence.JoinColumn;
import javax.persistence.CascadeType;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.SqlResultSetMapping;
import javax.persistence.EntityResult;

http://dx.doi.org/10.1007/978-1-4842-2808-1_7

Chapter 8 ■ Data Access in Spring with JPA2

402

@Entity
@Table(name = "singer")
@NamedQueries({
 @NamedQuery(name=Singer.FIND_ALL, query="select s from Singer s"),
 @NamedQuery(name=Singer.FIND_SINGER_BY_ID,
 query="select distinct s from Singer s " +
 "left join fetch s.albums a " +
 "left join fetch s.instruments i " +
 "where s.id = :id"),
 @NamedQuery(name=Singer.FIND_ALL_WITH_ALBUM,
 query="select distinct s from Singer s " +
 "left join fetch s.albums a " +
 "left join fetch s.instruments i")
})
@SqlResultSetMapping(
 name="singerResult",
 entities=@EntityResult(entityClass=Singer.class)
)
public class Singer implements Serializable {

 public static final String FIND_ALL = "Singer.findAll";
 public static final String FIND_SINGER_BY_ID = "Singer.findById";
 public static final String FIND_ALL_WITH_ALBUM = "Singer.findAllWithAlbum";

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

 @OneToMany(mappedBy = "singer", cascade=CascadeType.ALL,
 orphanRemoval=true)
 private Set<Album> albums = new HashSet<>();

 @ManyToMany
 @JoinTable(name = "singer_instrument",
 joinColumns = @JoinColumn(name = "SINGER_ID"),
 inverseJoinColumns = @JoinColumn(name = "INSTRUMENT_ID"))
 private Set<Instrument> instruments = new HashSet<>();

Chapter 8 ■ Data Access in Spring with JPA2

403

 //setters and getters

 @Override
 public String toString() {
 return "Singer - Id: " + id + ", First name: " + firstName
 + ", Last name: " + lastName + ", Birthday: " + birthDate;
 }
}
// Album.java
package com.apress.prospring5.ch8.entities;

import static javax.persistence.GenerationType.IDENTITY;

import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.Date;
import javax.persistence.*;

@Entity
@Table(name = "album")
public class Album implements Serializable {
 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @Column
 private String title;

 @Temporal(TemporalType.DATE)
 @Column(name = "RELEASE_DATE")

 private Date releaseDate;

 @ManyToOne
 @JoinColumn(name = "SINGER_ID")
 private Singer singer;

 public Album() {
 //needed byJPA
 }

 public Album(String title, Date releaseDate) {
 this.title = title;
 this.releaseDate = releaseDate;
 }

Chapter 8 ■ Data Access in Spring with JPA2

404

 //setters and getters
}
//Instrument.java
package com.apress.prospring5.ch8.entities;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.Column;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.JoinTable;
import javax.persistence.JoinColumn;
import java.util.Set;
import java.util.HashSet;

@Entity
@Table(name = "instrument")
public class Instrument implements Serializable {
 @Id
 @Column(name = "INSTRUMENT_ID")
 private String instrumentId;

 @ManyToMany
 @JoinTable(name = "singer_instrument",
 joinColumns = @JoinColumn(name = "INSTRUMENT_ID"),
 inverseJoinColumns = @JoinColumn(name = "SINGER_ID"))
 private Set<Singer> singers = new HashSet<>();

 //setters and getters
}

If you analyze the queries defined using @NamedQuery, you will see that there seems to be no difference
between HQL and JPQL. Let’s begin with the findAll() method, which simply retrieves all the singers from
the database.

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;

Chapter 8 ■ Data Access in Spring with JPA2

405

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findAll() {
 return em.createNamedQuery(Singer.FIND_ALL, Singer.class)
 .getResultList();
 }
 ...
}

As shown in this listing, we use the EntityManager.createNamedQuery() method, passing in the name
of the query and the expected return type. In this case, EntityManager will return a TypedQuery<X> interface.
The method TypedQuery.getResultList() is then called to retrieve the singers. To test the implementation
of the method, we will use a test class that will contain a test method for each JPA method that will be
implemented.

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.config.JpaConfig;
import com.apress.prospring5.ch8.entities.Singer;
import com.apress.prospring5.ch8.service.SingerService;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

public class SingerJPATest {
 private static Logger logger = LoggerFactory.getLogger(SingerJPATest.class);

 private GenericApplicationContext ctx;
 private SingerService singerService;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerService = ctx.getBean(SingerService.class);
 assertNotNull(singerService);
 }

 @Test
 public void testFindAll(){
 List<Singer> singers = singerService.findAll();
 assertEquals(3, singers.size());
 listSingers(singers);
 }

Chapter 8 ■ Data Access in Spring with JPA2

406

 private static void listSingers(List<Singer> singers) {
 logger.info(" ---- Listing singers:");
 for (Singer singer : singers) {
 logger.info(singer.toString());
 }
 }

 @After
 public void tearDown(){
 ctx.close();
 }
}

If assertEquals does not throw an exception (the test failed), running the testFindAll() test method
will produce the following output:

---- Listing singers:
Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01

  For associations, the JPA specification states that, by default, the persistence providers must fetch the
association eagerly. However, for Hibernate’s JPA implementation, the default fetching strategy is still lazy. So,
when using Hibernate’s JPA implementation, you don’t need to explicitly define an association as lazy fetching.
The default fetching strategy of Hibernate is different from the JPA specification.

Now let’s implement the findAllWithAlbum() method, which will fetch all the associated albums and
instruments. The implementation is shown here:

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findAllWithAlbum() {
 List<Singer> singers = em.createNamedQuery

Chapter 8 ■ Data Access in Spring with JPA2

407

 (Singer.FIND_ALL_WITH_ALBUM, Singer.class).getResultList();
 return singers;
 }
 ...
}

findAllWithAlbum() is the same as the findAll() method, but it uses a different named query with
left join fetch enabled. The method used to test it and print the entries is shown here:

package com.apress.prospring5.ch8;
...
public class SingerJPATest {
 private static Logger logger =
 LoggerFactory.getLogger(SingerJPATest.class);

 private GenericApplicationContext ctx;
 private SingerService singerService;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerService = ctx.getBean(SingerService.class);
 assertNotNull(singerService);
 }

 @Test
 public void testFindAllWithAlbum(){
 List<Singer> singers = singerService.findAllWithAlbum();
 assertEquals(3, singers.size());
 listSingersWithAlbum(singers);
 }

 private static void listSingersWithAlbum(List<Singer> singers) {
 logger.info(" ---- Listing singers with instruments:");
 for (Singer singer : singers) {
 logger.info(singer.toString());
 if (singer.getAlbums() != null) {
 for (Album album :
 singer.getAlbums()) {
 logger.info("\t" + album.toString());
 }
 }
 if (singer.getInstruments() != null) {
 for (Instrument instrument : singer.getInstruments()) {
 logger.info("\tInstrument: " + instrument.getInstrumentId());
 }
 }
 }
 }

Chapter 8 ■ Data Access in Spring with JPA2

408

 @After
 public void tearDown(){
 ctx.close();
 }
}

If assertEquals does not throw an exception (the test failed), running the testFindAllWithAlbum()
test method will produce the following output:

INFO o.h.h.i.QueryTranslatorFactoryInitiator - HHH000397:
 Using ASTQueryTranslatorFactory
Hibernate:
 /* Singer.findAllWithAlbum */ select
 distinct singer0_.ID as ID1_2_0_,
 albums1_.ID as ID1_0_1_,
 instrument3_.INSTRUMENT_ID as INSTRUME1_1_2_,
 singer0_.BIRTH_DATE as BIRTH_DA2_2_0_,
 singer0_.FIRST_NAME as FIRST_NA3_2_0_,
 singer0_.LAST_NAME as LAST_NAM4_2_0_,
 singer0_.VERSION as VERSION5_2_0_,
 albums1_.RELEASE_DATE as RELEASE_2_0_1_,
 albums1_.SINGER_ID as SINGER_I5_0_1_,
 albums1_.title as title3_0_1_,
 albums1_.VERSION as VERSION4_0_1_,
 albums1_.SINGER_ID as SINGER_I5_0_0__,
 albums1_.ID as ID1_0_0 ,
 instrument2_.SINGER_ID as SINGER_I1_3_1__,
 instrument2_.INSTRUMENT_ID as INSTRUME2_3_1__
 from
 singer singer0_
 left outer join
 album albums1_
 on singer0_.ID=albums1_.SINGER_ID
 left outer join
 singer_instrument instrument2_
 on singer0_.ID=instrument2_.SINGER_ID
 left outer join
 instrument instrument3_
 on instrument2_.INSTRUMENT_ID=instrument3_.INSTRUMENT_ID
INFO ----- Listing singers with instruments:
INFO - Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
INFO - Album - id: 2, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-17
INFO - Album - id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
INFO - Instrument: Guitar
INFO - Instrument: Piano
INFO - Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01
INFO - Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
INFO - Album - id: 3, Singer id: 2, Title: From The Cradle ,
 Release Date: 1994-09-13
INFO - Instrument: Guitar

Chapter 8 ■ Data Access in Spring with JPA2

409

If logging is enabled for Hibernate, you can also see the native query that was generated to extract all the
data from the database.

Now let’s see the findById() method, which demonstrates how to use a named query with named
parameters in JPA. The associations will be fetched as well. The following code snippet shows the
implementation:

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;

 @Transactional(readOnly=true)
 @Override
 public Singer findById(Long id) {
 TypedQuery<Singer> query = em.createNamedQuery
 (Singer.FIND_SINGER_BY_ID, Singer.class);

 query.setParameter("id", id);
 return query.getSingleResult();

 }
 ...
}

EntityManager.createNamedQuery(java.lang.String name, java.lang.Class<T> resultClass)
was called to get an instance of the TypedQuery<T> interface, which ensures that the result of the query
must be of type Singer. Then the TypedQuery<T>.setParameter() method was used to set the values of the
named parameters within the query and to invoke the getSingleResult() method, since the result should
contain only a single Singer object with the specified ID. We will leave the testing of the method as an
exercise for you.

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

Chapter 8 ■ Data Access in Spring with JPA2

410

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;

 @Transactional(readOnly=true)
 @Override
 public Singer findById(Long id) {
 TypedQuery<Singer> query = em.createNamedQuery
 (Singer.FIND_SINGER_BY_ID, Singer.class);
 query.setParameter("id", id);
 return query.getSingleResult();
 } ...
}

Querying with Untyped Results
In many cases, you want to submit a query to the database and manipulate the results at will, instead of
storing them in a mapped entity class. One typical example is a web-based report that lists only a certain
number of columns across multiple tables. For example, say you have a web page that shows the singer
information and his most recently released album title. The summary information contains the complete
name of the singer and his most recently released album title. Singers without albums will not be listed. In
this case, we can implement this use case with a query and then manually manipulate the ResultSet object.

Let’s create a new class called SingerSummaryUntypeImpl and name the method
displayAllSingerSummary(). The following code snippet shows a typical implementation of the method:

package com.apress.prospring5.ch8.service;

import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.Iterator;
import java.util.List;

@Service("singerSummaryUntype")
@Repository
@Transactional
public class SingerSummaryUntypeImpl {

 @PersistenceContext
 private EntityManager em;

 @Transactional(readOnly = true)
 public void displayAllSingerSummary() {
 List result = em.createQuery(

Chapter 8 ■ Data Access in Spring with JPA2

411

 "select s.firstName, s.lastName, a.title from Singer s "
 + "left join s.albums a "
 + "where a.releaseDate=(select max(a2.releaseDate) "
 + "from Album a2 where a2.singer.id = s.id)")
 .getResultList();
 int count = 0;
 for (Iterator i = result.iterator(); i.hasNext();) {
 Object[] values = (Object[]) i.next();
 System.out.println(++count + ": " + values[0] + ", "
 + values[1] + ", " + values[2]);
 }
 }
}

As shown in the previous code sample, we use the EntityManager.createQuery() method to create
Query, passing in the JPQL statement, and then get the result list.

When we explicitly specify the columns to be selected within JPQL, JPA will return an iterator, and
each item within the iterator is an array of objects. We loop through the iterator, and for each element in the
object array, the value is displayed. Each object array corresponds to a record within the ResultSet object.
The following code snippet shows the testing program:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.config.JpaConfig;
import com.apress.prospring5.ch8.service.SingerSummaryUntypeImpl;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

public class SingerSummaryJPATest {

 private static Logger logger =
 LoggerFactory.getLogger(SingerSummaryJPATest.class);
 private GenericApplicationContext ctx;
 private SingerSummaryUntypeImpl singerSummaryUntype;

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerSummaryUntype = ctx.getBean(SingerSummaryUntypeImpl.class);
 assertNotNull(singerSummaryUntype);
 }

Chapter 8 ■ Data Access in Spring with JPA2

412

 @Test
 public void testFindAllUntype() {
 singerSummaryUntype.displayAllSingerSummary();
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Running the testing program produces the following output:

1: John, Mayer, The Search For Everything
2: Eric, Clapton, From The Cradle

In JPA, there is a more elegant solution, rather than playing around with the object array returned from
the query, that is discussed in the next section.

Querying for a Custom Result Type with a Constructor
Expression
In JPA, when querying for a custom result like the one in the previous section, you can instruct JPA to directly
construct a POJO from each record for you. This POJO is also called a view because it contains data from
multiple tables. For the example in the previous section, let’s create a POJO called SingerSummary that stores
the results of the query for the singer summary. The following code snippet shows the class:

package com.apress.prospring5.ch8.view;

import java.io.Serializable;

public class SingerSummary implements Serializable {
 private String firstName;
 private String lastName;
 private String latestAlbum;

 public SingerSummary(String firstName, String lastName,
 String latestAlbum) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.latestAlbum = latestAlbum;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

Chapter 8 ■ Data Access in Spring with JPA2

413

 public String getLatestAlbum() {
 return latestAlbum;
 }

 public String toString() {
 return "First name: " + firstName + ", Last Name: " + lastName
 + ", Most Recent Album: " + latestAlbum;
 }
}

The previous SingerSummary class has the properties for each singer summary, with a constructor
method that accepts all the properties. Having the SingerSummary class in place, we can revise the
findAll() method and use a constructor expression within the query to instruct the JPA provider to map
the ResultSet to the SingerSummary class. Let’s create an interface for the SingerSummary service first. The
following code snippet shows the interface:

package com.apress.prospring5.ch8.service;

import com.apress.prospring5.ch8.view.SingerSummary;

import java.util.List;

public interface SingerSummaryService {
 List<SingerSummary> findAll();
}

Here you can see the implementation of the SingerSummaryImpl.findAll() method, using the
constructor expression for the ResultSet mapping:

package com.apress.prospring5.ch8.service;

import com.apress.prospring5.ch8.view.SingerSummary;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.List;

@Service("singerSummaryService")
@Repository
@Transactional
public class SingerSummaryServiceImpl implements SingerSummaryService {

 @PersistenceContext
 private EntityManager em;

 @Transactional(readOnly = true)
 @Override
 public List<SingerSummary> findAll() {

Chapter 8 ■ Data Access in Spring with JPA2

414

 List<SingerSummary> result = em.createQuery(
 "select new com.apress.prospring5.ch8.view.SingerSummary("
 + "s.firstName, s.lastName, a.title) from Singer s "
 + "left join s.albums a "
 + "where a.releaseDate=(select max(a2.releaseDate):
 + "from Album a2 where a2.singer.id = s.id)",
 SingerSummary.class).getResultList();
 return result;
 }
}

In the JPQL statement, the new keyword was specified, together with the fully qualified name of the
POJO class that will store the results and pass in the selected attributes as the constructor argument of
each SingerSummary class. Finally, the SingerSummary class was passed into the createQuery() method to
indicate the result type. The following code snippet shows the testing program:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.config.JpaConfig;
import com.apress.prospring5.ch8.service.SingerSummaryService;
import com.apress.prospring5.ch8.view.SingerSummary;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

public class SingerSummaryJPATest {

 private static Logger logger =
 LoggerFactory.getLogger(SingerSummaryJPATest.class);
 private GenericApplicationContext ctx;
 private SingerSummaryService singerSummaryService;

 @Before
 public void setUp() {
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerSummaryService = ctx.getBean(SingerSummaryService.class);
 assertNotNull(singerSummaryService);
 }

 @Test
 public void testFindAll() {
 List<SingerSummary> singers = singerSummaryService.findAll();
 listSingerSummary(singers);
 assertEquals(2, singers.size());
 }

Chapter 8 ■ Data Access in Spring with JPA2

415

 private static void listSingerSummary(List<SingerSummary> singers) {
 logger.info(" ---- Listing singers summary:");
 for (SingerSummary singer : singers) {
 logger.info(singer.toString());
 }
 }

 @After
 public void tearDown() {
 ctx.close();
 }
}

Executing the testFindAll method class again produces the output for each SingerSummary object
within the list, as shown here (other output was omitted):

INFO ---- Listing singers summary:
INFO - First name: John, Last Name: Mayer, Most Recent Album: The Search For Everything
INFO - First name: Eric, Last Name: Clapton, Most Recent Album: From The Cradle

As you can see, the constructor expression is useful for mapping the result of a custom query into POJOs
for further application processing.

Inserting Data
Inserting data by using JPA is simple. Like Hibernate, JPA also supports retrieving a database-generated
primary key. The following code snippet shows the save() method:

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;

 @Override
 public Singer save(Singer singer) {
 if (singer.getId() == null) {
 logger.info("Inserting new singer");
 em.persist(singer);
 } else {
 em.merge(singer);
 logger.info("Updating existing singer");
 }

Chapter 8 ■ Data Access in Spring with JPA2

416

 logger.info("Singer saved with id: " + singer.getId());

 return singer;
 }
 ...
}

As shown here, the save() method first checks whether the object is a new entity instance, by
checking the id value. If id is null (that is, not yet assigned), the object is a new entity instance, and the
EntityManager.persist() method will be invoked. When calling the persist() method, EntityManager
persists the entity and makes it a managed instance within the current persistence context. If the id value
exists, then we’re carrying out an update, and the EntityManager.merge() method will be called instead.
When the merge() method is called, the EntityManager merges the state of the entity into the current
persistence context.

The following code snippet shows the code to insert a new singer record. It’s all done in a test method
because we want to test that the insert succeed.

package com.apress.prospring5.ch8;
...
public class SingerJPATest {
 private static Logger logger =
 LoggerFactory.getLogger(SingerJPATest.class);

 private GenericApplicationContext ctx;
 private SingerService singerService;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerService = ctx.getBean(SingerService.class);
 assertNotNull(singerService);
 }

 @Test
 public void testInsert(){
 Singer singer = new Singer();
 singer.setFirstName("BB");
 singer.setLastName("King");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1940, 8, 16)).getTime().getTime()));

 Album album = new Album();
 album.setTitle("My Kind of Blues");
 album.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(1961, 7, 18)).getTime().getTime()));
 singer.addAbum(album);

 album = new Album();
 album.setTitle("A Heart Full of Blues");
 album.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(1962, 3, 20)).getTime().getTime()));
 singer.addAbum(album);

Chapter 8 ■ Data Access in Spring with JPA2

417

 singerService.save(singer);
 assertNotNull(singer.getId());

 List<Singer> singers = singerService.findAllWithAlbum();
 assertEquals(4, singers.size());
 listSingersWithAlbum(singers);
 }
 ...

 @After
 public void tearDown(){
 ctx.close();
 }
}

As shown here, we create a new singer, add two albums, and save the object. Then we list all the singers
again, after we test that we have the correct number of records in the table. Running the program yields the
following output:

INFO - ---- Listing singers with instruments:
INFO - Singer - Id: 4, First name: BB, Last name: King, Birthday: 1940-09-16
INFO - Album - id: 5, Singer id: 4, Title: A Heart Full of Blues,
 Release Date: 1962-04-20
INFO - Album - id: 4, Singer id: 4, Title: My Kind of Blues,
 Release Date: 1961-08-18
INFO - Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
INFO - Album - id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
INFO - Album - id: 2, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-17
INFO - Instrument: Piano
INFO - Instrument: Guitar
INFO - Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01
INFO - Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
INFO - Album - id: 3, Singer id: 2, Title: From The Cradle,
 Release Date: 1994-09-13
INFO - Instrument: Guitar

From the INFO log record, you can see that the id of the newly saved singer was populated correctly.
Hibernate will also show all the SQL statements being fired to the database.

Updating Data
Updating data is as easy as inserting data. Let’s go through an example. Suppose for a singer with an ID of 1,
we want to update its first name and remove an album. To test the update operation, the following code
snippet shows the testUpdate() method:

package com.apress.prospring5.ch8;
...
public class SingerJPATest {
 private static Logger logger =
 LoggerFactory.getLogger(SingerJPATest.class);

Chapter 8 ■ Data Access in Spring with JPA2

418

 private GenericApplicationContext ctx;
 private SingerService singerService;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerService = ctx.getBean(SingerService.class);
 assertNotNull(singerService);
 }

 @Test
 public void testUpdate(){
 Singer singer = singerService.findById(1L);
 //making sure such singer exists assertNotNull(singer);
 //making sure we got expected record assertEquals("Mayer", singer.getLastName());
 //retrieve the album
 Album album = singer.getAlbums().stream()
 .filter(a -> a.getTitle().equals("Battle Studies")).findFirst().get();

 singer.setFirstName("John Clayton");
 singer.removeAlbum(album);
 singerService.save(singer);

 listSingersWithAlbum(singerService.findAllWithAlbum());
 }
 ...

 @After
 public void tearDown(){
 ctx.close();
 }
}

We first retrieve the record with an ID of 1 and we change the first name. Then we loop through the
album objects and retrieve the one with title Battle Studies and remove it from the singer’s albums property.
Finally, we call the SingerService.save() method again. When you run the program, you will see the
following output (other output was omitted):

---- Listing singers with instruments:
Singer - Id: 1, First name: John Clayton, Last name: Mayer, Birthday: 1977-10-16
 Album - id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
 Instrument: Piano
 Instrument: Guitar
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
 Album - id: 3, Singer id: 2, Title: From The Cradle ,
 Release Date: 1994-09-13
 Instrument: Guitar
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01

Chapter 8 ■ Data Access in Spring with JPA2

419

You will see that the first name was updated and the album was removed. The album can be removed
because of the rphanRemoval=true attribute that was defined in the one-to-many association, which
instructs the JPA provider (Hibernate) to remove all orphan records that exist in the database but are no
longer found in the object when persisted.

@OneToMany(mappedBy = "singer", cascade=CascadeType.ALL, orphanRemoval=true)

Deleting data
Deleting data is just as simple. Simply call the EntityManager.remove() method and pass in the singer
object. The following code snippet shows the updated code to delete a singer:

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;

 @Override
 public void delete(Singer singer) {
 Singer mergedSinger = em.merge(singer);
 em.remove(mergedSinger);

 logger.info("Singer with id: " + singer.getId() + " deleted successfully");
 }
 ...
}

First the EntityManager.merge() method is invoked to merge the state of the entity into the current
persistence context. The merge() method returns the managed entity instance. Then EntityManager.
remove() is called, passing in the managed singer entity instance. The remove operation deletes the singer
record, together with all its associated information, including albums and instruments, as we defined the
cascade=CascadeType.ALL in the mapping. To test the delete operation, the testDelete() method can be
used, which is depicted in the following code snippet:

package com.apress.prospring5.ch8;
...
public class SingerJPATest {
 private static Logger logger =
 LoggerFactory.getLogger(SingerJPATest.class);

 private GenericApplicationContext ctx;
 private SingerService singerService;

Chapter 8 ■ Data Access in Spring with JPA2

420

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerService = ctx.getBean(SingerService.class);
 assertNotNull(singerService);
 }

 @Test
 public void testDelete(){
 Singer singer = singerService.findById(2l);
 //making sure such singer exists
 assertNotNull(singer);
 singerService.delete(singer);

 listSingersWithAlbum(singerService.findAllWithAlbum());
 }
 ...

 @After
 public void tearDown(){
 ctx.close();
 }
}

The previous listing retrieves the singer with an ID of 2 and then calls the delete() method to delete the
singer information. Running the program produces the following output:

 ---- Listing singers with instruments:
Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
 Album - id: 1, Singer id: 1, Title: The Search For Everything,
 Release Date: 2017-01-20
 Album - id: 2, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-17
 Instrument: Piano
 Instrument: Guitar
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01

You can see that the singer with an ID of 1 was deleted.

Using a Native Query
Having discussed performing trivial database operations by using JPA, now let’s move on to some more
advanced topics. Sometimes you may want to have absolute control over the query that will be submitted
to the database. One example is using a hierarchical query in an Oracle database. This kind of query is
database-specific and referred to as a native query.

JPA supports the execution of native queries; EntityManager will submit the query to the database as
is, without any mapping or transformation performed. One main benefit of using JPA native queries is the
mapping of ResultSet back to the ORM-mapped entity classes. The following two sections discuss how to
use a native query to retrieve all singers and directly map ResultSet back to the Singer objects.

Chapter 8 ■ Data Access in Spring with JPA2

421

Using a Simple Native Query
To demonstrate how to use a native query, let’s implement a new method to retrieve all the singers from the
database. The following snippet shows the new method that must be added to the SingerServiceImpl:

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findAllByNativeQuery() {
 return em.createNativeQuery(ALL_SINGER_NATIVE_QUERY,
 Singer.class).getResultList();
 }
 ...
}

You can see that the native query is just a simple SQL statement to retrieve all the columns from the
SINGER table. To create and execute the query, EntityManager.createNativeQuery() was first called,
passing in the query string as well as the result type. The result type should be a mapped entity class (in this
case the Singer class). The createNativeQuery() method returns a Query interface, which provides the
getResultList() operation to get the result list. The JPA provider will execute the query and transform the
ResultSet object into the entity instances, based on the JPA mappings defined in the entity class. Executing
the previous method produces the same result as the findAll() method.

Native Querying with SQL ResultSet Mapping
Besides the mapped domain object, you can pass in a string, which indicates the name of a SQL ResultSet
mapping. A SQL ResultSet mapping is defined at the entity class level by using the @SqlResultSetMapping
annotation. A SQL ResultSet mapping can have one or more entity and column mappings.

package com.apress.prospring5.ch8.entities;

import javax.persistence.Entity;
import javax.persistence.Table;
import javax.persistence.SqlResultSetMapping;
import javax.persistence.EntityResult;
...

@Entity
@Table(name = "singer")

Chapter 8 ■ Data Access in Spring with JPA2

422

@SqlResultSetMapping(
 name="singerResult",
 entities=@EntityResult(entityClass=Singer.class)
)
public class Singer implements Serializable {
 ...
}

A SQL ResultSet mapping called singerResult is defined for the entity class, with the entityClass
attribute in the Singer class itself. JPA supports more complex mapping for multiple entities and supports
mapping down to column-level mapping.

After the SQL ResultSet mapping is defined, the findAllByNativeQuery() method can be
invoked using the ResultSet mapping’s name. The following code snippet shows the updated
findAllByNativeQuery() method:

package com.apress.prospring5.ch8.service;
...
@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceImpl.class);

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findAllByNativeQuery() {
 return em.createNativeQuery(ALL_SINGER_NATIVE_QUERY,
 "singerResult").getResultList();
 }
 ...
}

As you can see, JPA also provides strong support for executing native queries, with a flexible SQL
ResultSet mapping facility provided.

Using the JPA 2 Criteria API for a Criteria Query
Most applications provide a front end for users to search for information. Most likely, a large number of
searchable fields are displayed, and the users enter information in only some of them and do the search. It’s
difficult to prepare a large number of queries, with each possible combination of parameters that users may
choose to enter. In this situation, the criteria API query feature comes to the rescue.

In JPA 2, one major new feature introduced was a strongly typed Criteria API query. In this new Criteria
API, the criteria being passed into the query is based on the mapped entity classes’ meta-model. As a result,
each criteria specified is strongly typed, and errors will be discovered at compile time, rather than runtime.

Chapter 8 ■ Data Access in Spring with JPA2

423

In the JPA Criteria API, an entity class meta-model is represented by the entity class name with a suffix
of an underscore (_). For example, the meta-model class for the Singer entity class is Singer_. The following
code snippet shows the Singer_ class:

package com.apress.prospring5.ch8;

import java.util.Date;
import javax.annotation.Generated;
import javax.persistence.metamodel.SetAttribute;
import javax.persistence.metamodel.SingularAttribute;
import javax.persistence.metamodel.StaticMetamodel;

@Generated(value = "org.hibernate.jpamodelgen.JPAMetaModelEntityProcessor")
@StaticMetamodel(Singer.class)
public abstract class Singer_ {

 public static volatile SingularAttribute<Singer, String> firstName;
 public static volatile SingularAttribute<Singer, String> lastName;
 public static volatile SetAttribute<Singer, Album> albums;
 public static volatile SetAttribute<Singer, Instrument> instruments;
 public static volatile SingularAttribute<Singer, Long> id;
 public static volatile SingularAttribute<Singer, Integer> version;
 public static volatile SingularAttribute<Singer, Date> birthDate;

}

The meta-model class is annotated with @StaticMetamodel, and the attribute is the mapped entity
class. Within the class are the declaration of each attribute and its related types.

It would be tedious to code and maintain those meta-model classes. However, tools can help generate those
meta-model classes automatically based on the JPA mappings within the entity classes. The one provided by
Hibernate is called Hibernate Metamodel Generator (www.hibernate.org/subprojects/jpamodelgen.html).

The way you go about generating your meta-model classes depends on what tools you are using to
develop and build your project. We recommend reading the “Usage” section of the documentation (http://
docs.jboss.org/hibernate/jpamodelgen/1.3/reference/en-US/html_single/#chapter-usage) for
specific details. The sample code that comes as part of this book uses Gradle to generate the meta-classes.
The required dependency for meta-model class generation is the hibernate-jpamodelgen library. This
dependency is configured with its version in the pro-spring-15/build.gradle file.

ext {
 ...

 //persistency libraries
 hibernateVersion = '5.2.10.Final'
 hibernateJpaVersion = '1.0.0.Final'

 hibernate = [
 ...
 jpaModelGen: "org.hibernate:hibernate-jpamodelgen:$hibernateVersion",
 jpaApi : "org.hibernate.javax.persistence:hibernate-jpa-2.1-api:
 $hibernateJpaVersion",
 querydslapt: "com.mysema.querydsl:querydsl-apt:2.7.1"
]
 ...

http://www.hibernate.org/subprojects/jpamodelgen.html
http://docs.jboss.org/hibernate/jpamodelgen/1.3/reference/en-US/html_single/#chapter-usage
http://docs.jboss.org/hibernate/jpamodelgen/1.3/reference/en-US/html_single/#chapter-usage

Chapter 8 ■ Data Access in Spring with JPA2

424

This is the main library for generating meta-model classes. It is used in chapter08/jpa-criteria/
build.gradle by the generateQueryDSL Gradle task to generate the meta-model classes, before compiling
the module. The chapter08/jpa-criteria/build.gradle configuration is shown here:

sourceSets {
 generated
}

sourceSets.generated.java.srcDirs = ['src/main/generated']

configurations {
 querydslapt
}

dependencies {
 compile hibernate.querydslapt, hibernate.jpaModelGen
}

task generateQueryDSL(type: JavaCompile, group: 'build',
 description: 'Generates the QueryDSL query types') {
 source = sourceSets.main.java
 classpath = configurations.compile + configurations.querydslapt

 options.compilerArgs = [
 "-proc:only",
 "-processor", "org.hibernate.jpamodelgen.JPAMetaModelEntityProcessor"
]
 destinationDir = sourceSets.generated.java.srcDirs.iterator.next
}
compileJava.dependsOn generateQueryDSL

With the class generation strategy set up, let’s define a query that accepts both the first name and
last name for searching singers. The following code snippet shows the definition of the new method
findByCriteriaQuery() in the SingerService interface:

package com.apress.prospring5.ch8;

import java.util.List;

public interface SingerService {
 List<Singer> findAll();
 List<Singer> findAllWithAlbum();
 Singer findById(Long id);
 Singer save(Singer singer);
 void delete(Singer singer);
 List<Singer> findAllByNativeQuery();
 List<Singer> findByCriteriaQuery(String firstName, String lastName);
}

Chapter 8 ■ Data Access in Spring with JPA2

425

The next code snippet shows the implementation of the findByCriteriaQuery() method using a JPA 2
criteria API query:

package com.apress.prospring5.ch8;

import org.springframework.stereotype.Service;
import org.springframework.stereotype.Repository;
import org.springframework.transaction.annotation.Transactional;

import java.util.List;

import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;
import javax.persistence.TypedQuery;
import javax.persistence.criteria.CriteriaBuilder;
import javax.persistence.criteria.CriteriaQuery;
import javax.persistence.criteria.Root;
import javax.persistence.criteria.JoinType;
import javax.persistence.criteria.Predicate;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

@Service("jpaSingerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {
 final static String ALL_SINGER_NATIVE_QUERY =
 "select id, first_name, last_name, birth_date, version from singer";

 private Log log =
 LogFactory.getLog(SingerServiceImpl.class);

 @PersistenceContext
 private EntityManager em;
 ...

 @Transactional(readOnly=true)
 @Override
 public List<Singer> findByCriteriaQuery(String firstName, String lastName) {
 log.info("Finding singer for firstName: " + firstName
 + " and lastName: " + lastName);

 CriteriaBuilder cb = em.getCriteriaBuilder();
 CriteriaQuery<Singer> criteriaQuery = cb.createQuery(Singer.class);
 Root<Singer> singerRoot = criteriaQuery.from(Singer.class);
 singerRoot.fetch(Singer_.albums, JoinType.LEFT);
 singerRoot.fetch(Singer_.instruments, JoinType.LEFT);

 criteriaQuery.select(singerRoot).distinct(true);

Chapter 8 ■ Data Access in Spring with JPA2

426

 Predicate criteria = cb.conjunction();

 if (firstName != null) {
 Predicate p = cb.equal(singerRoot.get(Singer_.firstName),
 firstName);
 criteria = cb.and(criteria, p);
 }

 if (lastName != null) {
 Predicate p = cb.equal(singerRoot.get(Singer_.lastName),
 lastName);
 criteria = cb.and(criteria, p);
 }

 criteriaQuery.where(criteria);
 return em.createQuery(criteriaQuery).getResultList();
 }
}

Let’s break down the Criteria API usage.

•	 EntityManager.getCriteriaBuilder() is called to retrieve an instance of
CriteriaBuilder.

•	 A typed query is created using CriteriaBuilder.createQuery(), passing in Singer
as the result type.

•	 The CriteriaQuery.from() method is invoked, passing in the entity class. The result
is a query root object (the Root<Singer> interface) corresponding to the specified
entity. The query root object forms the basis for path expressions within the query.

•	 The two Root.fetch() method calls enforce the eager fetching of the associations
relating to albums and instruments. The JoinType.LEFT argument specifies an outer
join. Calling the Root.fetch() method with JoinType.LEFT as the second argument
is equivalent to specifying the left join fetch join operation in JPQL.

•	 The CriteriaQuery.select() method is called and passes the root query object
as the result type. The distinct() method with true means that duplicate records
should be eliminated.

•	 A Predicate instance is obtained by calling the CriteriaBuilder.conjunction()
method, which means that a conjunction of one or more restrictions is made. A
Predicate can be a simple or compound predicate, and a predicate is a restriction
that indicates the selection criteria defined by an expression.

•	 The first- and last-name arguments are checked. For each not null argument, a
new Predicate will be constructed using the CriteriaBuilder() method (that is,
the CriteriaBuilder.and() method). The method equal() is to specify an equal
restriction, within which Root.get() is called, passing in the corresponding attribute
of the entity class meta-model to which the restriction applies. The constructed
predicate is then “conjunct” with the existing predicate (stored by the variable
criteria) by calling the CriteriaBuilder.and() method.

•	 The Predicate is constructed with all the criteria and restrictions and passed as the
where clause to the query by calling the CriteriaQuery.where() method.

Chapter 8 ■ Data Access in Spring with JPA2

427

•	 Finally, CriteriaQuery is passed to EntityManager. EntityManager then constructs
the query based on the CriteriaQuery value passed in, executes the query, and
returns the result.

To test the criteria query operation, the following code snippet shows the updated SingerJPATest class:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.config.JpaConfig;
import com.apress.prospring5.ch8.Album;
import com.apress.prospring5.ch8.Instrument;
import com.apress.prospring5.ch8.Singer;
import com.apress.prospring5.ch8.SingerService;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

public class SingerJPATest {
 private static Logger logger =
 LoggerFactory.getLogger(SingerJPATest.class);

 private GenericApplicationContext ctx;
 private SingerService singerService;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(JpaConfig.class);
 singerService = ctx.getBean("jpaSingerService", SingerService.class);
 assertNotNull(singerService);
 }
 @Test
 public void tesFindByCriteriaQuery(){
 List<Singer> singers = singerService.findByCriteriaQuery("John", "Mayer");
 assertEquals(1, singers.size());
 listSingersWithAlbum(singers);
 }
 private static void listSingersWithAlbum(List<Singer> singers) {
 logger.info(" ---- Listing singers with instruments:");
 singers.forEach(s -> {
 logger.info(s.toString());
 if (s.getAlbums() != null) {
 s.getAlbums().forEach(a -> logger.info("\t" + a.toString()));
 }

Chapter 8 ■ Data Access in Spring with JPA2

428

 if (s.getInstruments() != null) {
 s.getInstruments().forEach(i -> logger.info
 ("\tInstrument: " + i.getInstrumentId()));
 }
 });
 }

 @After
 public void tearDown(){
 ctx.close();
 }
}

Running the program produces the following output (other output was omitted, but the generated
query was kept):

INFO o.h.h.i.QueryTranslatorFactoryInitiator -
 HHH000397: Using ASTQueryTranslatorFactory
INFO c.a.p.c.SingerServiceImpl -
 Finding singer for firstName: John and lastName: Mayer
Hibernate:
 select
 distinct singer0_.ID as ID1_2_0_,
 albums1_.ID as ID1_0_1_,
 instrument3_.INSTRUMENT_ID as INSTRUME1_1_2_,
 singer0_.BIRTH_DATE as BIRTH_DA2_2_0_,
 singer0_.FIRST_NAME as FIRST_NA3_2_0_,
 singer0_.LAST_NAME as LAST_NAM4_2_0_,
 singer0_.VERSION as VERSION5_2_0_,
 albums1_.RELEASE_DATE as RELEASE_2_0_1_,
 albums1_.SINGER_ID as SINGER_I5_0_1_,
 albums1_.title as title3_0_1_,
 albums1_.VERSION as VERSION4_0_1_,
 albums1_.SINGER_ID as SINGER_I5_0_0__,
 albums1_.ID as ID1_0_0__,
 instrument2_.SINGER_ID as SINGER_I1_3_1__,
 instrument2_.INSTRUMENT_ID as INSTRUME2_3_1__
 from
 singer singer0_
 left outer join
 album albums1_
 on singer0_.ID=albums1_.SINGER_ID
 left outer join
 singer_instrument instrument2_
 on singer0_.ID=instrument2_.SINGER_ID
 left outer join
 instrument instrument3_

 on instrument2_.INSTRUMENT_ID=instrument3_.INSTRUMENT_ID
 where
 1=1

Chapter 8 ■ Data Access in Spring with JPA2

429

 and singer0_.FIRST_NAME=?
 and singer0_.LAST_NAME=?
INFO c.a.p.c.SingerJPATest - ---- Listing singers with instruments:
INFO c.a.p.c.SingerJPATest - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-16
INFO c.a.p.c.SingerJPATest - Album - id: 2, Singer id: 1,
 Title: Battle Studies, Release Date: 2009-11-17
INFO c.a.p.c.SingerJPATest - Album - id: 1, Singer id: 1,
 Title: The Search For Everything, Release Date: 2017-01-20
INFO c.a.p.c.SingerJPATest - Instrument: Guitar
INFO c.a.p.c.SingerJPATest - Instrument: Piano

You can try a different combination or pass a null value to either of the arguments to observe the output.

Introducing Spring Data JPA
The Spring Data JPA project is a subproject under the Spring Data umbrella project. The main objective of
the project is to provide additional features for simplifying application development with JPA.

Spring Data JPA provides several main features. In this section, we discuss two. The first one is the
Repository abstraction, and the other one is the entity listener for keeping track of basic audit information
of entity classes.

Adding Spring Data JPA Library Dependencies
To use Spring Data JPA, we need to add the dependency to the project. Here you can see the Gradle
configuration necessary to use Spring Data JPA:

//pro-spring-15/build.gradle
ext {
 //spring libs
 springVersion = '5.0.0.M5'
 bootVersion = '2.0.0.BUILD-SNAPSHOT'
 springDataVersion = '2.0.0.M2'
 ...

 spring = [
 data : "org.springframework.data:spring-data-jpa:$springDataVersion",
 ...
]
 ...
}

//chapter08/spring-data-jpa/build.gradle
dependencies {
 compile spring.aop, spring.data, misc.guava
}

Chapter 8 ■ Data Access in Spring with JPA2

430

Using Spring Data JPA Repository Abstraction for Database
Operations
One of the main concepts of Spring Data and all its subprojects is the Repository abstraction, which
belongs to the Spring Data Commons project (https://github.com/spring-projects/spring-data-
commons). At the time of this writing, it’s at version 2.0.0 M2. In Spring Data JPA, the repository abstraction
wraps the underlying JPA EntityManager and provides a simpler interface for JPA-based data access. The
central interface within Spring Data is the org.springframework.data.repository.Repository<T,ID
extends Serializable> interface, which is a marker interface belonging to the Spring Data Commons
distribution. Spring Data provides various extensions of the Repository interface; one of them is the
org.springframework.data.repository.CrudRepository interface (which also belongs to the Spring Data
Commons project), which we discuss in this section.

The CrudRepository interface provides a number of commonly used methods. The following code
snippet shows the interface declaration, which is extracted from Spring Data Commons project source code:

package org.springframework.data.repository;

import java.io.Serializable;

@NoRepositoryBean
public interface CrudRepository<T, ID extends Serializable>
 extends Repository<T, ID> {
 long count();
 void delete(ID id);
 void delete(Iterable<? extends T> entities);
 void delete(T entity);
 void deleteAll();
 boolean exists(ID id);
 Iterable<T> findAll();
 T findOne(ID id);
 Iterable<T> save(Iterable<? extends T> entities);
 T save(T entity);
}

Although the method naming is self-explanatory, it’s better to show how the Repository abstraction
works by going through a simple example. Let’s revise the SingerService interface a bit, down to just three
finder methods. The following code snippet shows the revised SingerService interface:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.entities.Singer;

import java.util.List;

public interface SingerService {
 List<Singer> findAll();
 List<Singer> findByFirstName(String firstName);
 List<Singer> findByFirstNameAndLastName(String firstName, String lastName);
}

https://github.com/spring-projects/spring-data-commons
https://github.com/spring-projects/spring-data-commons

Chapter 8 ■ Data Access in Spring with JPA2

431

The next step is to prepare the SingerRepository interface, which extends the CrudRepository
interface. The following code snippet shows the SingerRepository interface:

package com.apress.prospring5.ch8;
import java.util.List;

import com.apress.prospring5.ch8.entities.Singer;
import org.springframework.data.repository.CrudRepository;

public interface SingerRepository extends CrudRepository<Singer, Long> {
 List<Singer> findByFirstName(String firstName);
 List<Singer> findByFirstNameAndLastName(String firstName, String lastName);
}

We just need to declare two methods in this interface, as the findAll() method is already provided by the
CrudRepository.findAll() method. As shown in the preceding listing, the SingerRepository interface extends
the CrudRepository interface, passing in the entity class (Singer) and the ID type (Long). One fancy aspect of
Spring Data’s Repository abstraction is that when you use the common naming convention of findByFirstName
and findByFirstNameAndLastName, you don’t need to provide Spring Data JPA with the named query. Instead,
Spring Data JPA will “infer” and construct the query for you based on the method name. For example, for the
findByFirstName() method, Spring Data JPA will automatically prepare the query select s from Singer s
where s.firstName = :firstName for you and set the named parameter firstName from the argument.

To use the Repository abstraction, you have to define it in Spring’s configuration. The following code
snippet shows the configuration file (app-context-annotation.xml):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd">

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:db/schema.sql"/>
 <jdbc:script location="classpath:db/test-data.sql"/>
 </jdbc:embedded-database>

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="emf"/>
 </bean>

Chapter 8 ■ Data Access in Spring with JPA2

432

 <tx:annotation-driven transaction-manager="transactionManager" />

 <bean id="emf"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="jpaVendorAdapter">
 <bean class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter" />
 </property>
 <property name="packagesToScan"
 value="com.apress.prospring5.ch8.entities"/>
 <property name="jpaProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.H2Dialect
 </prop>
 <prop key="hibernate.max_fetch_depth">3</prop>
 <prop key="hibernate.jdbc.fetch_size">50</prop>
 <prop key="hibernate.jdbc.batch_size">10</prop>
 <prop key="hibernate.show_sql">true</prop>
 </props>
 </property>
 </bean>

 <context:annotation-config/>

 <context:component-scan base-package="com.apress.prospring5.ch8" >
 <context:exclude-filter type="annotation"
 expression="org.springframework.context.annotation.Configuration" />
 </context:component-scan>

 <jpa:repositories base-package="com.apress.prospring5.ch8"
 entity-manager-factory-ref="emf"
 transaction-manager-ref="transactionManager"/>
</beans>

First, we need to add the jpa namespace in the configuration file. Then, the <jpa:repositories> tag
is used to configure Spring Data JPA’s Repository abstraction. We instruct Spring to scan the package
com.apress.prospring5.ch8 for repository interfaces and to pass in EntityManagerFactory and the
transaction manager, respectively.

In case you haven’t noticed, there is an <context:exclude-filter> in the <context:component-scan>
definition that specified classes annotated with @Configuration. That element is introduced to exclude from
scanning the Java configuration class that can be used instead of the XML configuration previously depicted.
That class is shown here:

package com.apress.prospring5.ch8.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;

Chapter 8 ■ Data Access in Spring with JPA2

433

import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableTransactionManagement
@ComponentScan(basePackages = {"com.apress.prospring5.ch8"})
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch8"})
public class DataJpaConfig {

 private static Logger logger = LoggerFactory.getLogger(DataJpaConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:db/schema.sql",
 "classpath:db/test-data.sql").build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }
 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.format_sql", true);
 hibernateProp.put("hibernate.use_sql_comments", true);
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

Chapter 8 ■ Data Access in Spring with JPA2

434

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch8.entities");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }
}

The only configuration element used here to enable support of Spring Data JPA repositories is the
@EnableJpaRepositories annotation. Using the basePackages attribute, the packages where the custom
Repository extensions are scanned and the repository beans are created. The rest of the dependencies
(the emf and the transactionManager beans) are injected automatically by the Spring container.

The following code snippet shows the implementation of the three finder methods of the
SingerService interface:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.entities.Singer;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import org.springframework.beans.factory.annotation.Autowired;

import java.util.List;
import com.google.common.collect.Lists;

@Service("springJpaSingerService")
@Transactional
public class SingerServiceImpl implements SingerService {
 @Autowired
 private SingerRepository singerRepository;

 @Transactional(readOnly=true)
 public List<Singer> findAll() {
 return Lists.newArrayList(singerRepository.findAll());
 }

 @Transactional(readOnly=true)
 public List<Singer> findByFirstName(String firstName) {
 return singerRepository.findByFirstName(firstName);
 }

Chapter 8 ■ Data Access in Spring with JPA2

435

 @Transactional(readOnly=true)
 public List<Singer> findByFirstNameAndLastName(
 String firstName, String lastName) {
 return singerRepository.findByFirstNameAndLastName(
 firstName, lastName);
 }
}

You can see that instead of EntityManager, we just need to inject the singerRepository bean,
generated by Spring based on the SingerRepository interface, into the service class, and Spring Data JPA
will do all the low-level work for us. In the following code snippet, you can see a testing class, and by now
you should already be familiar with its content:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.config.DataJpaConfig;
import com.apress.prospring5.ch8.entities.Singer;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;

public class SingerDataJPATest {

 private static Logger logger =
 LoggerFactory.getLogger(SingerDataJPATest.class);

 private GenericApplicationContext ctx;
 private SingerService singerService;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(DataJpaConfig.class);
 singerService = ctx.getBean(SingerService.class);
 assertNotNull(singerService);
 }

 @Test
 public void testFindAll(){
 List<Singer> singers = singerService.findAll();
 assertTrue(singers.size() > 0);
 listSingers(singers);
 }

Chapter 8 ■ Data Access in Spring with JPA2

436

 @Test
 public void testFindByFirstName(){
 List<Singer> singers = singerService.findByFirstName("John");
 assertTrue(singers.size() > 0);
 assertEquals(2, singers.size());
 listSingers(singers);
 }
 @Test
 public void testFindByFirstNameAndLastName(){
 List<Singer> singers =
 singerService.findByFirstNameAndLastName("John", "Mayer");
 assertTrue(singers.size() > 0);
 assertEquals(1, singers.size());
 listSingers(singers);
 }

 private static void listSingers(List<Singer> singers) {
 logger.info(" ---- Listing singers:");
 for (Singer singer : singers) {
 logger.info(singer.toString());
 }
 }

 @After
 public void tearDown() {
 ctx.close();
 }

}

Running the test class, all tests should pass, and the expected data will be printed in the console.

Using JpaRepository
Besides CrudRepository, there is an even more advanced Spring interface that can make creating custom
repositories easier; it’s called the JpaRepository interface, and it provides batch, paging, and sorting
operations. Figure 8-1 shows the relationship between JpaRepository and the CrudRepository interface.
Depending on the complexity of the application, you can choose to use CrudRepository or JpaRepository.
As you can see from Figure 8-1, JpaRepository extends CrudRepository; thus, it provides all the
functionalities this interface does.

Chapter 8 ■ Data Access in Spring with JPA2

437

Spring Data JPA with Custom Queries
In complex applications, you might need custom queries that cannot be “inferred” by Spring. In this case, the
query must be defined explicitly using the @Query annotation. Let’s use this annotation to search for all music
albums containing The in their title. The following code snippet depicts the AlbumRepository interface:

package com.apress.prospring5.ch8.repos;

import com.apress.prospring5.ch8.entities.Album;
import com.apress.prospring5.ch8.entities.Singer;
import org.springframework.data.jpa.repository.JpaRepository;

Figure 8-1.  Spring Data JPA Repository interfaces hierarchy

Chapter 8 ■ Data Access in Spring with JPA2

438

import org.springframework.data.jpa.repository.Query;
import org.springframework.data.repository.query.Param;

import java.util.List;

public interface AlbumRepository extends JpaRepository<Album, Long> {
 List<Album> findBySinger(Singer singer);

 @Query("select a from Album a where a.title like %:title%")
 List<Album> findByTitle(@Param("title") String t);
}

The previous query has a named parameter called title. When the name of the named parameter is
the same as the name of the argument in the method annotated with @Query, the @Param annoation is not
needed. But if the method argument has a different name, the @Param annotation is needed to tell Spring
that the value of this argument is to be injected in the named parameter in the query.

AlbumServiceImpl is quite simple and only uses the albumRepository bean to call its methods.

//AlbumService.java
package com.apress.prospring5.ch8.services;

import com.apress.prospring5.ch8.entities.Album;
import com.apress.prospring5.ch8.entities.Singer;
import java.util.List;

public interface AlbumService {
 List<Album> findBySinger(Singer singer);
 List<Album> findByTitle(String title);
}

//AlbumServiceImpl.java
package com.apress.prospring5.ch8.services;

import com.apress.prospring5.ch8.entities.Album;
import com.apress.prospring5.ch8.entities.Singer;
import com.apress.prospring5.ch8.repos.AlbumRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import java.util.List;
@Service("springJpaAlbumService")
@Transactional
public class AlbumServiceImpl implements AlbumService {
 @Autowired
 private AlbumRepository albumRepository;

 @Transactional(readOnly=true)
 @Override public List<Album> findBySinger(Singer singer) {
 return albumRepository.findBySinger(singer);
 }

 @Override public List<Album> findByTitle(String title) {
 return albumRepository.findByTitle(title);
 }
}

Chapter 8 ■ Data Access in Spring with JPA2

439

To test the findByTitle(..) method, you can use the following test class:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.config.DataJpaConfig;
import com.apress.prospring5.ch8.entities.Album;
import com.apress.prospring5.ch8.services.AlbumService;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.List;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;

public class SingerDataJPATest {

 private static Logger logger =
 LoggerFactory.getLogger(SingerDataJPATest.class);

 private GenericApplicationContext ctx;
 private AlbumService albumService;

 @Before
 public void setUp(){
 ctx = new AnnotationConfigApplicationContext(DataJpaConfig.class);
 albumService = ctx.getBean(AlbumService.class);
 assertNotNull(albumService);
 }

 @Test
 public void testFindByTitle(){
 List<Album> albums = albumService.findByTitle("The");
 assertTrue(albums.size() > 0);
 assertEquals(2, albums.size());
 albums.forEach(a -> logger.info(a.toString() + ", Singer: "
 + a.getSinger().getFirstName() + " "
 + a.getSinger().getLastName()));
 }

 @After
 public void tearDown() {
 ctx.close();
 }

}

Chapter 8 ■ Data Access in Spring with JPA2

440

If you run the previous test class, the testFindByTitle passes, and the two album details are printed in
the console.

INFO c.a.p.c.SingerDataJPATest - Album - id: 1, Singer id: 1,
 Title: The Search For Everything, Release Date: 2017-01-20, Singer: John Mayer
INFO c.a.p.c.SingerDataJPATest - Album - id: 3, Singer id: 2,
 Title: From The Cradle, Release Date: 1994-09-13, Singer: Eric Clapton

Keeping Track of Changes on the Entity Class
In most applications, we need to keep track of basic audit activities for the business data being maintained
by users. The audit information typically includes the user who creates the data, the date it was created, the
date it was last modified, and the user who last modified it.

The Spring Data JPA project provides this function in the form of a JPA entity listener, which helps you
keep track of the audit information automatically. To use the feature, until Spring 4, the entity class needed
to implement the Auditable<U, ID extends Serializable, T extends TemporalAccessor> extends
Persistable<ID> interface (belonging to Spring Data Commons) or extend any class that implements this
interface. The following code snippet shows the Auditable interface that was extracted from Spring Data’s
reference documentation:

package org.springframework.data.domain;

import java.io.Serializable;
import java.time.temporal.TemporalAccessor;
import java.util.Optional;

public interface Auditable<U, ID extends Serializable,
 T extends TemporalAccessor> extends Persistable<ID> {
 Optional<U> getCreatedBy();

 void setCreatedBy(U createdBy);

 Optional<T> getCreatedDate();

 void setCreatedDate(T creationDate);

 Optional<U> getLastModifiedBy();

 void setLastModifiedBy(U lastModifiedBy);

 Optional<T> getLastModifiedDate();

 void setLastModifiedDate(T lastModifiedDate);
}

Chapter 8 ■ Data Access in Spring with JPA2

441

To show how it works, let’s create a new table called SINGER_AUDIT in the database schema, which is
based on the SINGER table, with four audit-related columns added. The following code snippet shows the
table creation script (schema.sql):

CREATE TABLE SINGER_AUDIT (
 ID INT NOT NULL AUTO_INCREMENT
 , FIRST_NAME VARCHAR(60) NOT NULL
 , LAST_NAME VARCHAR(40) NOT NULL
 , BIRTH_DATE DATE
 , VERSION INT NOT NULL DEFAULT 0
 , CREATED_BY VARCHAR(20)
 , CREATED_DATE TIMESTAMP
 , LAST_MODIFIED_BY VARCHAR(20)
 , LAST_MODIFIED_DATE TIMESTAMP
 , UNIQUE UQ_SINGER_AUDIT_1 (FIRST_NAME, LAST_NAME)
 , PRIMARY KEY (ID)
);

As you can see from the definition of the Auditable interface previously shown, the date types columns
are restricted to types extending java.time.temporal.TemporalAccessor.

Starting with Spring 5, implementing Auditable<U,ID extends Serializable> is no longer necessary
because everything can be replaced by annotations. The four underlined columns indicate the audit-related
columns. Notice the @CreatedBy, @CreatedDate, @LastModifiedBy, and @LastModifiedDate annotations.
Using these annotations, the type restriction for the date columns no longer applies. The next step is to
create the entity class called SingerAudit. The following code snippet shows the SingerAudit class:

package com.apress.prospring5.ch8.entities;

import org.springframework.data.annotation.CreatedBy;
import org.springframework.data.annotation.CreatedDate;
import org.springframework.data.annotation.LastModifiedBy;
import org.springframework.data.annotation.LastModifiedDate;
import org.springframework.data.jpa.domain.support.AuditingEntityListener;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;
import java.util.Optional;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@EntityListeners(AuditingEntityListener.class)
@Table(name = "singer_audit")
public class SingerAudit implements Serializable {

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

Chapter 8 ■ Data Access in Spring with JPA2

442

 @Version
 @Column(name = "VERSION")
 private int version;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

 @CreatedDate
 @Column(name = "CREATED_DATE")
 @Temporal(TemporalType.TIMESTAMP)
 private Date createdDate;

 @CreatedBy
 @Column(name = "CREATED_BY")
 private String createdBy;

 @LastModifiedBy
 @Column(name = "LAST_MODIFIED_BY")
 private String lastModifiedBy;

 @LastModifiedDate
 @Column(name = "LAST_MODIFIED_DATE")
 @Temporal(TemporalType.TIMESTAMP)
 private Date lastModifiedDate;

 public Long getId() {
 return this.id;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return this.lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

Chapter 8 ■ Data Access in Spring with JPA2

443

 public Date getBirthDate() {
 return this.birthDate;
 }

 public void setBirthDate(Date birthDate) {
 this.birthDate = birthDate;
 }

 public Optional<String> getCreatedBy() {
 return Optional.of(createdBy);
 }

 public void setCreatedBy(String createdBy) {
 this.createdBy = createdBy;
 }

 public Optional<Date> getCreatedDate() {
 return Optional.of(createdDate);
 }

 public void setCreatedDate(Date createdDate) {
 this.createdDate = createdDate;
 }

 public Optional<String> getLastModifiedBy() {
 return Optional.of(lastModifiedBy);
 }

 public void setLastModifiedBy(String lastModifiedBy) {
 this.lastModifiedBy = lastModifiedBy;
 }

 public Optional<Date> getLastModifiedDate() {
 return Optional.of(lastModifiedDate);
 }

 public void setLastModifiedDate(Date lastModifiedDate) {
 this.lastModifiedDate = lastModifiedDate;
 }

 public String toString() {
 return "Singer - Id: " + id + ", First name: " + firstName
 + ", Last name: " + lastName + ", Birthday: " + birthDate
 + ", Created by: " + createdBy + ", Create date: " + createdDate
 + ", Modified by: " + lastModifiedBy + ", Modified date: "
 + lastModifiedDate;
 }
}

Chapter 8 ■ Data Access in Spring with JPA2

444

The @Column annotations are applied on the auditing fields to map to the actual column in the table.
The @EntityListeners(AuditingEntityListener.class) annotation registers AuditingEntityListener
to be used only for this entity in the persistence context. In more complex examples when more than
one entity class is needed, the auditing functionality is isolated into an abstract class annotated with @
MappedSuperclass, and this will be the class also annotated with @EntityListeners(AuditingEntityListe
ner.class). If SingerAudit were part of such hierarchy, it would have to extend the following class:

package com.apress.prospring5.ch8.entities;

import org.springframework.data.annotation.CreatedBy;
import org.springframework.data.annotation.CreatedDate;
import org.springframework.data.annotation.LastModifiedBy;
import org.springframework.data.annotation.LastModifiedDate;
import org.springframework.data.jpa.domain.support.AuditingEntityListener;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;
import java.util.Optional;

@MappedSuperclass
@EntityListeners(AuditingEntityListener.class)
public abstract class AuditableEntity<U> implements Serializable {
 @CreatedDate
 @Column(name = "CREATED_DATE")
 @Temporal(TemporalType.TIMESTAMP)
 protected Date createdDate;

 @CreatedBy
 @Column(name = "CREATED_BY")
 protected String createdBy;

 @LastModifiedBy
 @Column(name = "LAST_MODIFIED_BY")
 protected String lastModifiedBy;

 @LastModifiedDate
 @Column(name = "LAST_MODIFIED_DATE")
 @Temporal(TemporalType.TIMESTAMP)
 protected Date lastModifiedDate;

 public Optional<String> getCreatedBy() {
 return Optional.of(createdBy);
 }

 public void setCreatedBy(String createdBy) {
 this.createdBy = createdBy;
 }

 public Optional<Date> getCreatedDate() {
 return Optional.of(createdDate);
 }

Chapter 8 ■ Data Access in Spring with JPA2

445

 public void setCreatedDate(Date createdDate) {
 this.createdDate = createdDate;
 }

 public Optional<String> getLastModifiedBy() {
 return Optional.of(lastModifiedBy);
 }

 public void setLastModifiedBy(String lastModifiedBy) {
 this.lastModifiedBy = lastModifiedBy;
 }

 public Optional<Date> getLastModifiedDate() {
 return Optional.of(lastModifiedDate);
 }

 public void setLastModifiedDate(Date lastModifiedDate) {
 this.lastModifiedDate = lastModifiedDate;
 }
}

This would greatly reduce the size of SingerAudit, becoming this:

package com.apress.prospring5.ch8.entities;

import javax.persistence.*;
import java.util.Date;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer_audit")
public class SingerAudit extends AuditableEntity<SingerAudit> {

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @Column(name = "FIRST_NAME")
 private String firstName;
 @Column(name = "LAST_NAME")
 private String lastName;

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

Chapter 8 ■ Data Access in Spring with JPA2

446

 public Long getId() {
 return this.id;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return this.lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public Date getBirthDate() {
 return this.birthDate;
 }

 public void setBirthDate(Date birthDate) {
 this.birthDate = birthDate;
 }

 public String toString() {
 return "Singer - Id: " + id + ", First name: " + firstName
 + ", Last name: " + lastName + ", Birthday: " + birthDate
 + ", Created by: " + createdBy + ", Create date: " + createdDate
 + ", Modified by: " + lastModifiedBy + ", Modified date: "
 + lastModifiedDate;
 }
}

The following code snippet shows the SingerAuditService interface, where we define only a few
methods to demonstrate the auditing feature:

package com.apress.prospring5.ch8.services;

import com.apress.prospring5.ch8.entities.SingerAudit;

import java.util.List;

public interface SingerAuditService {
 List<SingerAudit> findAll();
 SingerAudit findById(Long id);
 SingerAudit save(SingerAudit singer);
}

Chapter 8 ■ Data Access in Spring with JPA2

447

The SingerAuditRepository interface just extends CrudRepository, which has already implemented
all the methods that we are going to use for SingerAuditService. The findById() method is implemented
by the CrudRepository.findOne() method. The following code snippet shows the service implementation
class SingerAuditServiceImpl:

package com.apress.prospring5.ch8.services;

import com.apress.prospring5.ch8.entities.SingerAudit;
import com.apress.prospring5.ch8.repos.SingerAuditRepository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import org.springframework.beans.factory.annotation.Autowired;

import java.util.List;
import com.google.common.collect.Lists;

@Service("singerAuditService")
@Transactional
public class SingerAuditServiceImpl implements SingerAuditService {

 @Autowired
 private SingerAuditRepository singerAuditRepository;

 @Transactional(readOnly=true)
 public List<SingerAudit> findAll() {
 return Lists.newArrayList(singerAuditRepository.findAll());
 }

 public SingerAudit findById(Long id) {
 return singerAuditRepository.findOne(id).get();
 }

 public SingerAudit save(SingerAudit singer) {
 return singerAuditRepository.save(singer);
 }
}

We also need to do a little configuration work. Using the XML configuration, the
AuditingEntityListener<T> JPA entity listener that provides the auditing service needs to be declared
into a file called /src/main/resources/META-INF/orm.xml (it’s mandatory to use this file name, which is
indicated by the JPA specification) under the project root folder and declare the listener, like the one shown
here:

<?xml version="1.0" encoding="UTF-8" ?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_2_0.xsd"
 version="2.0">
 <description>JPA</description>

Chapter 8 ■ Data Access in Spring with JPA2

448

 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 �<entity-listener class="org.springframework.data.jpa.domain.support.

AuditingEntityListener" />
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
</entity-mappings>

Using annotation configuration, this file is replaced by the @EntityListeners
(AuditingEntityListener.class) annotation. The JPA provider will discover this listener during
persistence operations (save and update events) for audit fields processing. The rest of the Spring
configuration is almost identical to what you’ve seen so far, with one exception: a new configuration
annotation to enable auditing, of course.

package com.apress.prospring5.ch8.com.apress.prospring5.ch8.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaAuditing;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableTransactionManagement
@ComponentScan(basePackages = {"com.apress.prospring5.ch8"})
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch8.repos"})
@EnableJpaAuditing(auditorAwareRef = "auditorAwareBean")
public class AuditConfig {
 // same content as the configuration in the previous section
 ...
}

Chapter 8 ■ Data Access in Spring with JPA2

449

The @EnableJpaAuditing(auditorAwareRef = "auditorAwareBean") annoation is the equivalent of
the <jpa:auditing auditor-aware-ref="auditorAwareBean"/> element that is used to enable the JPA
auditing feature using XML configuration. The auditorAwareBean bean provides the user information. The
following code snippet shows the AuditorAwareBean class:

package com.apress.prospring5.ch8;

import org.springframework.data.domain.AuditorAware;
import org.springframework.stereotype.Component;

import java.util.Optional;

@Component
public class AuditorAwareBean implements AuditorAware<String> {
 public Optional<String> getCurrentAuditor() {
 return Optional.of("prospring5");
 }
}

AuditorAwareBean implements the AuditorAware<T> interface, passing in the type String. In real
situations, this should be an instance of user information, for example, a User class, which represents the
logged-in user who is performing the data update action. We use String here just for simplicity. In the
AuditorAwareBean class, the method getCurrentAuditor() is implemented, and the value is hard-coded to
prospring5. In real situations, the user should be obtained from the underlying security infrastructure. For
example, in Spring Security, the user information can be retrieved from the SecurityContextHolder class.

Now that all the implementation work is completed, the following code snippet shows the
SpringAuditJPADemo testing program:

package com.apress.prospring5.ch8;

import java.util.GregorianCalendar;
import java.util.List;
import java.util.Date;

import com.apress.prospring5.ch8.config.AuditConfig;
import com.apress.prospring5.ch8.entities.SingerAudit;
import com.apress.prospring5.ch8.services.SingerAuditService;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class SpringAuditJPADemo {
 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AuditConfig.class);

 SingerAuditService singerAuditService = ctx.getBean(SingerAuditService.class);

 List<SingerAudit> singers = singerAuditService.findAll();
 listSingers(singers);

Chapter 8 ■ Data Access in Spring with JPA2

450

 System.out.println("Add new singer");
 SingerAudit singer = new SingerAudit();
 singer.setFirstName("BB");
 singer.setLastName("King");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1940, 8, 16)).getTime().getTime()));
 singerAuditService.save(singer);
 singers = singerAuditService.findAll();
 listSingers(singers);

 singer = singerAuditService.findById(4l);
 System.out.println("");
 System.out.println("Singer with id 4:" + singer);
 System.out.println("");

 System.out.println("Update singer");
 singer.setFirstName("John Clayton");
 singerAuditService.save(singer);
 singers = singerAuditService.findAll();
 listSingers(singers);

 ctx.close();
 }

 private static void listSingers(List<SingerAudit> singerAudits) {
 System.out.println("");
 System.out.println("Listing singers without details:");
 for (SingerAudit audit: singerAudits) {
 System.out.println(audit);
 System.out.println();
 }
 }
}

In the main() method, we list the singer audit information both after a new singer is inserted and after
it’s later updated. Running the program produces the following output:

Add new singer
Listing singers without details:
// other singers ...
Singer - Id: 4, First name: BB, Last name: King, Birthday: 1940-09-16,
 Created by: prospring5, Create date: 2017-05-07 14:19:02.96,
 Modified by: prospring5, Modified date: 2017-05-07 14:19:02.96

Update singer
Listing singers without details:
// other singers ...
Singer - Id: 4, First name: Riley B., Last name: King, Birthday: 1940-09-16,
 Created by: prospring5, Create date: 2017-05-07 14:33:15.645,
 Modified by: prospring5, Modified date: 2017-05-07 14:33:15.663

Chapter 8 ■ Data Access in Spring with JPA2

451

In the previous output, you can see that after the new singer is created, the create date and last-modified
dates are the same. However, after the update, the last-modified date is updated. Auditing is another handy
feature that Spring Data JPA provides so that you don’t need to implement the logic yourself.

Keeping Entity Versions by Using Hibernate Envers
In an enterprise application, for business-critical data, it is always a requirement to keep versions of each
entity. For example, in a customer relationship management (CRM) system, each time a customer record is
inserted, updated, or deleted, the previous version should be kept in a history or auditing table to fulfill the
firm’s auditing or other compliance requirements.

To accomplish this, there are two common options. The first one is to create database triggers that will
clone the pre-update record into the history table before any update operations. The second is to develop
the logic in the data access layer (for example, by using AOP). However, both options have their drawbacks.
The trigger approach is tied to the database platform, while implementing the logic manually is quite clumsy
and error prone.

Hibernate Envers (short for “entity versioning system”) is a Hibernate module specifically designed
to automate the versioning of entities. In this section, we discuss how to use Envers to implement the
versioning of the SingerAudit entity.

 H ibernate Envers is not a feature of JPA. We mention it here because we believe it’s more appropriate to
cover this after we have discussed some basic auditing features that you can use with Spring Data JPA.

Envers supports two auditing strategies, which are shown in Table 8-1.

Table 8-1.  Envers Auditing Strategies

Auditing Strategy Description

Default Envers maintains a column for the revision of the record. Every time a record is
inserted or updated, a new record will be inserted into the history table with the
revision number retrieved from a database sequence or table.

Validity audit This strategy stores both the start and end revisions of each history record. Every
time a record is inserted or updated, a new record will be inserted into the history
table with the start revision number. At the same time, the previous record will
be updated with the end revision number. It’s also possible to configure Envers
to record the timestamp at which the end revision was updated into the previous
history record.

In this section, we demonstrate the validity audit strategy. Although it will trigger more database
updates, retrieving the history records becomes much faster. Because the end revision timestamp is also
written to the history records, it will be easier to identify the snapshot of a record at a specific point in time
when querying the data.

Chapter 8 ■ Data Access in Spring with JPA2

452

Adding Tables for Entity Versioning
To support entity versioning, we need to add a few tables. First, for each table that the entity (in this case,
the SingerAudit entity class) will be versioning, we need to create the corresponding history table. For
the versioning of records in the SINGER_AUDIT table, let’s create a history table called SINGER_AUDIT_H. The
following code snippet shows the table creation script (schema.sql):

CREATE TABLE SINGER_AUDIT_H (
 ID INT NOT NULL AUTO_INCREMENT
 , FIRST_NAME VARCHAR(60) NOT NULL
 , LAST_NAME VARCHAR(40) NOT NULL
 , BIRTH_DATE DATE
 , VERSION INT NOT NULL DEFAULT 0
 , CREATED_BY VARCHAR(20)
 , CREATED_DATE TIMESTAMP
 , LAST_MODIFIED_BY VARCHAR(20)
 , LAST_MODIFIED_DATE TIMESTAMP
 , AUDIT_REVISION INT NOT NUL
 , ACTION_TYPE INT
 , AUDIT_REVISION_END INT
 , AUDIT_REVISION_END_TS TIMESTAMP
 , UNIQUE UQ_SINGER_AUDIT_H_1 (FIRST_NAME, LAST_NAME)
 , PRIMARY KEY (ID, AUDIT_REVISION)
);

To support the validity audit strategy, we need to add four columns for each history table, shown
underlined in the previous script snippet. Table 8-2 shows the columns and their purposes. Hibernate
Envers requires another table for keeping track of the revision number and the timestamp at which each
revision was created. The table name should be REVINFO.

Table 8-2.  Envers Auditing Strategies

Auditing Strategy Data Type Description

AUDIT_REVISION INT The start revision of the history record.

ACTION_TYPE INT The action type, with these possible values: 0 for add, 1 for
modify, and 2 for delete

AUDIT_REVISION_END INT The end revision of the history record

AUDIT_REVISION_END_TS TIMESTAMP The timestamp at which the end revision was updated

The following code snippet shows the table creation script (schema.sql):

CREATE TABLE REVINFO (
 REVTSTMP BIGINT NOT NULL
 , REV INT NOT NULL AUTO_INCREMENT
 , PRIMARY KEY (REVTSTMP, REV)
);

Chapter 8 ■ Data Access in Spring with JPA2

453

The REV column is for storing each revision number, which will be auto-incremented when a new
history record is created. The REVTSTMP column stores the timestamp (in a number format) when the
revision was created.

Configuring EntityManagerFactory for Entity Versioning
Hibernate Envers is implemented in the form of EJB listeners. We can configure those listeners in the
LocalContainerEntityManagerFactory bean. Here you can see the Java configuration class. There is no
point in showing an XML configuration because the only difference for this section is that we have a lot of
extra Hibernate-specific properties.

package com.apress.prospring5.ch8.config;

import org.hibernate.envers.boot.internal.EnversServiceImpl;
import org.hibernate.envers.event.spi.EnversPostUpdateEventListenerImpl;
import org.hibernate.event.spi.PostUpdateEventListener;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.domain.support.AuditingEntityListener;
import org.springframework.data.jpa.repository.config.EnableJpaAuditing;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableTransactionManagement
@ComponentScan(basePackages = {"com.apress.prospring5.ch8"})
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch8.repos"})
@EnableJpaAuditing(auditorAwareRef = "auditorAwareBean")
public class EnversConfig {

 private static Logger logger = LoggerFactory.getLogger(EnversConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:db/schema.sql", "classpath:db/test-data.sql").build();

Chapter 8 ■ Data Access in Spring with JPA2

454

 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.format_sql", true);
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 //Properties for Hibernate Envers
 hibernateProp.put("org.hibernate.envers.audit_table_suffix", "_H");
 hibernateProp.put("org.hibernate.envers.revision_field_name",
 "AUDIT_REVISION");
 hibernateProp.put("org.hibernate.envers.revision_type_field_name",
 "ACTION_TYPE");
 hibernateProp.put("org.hibernate.envers.audit_strategy",

 "org.hibernate.envers.strategy.ValidityAuditStrategy");
 hibernateProp.put(

 "org.hibernate.envers.audit_strategy_validity_end_rev_field_name",
 "AUDIT_REVISION_END");
 hibernateProp.put(

 "org.hibernate.envers.audit_strategy_validity_store_revend_timestamp",
 "True");
 hibernateProp.put(

 "org.hibernate.envers.audit_strategy_validity_revend_timestamp_field_name",
 "AUDIT_REVISION_END_TS");

 return hibernateProp;
 }

Chapter 8 ■ Data Access in Spring with JPA2

455

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch8.entities");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getObject();
 }
}

The Envers audit event listener org.hibernate.envers.event.AuditEventListener is attached to
various persistence events. The listener intercepts the events post-insert, post-update, or post-delete and
clones the pre-update snapshot of the entity class into the history table. The listener is also attached to those
association update events (pre-collection-update, pre-collection-remove, and pre-collection-recreate) for
handling the update operations of the entity class’s associations. Envers is capable of keeping the history
of the entities within an association (for example one-to-many or many-to-many). A few properties are also
defined for Hibernate Envers, which are summarized in Table 8-3 (the prefix of the properties,
org.hibernate.envers, is omitted for clarity).2

2You can find the full list of Hibernate properties in the Hibernate official documentation at https://docs.jboss.org/
hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#envers-configuration.

Table 8-3.  Hibernate Envers Properties Table

Method Description

audit_table_suffix The table name suffix for the versioned entity. For example, for the
entity class SingerAudit, which is mapped to the SINGER_AUDIT
table, Envers will keep the history in the table SINGER_AUDIT_H,
since we defined the value _H for the property.

revision_field_name The history table’s column for storing the revision number for
each history record.

revision_type_field_name The history table’s column for storing the update action type.

audit_strategy The audit strategy to use for entity versioning.

audit_strategy_validity_end_
rev_field_name

The history table’s column for storing the end revision number for
each history record. Required only when using the validity audit
strategy.

audit_strategy_validity_store_
revend_timestamp

Whether to store the timestamp when the end revision number
for each history record is updated. Required only when using the
validity audit strategy.

audit_strategy_validity_revend_
timestamp_field_name

The history table’s column for storing the timestamp when the
end revision number for each history record is updated. Required
only when using the validity audit strategy and the previous
property is set to true.

https://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#envers-configuration

Chapter 8 ■ Data Access in Spring with JPA2

456

Enabling Entity Versioning and History Retrieval
To enable versioning of an entity, just annotate the entity class with @Audited. This annotation can be used
at the class level and then the changes on all the fields will be audited. If you want to escape certain fields
from auditing, @NotAudited can be used on those fields. Here you can see a snippet of the SingerAudit
entity class with the annotation applied:

package com.apress.prospring5.ch8.entities;

import org.hibernate.envers.Audited;
import org.springframework.data.jpa.domain.support.AuditingEntityListener;
...

@Entity
@Table(name = "singer_audit")
@Audited
@EntityListeners(AuditingEntityListener.class)
public class SingerAudit implements Serializable {
 ...
}

The entity class is annotated with @Audited, which Envers listeners will check for and perform
versioning of the updated entities. By default, Envers will also try to keep a history of the associations; if you
want to avoid this, you should use the @NotAudited annotation mentioned earlier.

To retrieve the history records, Envers provides the org.hibernate.envers.AuditReader
interface, which can be obtained from the AuditReaderFactory class. Let’s add a new method called
findAuditByRevision() into the SingerAuditService interface for retrieving the SingerAudit history
record by the revision number. The following code snippet shows the SingerAuditService interface:

package com.apress.prospring5.ch8.services;

import com.apress.prospring5.ch8.entities.SingerAudit;

import java.util.List;

public interface SingerAuditService {
 List<SingerAudit> findAll();
 SingerAudit findById(Long id);
 SingerAudit save(SingerAudit singerAudit);
 SingerAudit findAuditByRevision(Long id, int revision);
}

To retrieve a history record, one option is to pass in the entity’s ID and the revision number. The
following code snippet shows the implementation of the method extracting revisions:

package com.apress.prospring5.ch8.services;

import com.apress.prospring5.ch8.entities.SingerAudit;
import com.apress.prospring5.ch8.repos.SingerAuditRepository;
import com.google.common.collect.Lists;
import org.hibernate.envers.AuditReader;

Chapter 8 ■ Data Access in Spring with JPA2

457

import org.hibernate.envers.AuditReaderFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.List;

@Service("singerAuditService")
@Transactional
public class SingerAuditServiceImpl implements SingerAuditService {

 @Autowired
 private SingerAuditRepository singerAuditRepository;

 @PersistenceContext
 private EntityManager entityManager;

 @Transactional(readOnly = true)
 public List<SingerAudit> findAll() {
 return Lists.newArrayList(singerAuditRepository.findAll());
 }

 public SingerAudit findById(Long id) {
 return singerAuditRepository.findOne(id).get();
 }

 public SingerAudit save(SingerAudit singer) {
 return singerAuditRepository.save(singer);
 }

 @Transactional(readOnly = true)
 @Override
 public SingerAudit findAuditByRevision(Long id, int revision) {
 AuditReader auditReader = AuditReaderFactory.get(entityManager);
 return auditReader.find(SingerAudit.class, id, revision);
 }
}

The EntityManager is injected into the class, which is passed to AuditReaderFactory to retrieve an
instance of AuditReader. Then we can call the AuditReader.find() method to retrieve the instance of the
SingerAudit entity at a particular revision.

Testing Entity Versioning
Let’s take a look at how entity versioning works. The following code snippet shows the testing code snippet;
the code for bootstrapping ApplicationContext and the listSingers() function is the same as the code in
the SpringJpaDemo class.

Chapter 8 ■ Data Access in Spring with JPA2

458

package com.apress.prospring5.ch8;

import java.util.GregorianCalendar;
import java.util.List;
import java.util.Date;

import com.apress.prospring5.ch8.config.EnversConfig;
import com.apress.prospring5.ch8.entities.SingerAudit;
import com.apress.prospring5.ch8.services.SingerAuditService;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

public class SpringEnversJPADemo {
 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicati onContext(EnversConfig.class);

 SingerAuditService singerAuditService =
 ctx.getBean(SingerAuditService.class);

 System.out.println("Add new singer");
 SingerAudit singer = new SingerAudit();
 singer.setFirstName("BB");
 singer.setLastName("King");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1940, 8, 16)).getTime().getTime()));
 singerAuditService.save(singer);
 listSingers(singerAuditService.findAll());

 System.out.println("Update singer");
 singer.setFirstName("Riley B.");
 singerAuditService.save(singer);
 listSingers(singerAuditService.findAll());
 SingerAudit oldSinger = singerAuditService.findAuditByRevision(4l, 1);
 System.out.println("");
 System.out.println("Old Singer with id 1 and rev 1:" + oldSinger);
 System.out.println("");
 oldSinger = singerAuditService.findAuditByRevision(4l, 2);
 System.out.println("");
 System.out.println("Old Singer with id 1 and rev 2:" + oldSinger);
 System.out.println("");

 ctx.close();
 }

 private static void listSingers(List<SingerAudit> singers) {
 System.out.println("");
 System.out.println("Listing singers:");
 for (SingerAudit singer: singers) {
 System.out.println(singer);
 System.out.println();

Chapter 8 ■ Data Access in Spring with JPA2

459

 }
 }
}

We first create a new singer and then update it. Then we retrieve the SingerAudit entities with revisions
1 and 2, respectively. Running the code produces the following output:

Listing singers:
...//
Singer - Id: 4, First name: BB, Last name: King, Birthday: 1940-09-16,
 Created by: prospring5, Create date: 2017-05-11 23:50:14.778,
 Modified by: prospring5, Modified date: 2017-05-11 23:50:14.778

Old Singer with id 1 and rev 1:Singer - Id: 4,
 First name: BB, Last name: King, Birthday: 1940-09-16,
 Created by: prospring5, Create date: 2017-05-11 23:50:14.778,
 Modified by: prospring5, Modified date: 2017-05-11 23:50:14.778

Old Singer with id 1 and rev 2:Singer - Id: 4,
 First name: Riley B., Last name: King, Birthday: 1940-09-16,
 Created by: prospring5, Create date: 2017-05-11 23:50:14.778,
 Modified by: prospring5, Modified date: 2017-05-11 23:50:15.0

From the previous output, you can see that after the update operation, the SingerAudit’s first name is
changed to Riley B.. However, when looking at the history, at revision 1, the first name is BB. At revision 2,
the first name becomes Riley B.. Also notice that the last-modified date of revision 2 reflects the updated
date and time correctly.

Spring Boot JPA
Until now we have configured everything including entities, database, repositories, and services. As you
probably expect by now, there should be a Spring Boot starter artifact to help you develop your project
faster and minimize the effort of configuration. A Spring Boot JPA starter depends on Spring Boot JPA,
so it comes with preconfigured embedded database; all it’s needed is for the dependency to be on the
classpath. It also comes with Hibernate to abstract the persistence layer. Spring Repository interfaces are
automatically detected. So, all that is left for the developer to do is to provide entities, repository extensions,
and an Application class to use them all together. Eventually, you can also develop a class to populate the
database. All this will be done and explained in this section.

First we need to add the Spring Boot starter JPA as a dependency. This is done like all other libraries before
it. Add the version, group ID, and artifact ID in the root build.gradle file and define the dependencies in the
chapter08/boot-jpa/build.gradle file. The two configuration snippets are shown here:

//pro-spring-15/build.gradle
ext {
 //spring libs
 springVersion = '5.0.0.M5'
 bootVersion = '2.0.0.BUILD-SNAPSHOT'
 springDataVersion = '2.0.0.M2'
 ...

Chapter 8 ■ Data Access in Spring with JPA2

460

 boot = [
 ...
 starterJdbc :
 "org.springframework.boot:spring-boot-starter-jdbc:$bootVersion",
 starterJpa :
 "org.springframework.boot:spring-boot-starter-data-jpa:$bootVersion"
]

 testing = [
 junit: "junit:junit:$junitVersion"
]

 db = [
 ...
 h2 : "com.h2database:h2:$h2Version"
]
}

//chapter08/boot-jpa/build.gradle
buildscript {
 repositories {
 mavenLocal
 mavenCentral
 maven { url "http://repo.spring.io/release" }
 maven { url "http://repo.spring.io/milestone" }
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/libs-snapshot" }
 }
 dependencies {
 classpath boot.springBootPlugin
 }
}
 apply plugin: 'org.springframework.boot'

 dependencies {
 compile boot.starterJpa, db.h2
 }
}

After adding these dependencies and refreshing the project, the entire tree of spring-boot-
starter-data-jpa dependencies should be visible in the IntelliJ IDEA Gradle Projects view, as shown
in Figure 8-2.

Chapter 8 ■ Data Access in Spring with JPA2

461

The entities will be the same as used until now (Singer, Album, and Instrument), so there is no need to
depict them again. The bean to initialize them is of type DBInitializer, and it is a service class that uses the
SingerRepository and InstrumentRepository beans, provided by Spring Boot to save a set of objects to the
database. Its contents are shown here:

package com.apress.prospring5.ch8.config;

import com.apress.prospring5.ch8.InstrumentRepository;
import com.apress.prospring5.ch8.SingerRepository;
import com.apress.prospring5.ch8.entities.Album;
import com.apress.prospring5.ch8.entities.Instrument;
import com.apress.prospring5.ch8.entities.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import javax.annotation.PostConstruct;
import java.util.Date;
import java.util.GregorianCalendar;

Figure 8-2.  Dependency tree for the Spring Boot Starter artifact

Chapter 8 ■ Data Access in Spring with JPA2

462

@Service
public class DBInitializer {
 private Logger logger = LoggerFactory.getLogger(DBInitializer.class);

 @Autowired
 SingerRepository singerRepository;

 @Autowired
 InstrumentRepository instrumentRepository;

 @PostConstruct
 public void initDB(){
 logger.info("Starting database initialization...");

 Instrument guitar = new Instrument();
 guitar.setInstrumentId("Guitar");
 instrumentRepository.save(guitar);

 Instrument piano = new Instrument();
 piano.setInstrumentId("Piano");
 instrumentRepository.save(piano);

 Instrument voice = new Instrument();
 voice.setInstrumentId("Voice");
 instrumentRepository.save(voice);

 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()));
 singer.addInstrument(guitar);
 singer.addInstrument(piano);

 Album album1 = new Album();
 album1.setTitle("The Search For Everything");
 album1.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(2017, 0, 20)).getTime().getTime()));
 singer.addAbum(album1);

 Album album2 = new Album();
 album2.setTitle("Battle Studies");
 album2.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(2009, 10, 17)).getTime().getTime()));
 singer.addAbum(album2);

 singerRepository.save(singer);

 singer = new Singer();
 singer.setFirstName("Eric");
 singer.setLastName("Clapton");
 singer.setBirthDate(new Date(

Chapter 8 ■ Data Access in Spring with JPA2

463

 (new GregorianCalendar(1945, 2, 30)).getTime().getTime()));
 singer.addInstrument(guitar);

 Album album = new Album();
 album.setTitle("From The Cradle");
 album.setReleaseDate(new java.sql.Date(
 (new GregorianCalendar(1994, 8, 13)).getTime().getTime()));
 singer.addAbum(album);

 singerRepository.save(singer);

 singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Butler");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1975, 3, 1)).getTime().getTime()));
 singer.addInstrument(guitar);

 singerRepository.save(singer);
 logger.info("Database initialization finished.");
 }

}

The SingerRepository and InstrumentRepository interfaces are quite simple for this example and are
shown here:

//InstrumentRepository.java
package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.entities.Instrument;
import org.springframework.data.repository.CrudRepository;

public interface InstrumentRepository
 extends CrudRepository<Instrument, Long> {

}

//SingerRepository.java
package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.entities.Singer;
import org.springframework.data.repository.CrudRepository;

import java.util.List;

public interface SingerRepository
 extends CrudRepository<Singer, Long> {

 List<Singer> findByFirstName(String firstName);
 List<Singer> findByFirstNameAndLastName(String firstName, String lastName);
}

Chapter 8 ■ Data Access in Spring with JPA2

464

SingerRepository will be directly injected into the Spring Boot annotated Application class and used
to retrieve all singer records and their children records from the database and log them in the console. The
Application class is shown here:

package com.apress.prospring5.ch8;

import com.apress.prospring5.ch8.entities.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.transaction.annotation.Transactional;

import java.util.List;

@SpringBootApplication(scanBasePackages = "com.apress.prospring5.ch8.config")
public class Application implements CommandLineRunner {

 private static Logger logger = LoggerFactory.getLogger(Application.class);
 @Autowired
 SingerRepository singerRepository;

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);

 System.in.read();
 ctx.close();
 }

 @Transactional(readOnly = true)
 @Override public void run(String... args) throws Exception {
 List<Singer> singers = singerRepository.findByFirstName("John");
 listSingersWithAlbum(singers);
 }

 private static void listSingersWithAlbum(List<Singer> singers) {
 logger.info(" ---- Listing singers with instruments:");
 singers.forEach(singer -> {
 logger.info(singer.toString());
 if (singer.getAlbums() != null) {
 singer.getAlbums().forEach(
 album -> logger.info("\t" + album.toString()));
 }
 if (singer.getInstruments() != null) {
 singer.getInstruments().forEach(
 instrument -> logger.info("\t" + instrument.getInstrumentId()));
 }
 });
 }
}

Chapter 8 ■ Data Access in Spring with JPA2

465

This Application class introduces something new; it implements the CommandLineRunner interface.
This interface is used to tell Spring Boot that the run() method should be executed when this bean is
contained within a Spring application.

The scanBasePackages = "com.apress.prospring5.ch8.config" attribute is used to enable
component scanning for the package (or packages) specified as an argument so that the beans contained
there are created and added to the application context. This is needed when the beans are defined in a
different package than the Application class.

Another thing you should notice is that no other configuration class is needed; you don’t need any SQL
scripts to initialize the database nor any other annotations on the Application class. Clearly, if you want to
focus on the logic of an application, Spring Boot with its starter dependencies are quite handy.

If you run the previous class, you will get the expected result. (Note that the application waits for a key
to be pressed before exiting).

INFO c.a.p.c.c.DBInitializer - Starting database initialization...
INFO c.a.p.c.c.DBInitializer - Database initialization finished.
INFO c.a.p.c.Application - ---- Listing singers with instruments:
INFO c.a.p.c.Application - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-16
INFO c.a.p.c.Application - Album - id: 1, Singer id: 1, Title: Battle Studies,
 Release Date: 2009-11-17
INFO c.a.p.c.Application - Album - id: 2, Singer id: 1,
 Title: The Search For Everything, Release Date: 2017-01-20
INFO c.a.p.c.Application - Piano
INFO c.a.p.c.Application - Guitar
INFO c.a.p.c.Application - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-04-01
INFO c.a.p.c.Application - Guitar
INFO c.a.p.c.Application - Started Application in 3.464 seconds (JVM running for 4.0)

Considerations When Using JPA
Although we covered a fair amount, this chapter discussed only a small portion of JPA. For example, using
JPA to call a database stored procedure was not covered. JPA is a complete and powerful ORM data access
standard, and with the help of third-party libraries such as Spring Data JPA and Hibernate Envers, you can
implement various crosscutting concerns relatively easily.

JPA is a JEE standard that is supported by most major open source communities as well as commercial
vendors (JBoss, GlassFish, WebSphere, WebLogic, and so on). So, it’s a compelling choice for adopting JPA
as the data access standard. If you require absolute control over the query, you can use JPA’s native query
support instead of using JDBC directly.

In conclusion, for developing JEE applications with Spring, we recommend using JPA to implement
the data access layer. When desired, you can still mix in JDBC for some special data access needs. Always
remember that Spring allows you to mix and match data access technologies easily, with the transaction
management transparently handled for you. And if you want to simplify the development even more, Spring
Boot makes that happen with its preconfigured beans and custom configurations.

Chapter 8 ■ Data Access in Spring with JPA2

466

Summary
In this chapter, we covered the basic concepts of JPA and how to configure JPA’s EntityManagerFactory in
Spring by using Hibernate as the persistence service provider. Then we discussed using JPA to perform basic
database operations. Advanced topics included native queries and the strongly typed JPA Criteria API.

Additionally, we demonstrated how Spring Data JPA’s Repository abstraction can help simplify JPA
application development, as well as how to use its entity listener to keep track of basic auditing information
for entity classes. For full versioning of entity classes, using Hibernate Envers to fulfill the requirement was
also covered.

Spring Boot for JPA applications was also covered, as it simplifies configuration a lot and keeps the focus
on developing the required functionality.

In the next chapter, we discuss transaction management in Spring.

467© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_9

CHAPTER 9

Transaction Management

Transactions are one of the most critical parts of building a reliable enterprise application. The most
common type of transaction is a database operation. In a typical database update operation, a database
transaction begins, data is updated, and then the transaction is committed or rolled back, depending on the
result of the database operation. However, in many cases, depending on the application requirements and
the back-end resources that the application needs to interact with (such as an RDBMS, message-oriented
middleware, an ERP system, and so on), transaction management can be much more complicated.

In the early days of Java application development (after JDBC was created but before the JEE standard
or an application framework like Spring was available), developers programmatically controlled and
managed transactions within application code. When JEE and, more specifically, the EJB standard became
available, developers were able to use container-managed transactions (CMTs) to manage transactions
in a declarative way. But the complicated transaction declaration in the EJB deployment descriptor was
difficult to maintain and introduced unnecessary complexity for transaction processing. Some developers
favored having more control over the transaction and chose bean-managed transactions (BMTs) to manage
transactions in a programmatic way. However, the complexity of programming with the Java Transaction API
(JTA) also hindered developers’ productivity.

As discussed in Chapter 5, transaction management is a crosscutting concern and should not be coded
within the business logic. The most appropriate way to implement transaction management is to allow
developers to define transaction requirements in a declarative way and have frameworks such as Spring, JEE,
or AOP weave in the transaction processing logic on our behalf. In this chapter, we discuss how Spring helps
simplify the implementation of transaction-processing logic. Spring provides support for both declarative
and programmatic transaction management.

Spring offers excellent support for declarative transactions, which means you do not need to clutter
your business logic with transaction management code. All you have to do is declare those methods
(within classes or layers) that must participate in a transaction, together with the details of the transaction
configuration, and Spring will take care of handling the transaction management. To be more specific, this
chapter covers the following:

•	 Spring transaction abstraction layer: We discuss the base components of Spring
transaction abstraction classes and explain how to use these classes to control the
properties of the transactions.

•	 Declarative transaction management: We show you how to use Spring and just plain
Java objects to implement declarative transactional management. We offer examples
for declarative transaction management using the XML configuration files as well as
Java annotations.

https://doi.org/10.1007/978-1-4842-2808-1_9
http://dx.doi.org/10.1007/978-1-4842-2808-1_5

Chapter 9 ■ Transaction Management

468

•	 Programmatic transaction management: Even though programmatic transaction
management is not used very often, we explain how to use the Spring-provided
TransactionTemplate class, which gives you full control over the transaction
management code.

•	 Global transactions with JTA: For global transactions that need to span multiple
back-end resources, we show how to configure and implement global transactions in
Spring by using JTA.

Exploring the Spring Transaction Abstraction Layer
When developing your applications, no matter whether you choose to use Spring or not, you have to make
a fundamental choice when using transactions about whether to use global or local transactions. Local
transactions are specific to a single transactional resource (a JDBC connection, for example), whereas global
transactions are managed by the container and can span multiple transactional resources.

Transaction Types
Local transactions are easy to manage, and if all operations in your application need to interact with just one
transactional resource (such as a JDBC transaction), using local transactions will be sufficient. However, if
you are not using an application framework such as Spring, you have a lot of transaction management code
to write, and if in the future the scope of the transaction needs to be extended across multiple transactional
resources, you have to drop the local transaction management code and rewrite it to use global transactions.

In the Java world, global transactions were implemented with the JTA. In this scenario, a JTA-compatible
transaction manager connects to multiple transactional resources via respective resource managers, which
are capable of communicating with the transaction manager over the XA protocol (an open standard defining
distributed transactions), and the 2 Phase Commit (2PC) mechanism was used to ensure that all back-end
data sources were updated or rolled back altogether. If either of the back-end resources fails, the entire
transaction will roll back, and hence the updates to other resources will be rolled back too.

Figure 9-1 shows a high-level view of global transactions with JTA. As shown in Figure 9-1, four main
parties participate in a global transaction (also generally referred to as a distributed transaction). The first
party is the back-end resource, such as an RDBMS, messaging middleware, an enterprise resource planning
(ERP) system, and so on.

Chapter 9 ■ Transaction Management

469

The second party is the resource manager, which is generally provided by the back-end resource vendor
and is responsible for interacting with the back-end resource. For example, when connecting to a MySQL
database, we need to interact with the MysqlXADataSource class provided by MySQL’s Java connector. Other
back-end resources (for example, MQ, ERP, and so on) provide their resource managers too.

The third party is the JTA transaction manager, which is responsible for managing, coordinating, and
synchronizing the transaction status with all resource managers that are participating in the transaction.
The XA protocol is used, which is an open standard widely used for distributed transaction processing.
The JTA transaction manager also supports 2PC so that all changes will be committed together, and if any
resource update fails, the entire transaction will be rolled back, resulting in none of the resources being
updated. The entire mechanism was specified by the Java Transaction Service (JTS) specification.

The final component is the application. Either the application itself or the underlying container
or Spring Framework that the application runs on manages the transaction (begin, commit, roll back a
transaction, and so on). At the same time, the application interacts with the underlying back-end resources
via various standards defined by JEE. As shown in Figure 9-1, the application connects to the RDBMS via
JDBC, MQ via JMS, and an ERP system via Java EE Connector Architecture (JCA).

JTA is supported by all full-blown JEE-compliant application servers (for example, JBoss, WebSphere,
WebLogic, and GlassFish), within which the transaction is available via JNDI lookup. As for stand-alone
applications or web containers (for example, Tomcat and Jetty), there also exist open source and commercial
solutions that provide support for JTA/XA in those environments (for example, Atomikos, Java Open
Transaction Manager [JOTM], and Bitronix).

Implementations of the PlatformTransactionManager
In Spring, the PlatformTransactionManager interface uses the TransactionDefinition and
TransactionStatus interfaces to create and manage transactions. The actual implementation of these
interfaces must have detailed knowledge of the transaction manager.

Figure 9-1.  Overview of global transactions with JTA

Chapter 9 ■ Transaction Management

470

Figure 9-2 shows the implementations of PlatformTransactionManager in Spring.

Figure 9-2.  PlatformTransactionManager implementations as of Spring

Spring provides a rich set of implementations for the PlatformTransactionManager interface.
The CciLocalTransactionManager class supports JEE, JCA, and the Common Client Interface (CCI).
The DataSourceTransactionManager class is for generic JDBC connections. For the ORM side, there
are a number of implementations, including JPA (the JpaTransactionManager class)1 and Hibernate
5 (HibernateTransactionManager).2 For JMS, the implementations support JMS 2.0 through the
JmsTransactionManager class.3 For JTA, the generic implementation class is JtaTransactionManager. Spring
also provides several JTA transaction manager classes that are specific to particular application servers. Those
classes provide native support for WebSphere (the WebSphereUowTransactionManager class), WebLogic (the
WebLogicJtaTransactionManager class), and Oracle OC4J (the OC4JJtaTransactionManager class).

Analyzing Transaction Properties
In this section, we discuss the transaction properties that Spring supports, focusing on interacting with
RDBMS as the back-end resource.

Transactions have the four notoriously known ACID properties (atomicity, consistency, isolation, and
durability), and it is up to the transactional resources to maintain these aspects of a transaction. You cannot
control the atomicity, consistency, and durability of a transaction. However, you can control the transaction
propagation and timeout, as well as configure whether the transaction should be read-only and specify the
isolation level.

Spring encapsulates all these settings in a TransactionDefinition interface. This interface is used in
the core interface of the transaction support in Spring, which is the PlatformTransactionManager interface,
whose implementations perform transaction management on a specific platform, such as JDBC or JTA. The
core method, PlatformTransactionManager.getTransaction(), takes a TransactionDefinition interface
as an argument and returns a TransactionStatus interface. The TransactionStatus interface is used to
control the transaction execution, more specifically to set the transaction result and to check whether the
transaction is completed or whether it is a new transaction.

1JDO support was dropped in Spring 5; thus, JdoTransactionManager is missing from the class diagram.
2Spring 5 works only with Hibernate 5; implementations for Hibernate 3 and Hibernate 4 have been removed.
3Support for JMS 1.1 was dropped in Spring 5.

Chapter 9 ■ Transaction Management

471

The TransactionDefinition Interface
As we mentioned earlier, the TransactionDefinition interface controls the properties of a transaction. Let’s
take a more detailed look at the TransactionDefinition interface, shown here, and describe its methods:

package org.springframework.transaction;

import java.sql.Connection;

public interface TransactionDefinition {

 // Variable declaration statements omitted

 ...

 int getPropagationBehavior();

 int getIsolationLevel();

 int getTimeout();

 boolean isReadOnly();

 String getName();

}

The simple and obvious methods of this interface are getTimeout(), which returns the time (in
seconds) in which the transaction must complete, and isReadOnly(), which indicates whether the
transaction is read-only. The transaction manager implementation can use this value to optimize the
execution and check to make sure that the transaction is performing only read operations. The getName()
method returns the name of the transaction.

The other two methods, getPropagationBehavior() and getIsolationLevel(), need to be discussed
in more detail. We begin with getIsolationLevel(), which controls what changes to the data other
transactions see. Table 9-1 lists the transaction isolation levels you can use and explains what changes made
in the current transaction other transactions can access. The isolation levels are represented as static values
defined in the TransactionDefinition interface.

Table 9-1.  Transaction Isolation Levels

Isolation Level Description

ISOLATION_DEFAULT Default isolation level of the underlying data store.

ISOLATION_READ_UNCOMMITTED Lowest level of isolation; it is barely a transaction at all because it allows
this transaction to see data modified by other uncommitted transactions.

ISOLATION_READ_COMMITTED Default level in most databases; it ensures that other transactions are not able
to read data that has not been committed by other transactions. However, the
data that was read by one transaction can be updated by other transactions.

ISOLATION_REPEATABLE_READ Stricter than ISOLATION_READ_COMMITTED; it ensures that once you
select data, you can select at least the same set again. However, if other
transactions insert new data, you can still select the newly inserted data.

ISOLATION_SERIALIZABLE The most expensive and reliable isolation level; all transactions are treated
as if they were executed one after another.

Chapter 9 ■ Transaction Management

472

Choosing the appropriate isolation level is important for the consistency of the data, but making these
choices can have a great impact on performance. The highest isolation level, ISOLATION_SERIALIZABLE, is
particularly expensive to maintain.

The getPropagationBehavior() method specifies what happens to a transactional call, depending on
whether there is an active transaction. Table 9-2 describes the values for this method. The propagation types
are represented as static values defined in the TransactionDefinition interface.

Table 9-2.  Transaction Isolation Levels

Propagation Type Description

PROPAGATION_REQUIRED Supports a transaction if one already exists. If there is no transaction,
it starts a new one.

PROPAGATION_SUPPORTS Supports a transaction if one already exists. If there is no transaction,
it executes nontransactionally.

PROPAGATION_MANDATORY Supports a transaction if one already exists. Throws an exception if there is
no active transaction.

PROPAGATION_REQUIRES_NEW Always starts a new transaction. If an active transaction already exists,
it is suspended.

PROPAGATION_NOT_SUPPORTED Does not support execution with an active transaction. Always executes
nontransactionally and suspends any existing transaction.

PROPAGATION_NEVER Always executes nontransactionally even if an active transaction exists.
Throws an exception if an active transaction exists.

PROPAGATION_NESTED Runs in a nested transaction if an active transaction exists. If there is no active
transaction, the execution is executed as if PROPAGATION_REQUIRED is set.

The TransactionStatus Interface
The TransactionStatus interface, shown next, allows a transactional manager to control the transaction
execution. The code can check whether the transaction is a new one or whether it is a read-only transaction,
and it can initiate a rollback.

package org.springframework.transaction;

public interface TransactionStatus extends SavepointManager {

 boolean isNewTransaction();

 boolean hasSavepoint();

 void setRollbackOnly();

 boolean isRollbackOnly();

 void flush();

 boolean isCompleted();

}

Chapter 9 ■ Transaction Management

473

The methods of the TransactionStatus interface are fairly self-explanatory; the most notable one is
setRollbackOnly(), which causes a rollback and ends the active transaction.

The hasSavePoint() method returns whether the transaction internally carries a save point (that is, the
transaction was created as a nested transaction based on a save point). The flush() method es the underlying
session to a data store if applicable (for example, when using with Hibernate). The isCompleted() method
returns whether the transaction has ended (that is, committed or rolled back).

Sample Data Model and Infrastructure for Example Code
This section provides an overview of the data model and the infrastructure used in our examples of
transaction management. We use JPA with Hibernate as the persistence layer for implementing data access
logic. In addition, the Spring Data JPA and its repository abstraction are used to simplify the development of
basic database operations.

Creating a Simple Spring JPA Project with Dependencies
Let’s start by creating the project. Because we are using JPA, we also need to add the required dependencies
to the project for the examples in this chapter.

//pro-spring-15/build.gradle
ext {
 //spring libs
 springVersion = '5.0.0.RC1'
 bootVersion = '2.0.0.BUILD-SNAPSHOT'
 springDataVersion = '2.0.0.M3'

 //logging libs
 slf4jVersion = '1.7.25'
 logbackVersion = '1.2.3'
 guavaVersion = '21.0'
 junitVersion = '4.12'

 aspectjVersion = '1.9.0.BETA-5'

 //database library
 h2Version = '1.4.194'

 //persistency libraries
 hibernateVersion = '5.2.10.Final'
 hibernateJpaVersion = '1.0.0.Final'
 atomikosVersion = '4.0.0M4'

 spring = [
 context : "org.springframework:spring-context:$springVersion",
 aop : "org.springframework:spring-aop:$springVersion",
 aspects : "org.springframework:spring-aspects:$springVersion",
 tx : "org.springframework:spring-tx:$springVersion",
 jdbc : "org.springframework:spring-jdbc:$springVersion",
 contextSupport: "org.springframework:spring-context-support:$springVersion",
 orm : "org.springframework:spring-orm:$springVersion",

Chapter 9 ■ Transaction Management

474

 data : "org.springframework.data:spring-data-jpa:$springDataVersion",
 test : "org.springframework:spring-test:$springVersion"
]

 hibernate = [
 ...
 em : "org.hibernate:hibernate-entitymanager:$hibernateVersion",
 tx : "com.atomikos:transactions-hibernate4:$atomikosVersion"
]

 boot = [
 ...
 springBootPlugin:
 "org.springframework.boot:spring-boot-gradle-plugin:$bootVersion",
 starterJpa :
 "org.springframework.boot:spring-boot-starter-data-jpa:$bootVersion"
]

 testing = [
 junit: "junit:junit:$junitVersion"
]

 misc = [
 ...
 slf4jJcl : "org.slf4j:jcl-over-slf4j:$slf4jVersion",
 logback : "ch.qos.logback:logback-classic:$logbackVersion",
 aspectjweaver: "org.aspectj:aspectjweaver:$aspectjVersion",
 lang3 : "org.apache.commons:commons-lang3:3.5",
 guava : "com.google.guava:guava:$guavaVersion"
]

 db = [
 ...
 h2 : "com.h2database:h2:$h2Version"
]
}

//chapter09/build.gradle
dependencies {
 //we specify these dependencies for all submodules, except
 // the boot module, that defines its own
 if !project.name.contains"boot" {
 //we exclude transitive dependencies, because spring-data
 //will take care of these
 compile spring.contextSupport {
 exclude module: 'spring-context'
 exclude module: 'spring-beans'
 exclude module: 'spring-core'
 }
 //we exclude the 'hibernate' transitive dependency
 //to have control over the version used

Chapter 9 ■ Transaction Management

475

 compile hibernate.tx {
 exclude group: 'org.hibernate', module: 'hibernate'
 }
 compile spring.orm, spring.context, misc.slf4jJcl,
 misc.logback, db.h2, misc.lang3,
 hibernate.em
 }
 testCompile testing.junit
}

To observe the detailed behavior of the example code as we modify the transaction attributes, let’s also
turn on the DEBUG-level logging in logback. The following snippet shows the logback.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

 <contextListener class="ch.qos.logback.classic.jul.LevelChangePropagator">
 <resetJUL>true</resetJUL>
 </contextListener>

 <appender name="console" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} %thread %-5level %logger{5} - %msg%n</pattern>
 </encoder>
 </appender>

 <logger name="com.apress.prospring5.ch8" level="debug"/>

 <logger name="org.springframework.transaction" level="info"/>

 <logger name="org.hibernate.SQL" level="debug"/>

 <root level="info">
 <appender-ref ref="console" />
 </root>
</configuration>

Sample Data Model and Common Classes
To keep things simple, we will use just two tables, namely, the SINGER and ALBUM tables that we used
throughout the chapters about data access. No SQL script to create the tables is needed because you can use
the Hibernate property hibernate.hbm2ddl.auto and set it to create-drop so we’ll always have a clean run
every time you test something. The tables will be generated based on the Singer and Album entities. Snippets
with the annotated fields of each are depicted here:

//Singer.java
package com.apress.prospring5.ch9.entities;
...

@Entity
@Table(name = "singer")

Chapter 9 ■ Transaction Management

476

@NamedQueries({
 @NamedQuery(name=Singer.FIND_ALL, query="select s from Singer s"),
 @NamedQuery(name=Singer.COUNT_ALL, query="select count(s) from Singer s")
})
public class Singer implements Serializable {

 public static final String FIND_ALL = "Singer.findAll";
 public static final String COUNT_ALL = "Singer.countAll";

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

 @OneToMany(mappedBy = "singer", cascade=CascadeType.ALL, orphanRemoval=true)
 private Set<Album> albums = new HashSet<>();

 ...
}
/Album.java
package com.apress.prospring5.ch9.entities;
...
@Entity
@Table(name = "album")
public class Album implements Serializable {
 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @Column
 private String title;

Chapter 9 ■ Transaction Management

477

 @Temporal(TemporalType.DATE)
 @Column(name = "RELEASE_DATE")

 private Date releaseDate;

 @ManyToOne
 @JoinColumn(name = "SINGER_ID")
 private Singer singer;
 ...
}

These two classes will be isolated in a project named base-dao that will be a dependency for all
transaction projects. Aside from the entities, repository interfaces are defined in this project also. They
will be depicted a little bit later in the session. A configuration class to define the DataSource bean is also
needed. The configuration class is shown here, and because of practical and educational purposes, the
database credentials, driver, and URL will be used directly and not read from an external file. (In production
you will never encounter this, though. We hope.)

package com.apress.prospring5.ch9.config;
...

@Configuration
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch9.repos"})
public class DataJpaConfig {

 private static Logger logger =
 LoggerFactory.getLogger(DataJpaConfig.class);

 @SuppressWarnings("unchecked")
 @Bean
 public DataSource dataSource() {
 try {
 SimpleDriverDataSource dataSource = new SimpleDriverDataSource();
 Class<? extends Driver> driver =
 (Class<? extends Driver>) Class.forName("org.h2.Driver");
 dataSource.setDriverClass(driver);
 dataSource.setUrl("jdbc:h2:musicdb");
 dataSource.setUsername("prospring5");
 dataSource.setPassword("prospring5");
 return dataSource;
 } catch (Exception e) {
 logger.error("Populator DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 //hibernateProp.put("hibernate.format_sql", true);

Chapter 9 ■ Transaction Management

478

 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch9.entities");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }
}

An embedded H2 database is defined. The credentials are set directly in the code, and the DataSource
implementation is SimpleDriverDataSource, which is designed to be used only in simple, testing, or
educational applications.

Currently, using annotations is the most common way to define transaction requirements in Spring.
The main benefit is that the transaction requirement together with the detail transaction properties
(timeout, isolation level, propagation behavior, and so on) are defined within the code itself, which makes
the application easier to trace and maintain. The configuration is also done using annotations and Java
configuration classes. To enable annotation support for transaction management in Spring using XML
configuration, we need to add the <tx:annotation-driven> tag in the XML configuration file. In the
following configuration snippet, you can see a snippet of transactional configuration and the transactional
matching namespaces. You can find the full configuration in the project in case you are interested.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 ...
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd ...">

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="emf"/>
 </bean>

Chapter 9 ■ Transaction Management

479

 <tx:annotation-driven />

 <bean id="emf"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 ...
 </bean>

 <context:component-scan
 base-package="com.apress.prospring5.ch9" />

 <jpa:repositories base-package="com.apress.prospring5.ch9.repos"
 entity-manager-factory-ref="emf"
 transaction-manager-ref="transactionManager"/>
</beans>

Because we are using JPA, you define the JpaTransactionManager bean. The <tx:annotation-driven>
tag specifies that we are using annotations for transaction management. This simple definition instructs Spring
to look for a bean named transactionManager of type PlatformTransactionManager. If the transaction bean
is named differently, let’s say customTransactionManager, the element definition must be declared with the
transaction-manager attribute that must receive as a value the name of the transaction management bean.

<tx:annotation-driven transaction-manager="customTransactionManager"/>

The EntityManagerFactory bean is then defined, followed by the <context:component-scan> tag
to scan the service-layer classes. Finally, the <jpa:repositories> tag is used to enable Spring Data JPA’s
repository abstraction. This element is replaced in the DataJpaConfiguration class with the
@EnableJpaRepositories annotation.

In professional environments, it is a common practice to separate the persistence configuration (DAO)
from the transactional configuration (service). That is why the contents of the XML introduced before were
split in the Java configuration into two configuration classes. DataJpaConfig, which was introduced before,
contains only data access beans, and ServicesConfig, which is depicted next, contains only transactional
management–related beans:

package com.apress.prospring5.ch9.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;

import javax.persistence.EntityManagerFactory;

@Configuration
@EnableTransactionManagement
@ComponentScan(basePackages = "com.apress.prospring5.ch9")
public class ServicesConfig {

Chapter 9 ■ Transaction Management

480

 @Autowired EntityManagerFactory entityManagerFactory;

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory);
 }
}

For the implementation of the SingerService interface, we begin by creating the class with
an empty implementation of all the methods in the SingerService interface. Let’s implement the
SingerService.findAll() method first. The following code snippet shows the SingerServiceImpl class
with the findAll() method implemented:

package com.apress.prospring5.ch9.services;

import com.apress.prospring5.ch9.entities.Singer;
import com.apress.prospring5.ch9.repos.SingerRepository;
import com.google.common.collect.Lists;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation.Transactional;

import java.util.List;

@Service("singerService")
@Transactional
public class SingerServiceImpl implements SingerService {

 private SingerRepository singerRepository;

 @Autowired
 public void setSingerRepository(SingerRepository singerRepository) {
 this.singerRepository = singerRepository;
 }

 @Override
 @Transactional(readOnly = true)
 public List<Singer> findAll() {
 return Lists.newArrayList(singerRepository.findAll());
 }
}

When using annotation-based transaction management, the only annotation that we need to deal with
is @Transactional. In the previous code snippet, the @Transactional annotation is applied at the class
level, which means that, by default, Spring will ensure that a transaction is present before the execution of
each method within the class. The @Transactional annotation supports a number of attributes that you can
provide to override the default behavior. Table 9-3 shows the available attributes, together with the possible
and default values.

Chapter 9 ■ Transaction Management

481

Table 9-3.  Attributes for the @Transactional Annotation

Attribute Name Default Value Possible Values

propagation Propagation.REQUIRED Propagation.REQUIRED
Propagation.SUPPORTS
Propagation.MANDATORY
Propagation.REQUIRES_NEW
Propagation.NOT_SUPPORTED
Propagation.NEVER
Propagation.NESTED

isolation Isolation.DEFAULT (default isolation
level of the underlying resource)

Isolation.DEFAULT
Isolation.READ_UNCOMMITTED
Isolation.READ_COMMITTED
Isolation.REPEATABLE_READ
Isolation.SERIALIZABLE

timeout TransactionDefinition.TIMEOUT_DEFAULT
(default transaction timeout in seconds of the
underlying resource)

An integer value larger than
zero; indicates the number in
seconds for timeout

readOnly false {true, false}

rollbackFor Exception classes for which the transaction
will be rolled back

N/A

rollbackForClassName Exception class names for which the
transaction will be rolled back

N/A

noRollbackFor Exception classes for which the transaction
will not be rolled back

N/A

noRollbackForClassName Exception class names for which the
transaction will not be rolled back

N/A

value "" (a qualifier value for the specified
transaction)

N/A

As a result, based on Table 9-3, the @Transactional annotation without any attribute means that
the transaction propagation is required, the isolation is the default, the timeout is the default, and the
mode is read-write. For the findAll() method introduced previously, the method is annotated with
@Transactional(readOnly=true). This will override the default annotation applied at the class level, with
all other attributes unchanged, but the transaction is set to read-only. The following code snippet shows
the testing program for the findAll() method:

package com.apress.prospring5.ch9;

import java.util.List;
import com.apress.prospring5.ch9.config.DataJpaConfig;
import com.apress.prospring5.ch9.config.ServicesConfig;
import com.apress.prospring5.ch9.entities.Singer;
import com.apress.prospring5.ch9.services.SingerService;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

Chapter 9 ■ Transaction Management

482

public class TxAnnotationDemo {
 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(ServicesConfig.class,
 DataJpaConfig.class);

 SingerService singerService = ctx.getBean(SingerService.class);

 List<Singer> singers = singerService.findAll();
 singers.forEach(s -> System.out.println(s));
 ctx.close();
 }
}

With the proper logging enabled, in other words, <logger name="org.springframework.orm.jpa"
level="debug"/>, you will be able to see in the log messages related to transaction handling. Running the
program produces the following reduced output (see the debug log in the console for full details):

DEBUG o.s.o.j.JpaTransactionManager - Creating new transaction with name
 [com.apress.prospring5.ch9.services.SingerServiceImpl.findAll]:
 PROPAGATION_REQUIRED,ISOLATION_DEFAULT,readOnly; ''
DEBUG o.s.o.j.JpaTransactionManager - Participating in existing transaction
Hibernate: select singer0_.ID as ID1_1_, singer0_.BIRTH_DATE as BIRTH_DA2_1_,
 singer0_.FIRST_NAME as FIRST_NA3_1_, singer0_.LAST_NAME as LAST_NAM4_1_,
 singer0_.VERSION as VERSION5_1_ from singer singer0_
DEBUG o.s.o.j.JpaTransactionManager - Closing JPA EntityManager
 [...] after transaction

DEBUG o.s.o.j.JpaTransactionManager - Initiating transaction commit

Singer - Id: 1, First name: John, Last name: Mayer, Birthday: 1977-10-16
Singer - Id: 2, First name: Eric, Last name: Clapton, Birthday: 1945-03-30
Singer - Id: 3, First name: John, Last name: Butler, Birthday: 1975-04-01

As shown in the previous output, the irrelevant output statements were removed for clarity. First, before
the findAll() method is run, Spring’s JpaTransactionManager creates a new transaction (the name is
equal to the fully qualified class name with the method name) with default attributes, but the transaction is
set to read-only, as defined at the method-level @Transactional annotation. Then, the query is submitted,
and upon completion and without any errors, the transaction is committed. The JpaTransactionManager
handles the creation and commit operations of the transaction.

Let’s proceed to the implementation of the update operation. We need to implement both the
findById() and save() methods in the SingerServiceImpl interface. The following code snippet shows the
implementation:

package com.apress.prospring5.ch9.services;
...

@Service("singerService")
@Transactional
public class SingerServiceImpl implements SingerService {

Chapter 9 ■ Transaction Management

483

 private SingerRepository singerRepository;

 @Autowired
 public void setSingerRepository(SingerRepository singerRepository) {
 this.singerRepository = singerRepository;
 }

 @Override
 @Transactional(readOnly = true)
 public List<Singer> findAll() {
 return Lists.newArrayList(singerRepository.findAll());
 }

 @Override
 @Transactional(readOnly = true)
 public Singer findById(Long id) {
 return singerRepository.findById(id).get();
 }

 @Override
 public Singer save(Singer singer) {
 return singerRepository.save(singer);
 }
}

The findById() method is also annotated with @Transactional(readOnly=true). Generally, the
readOnly=true attribute should be applied to all finder methods. The main reason is that most persistence
providers will perform a certain level of optimization on read-only transactions. For example, Hibernate will
not maintain the snapshots of the managed instances retrieved from the database with read-only turned on.

For the save() method, we simply invoke the CrudRepository.save() method and don’t provide any
annotation. This means the class-level annotation will be used, which is a read-write transaction. Let’s
modify the TxAnnotationDemo class for testing the save() method, as shown in the following code:

package com.apress.prospring5.ch9;
...
public class TxAnnotationDemo {
 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(ServicesConfig.class,
 DataJpaConfig.class);

 SingerService singerService = ctx.getBean(SingerService.class);

 List<Singer> singers = singerService.findAll();
 singers.forEach(s -> System.out.println(s));

 Singer singer = singerService.findById(1L);
 singer.setFirstName("John Clayton");
 singer.setLastName("Mayer");

Chapter 9 ■ Transaction Management

484

 singerService.save(singer);
 System.out.println("Singer saved successfully: " + singer);

 ctx.close();
 }
}

The Singer object with an ID of 1 is retrieved, and then the first name is updated and saved to the
database. Running the code produces the following relevant output:

Singer saved successfully: Singer - Id: 1, First name: John Clayton,
 Last name: Mayer, Birthday: 1977-10-16

The save() method gets the default attributes that are inherited from the class-level @Transactional
annotation. Upon completion of the update operation, Spring’s JpaTransactionManager fires a transaction
commit, which causes Hibernate to flush the persistence context and commit the underlying JDBC
connection to the database. Finally, let’s take a look at the countAll() method. We will investigate two
transaction configurations for this method. Although the CrudRepository.count() method can fulfill
the purpose, we will not use that method. Instead, we will implement another method for demonstration
purposes, mainly because the methods defined by the CrudRepository interface in Spring Data are already
marked with the appropriate transaction attributes.

The following code snippet shows the new method countAllSingers() defined in the
SingerRepository interface:

package com.apress.prospring5.ch9.repos;

import com.apress.prospring5.ch9.entities.Singer;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.Query;
import org.springframework.data.repository.CrudRepository;

public interface SingerRepository extends
 CrudRepository<Singer, Long> {
 @Query("select count(s) from Singer s")
 Long countAllSingers();
}

For the new countAllSingers() method, the @Query annotation is applied, with the value equaling the
JPQL statement that counts the number of contacts. The following code snippet shows the implementation
of the countAll() method in the SingerServiceImpl class:

package com.apress.prospring5.ch9.services;
...

@Service("singerService")
@Transactional
public class SingerServiceImpl implements SingerService {

 private SingerRepository singerRepository;

Chapter 9 ■ Transaction Management

485

 @Autowired
 public void setSingerRepository(SingerRepository singerRepository) {
 this.singerRepository = singerRepository;
 }

 @Override
 @Transactional(readOnly=true)
 public long countAll() {
 return singerRepository.countAllSingers();
 }
}

The annotation is the same as other finder methods. To test this method, just add System.
out.println("Singer count: " + contactService.countAll()); in the main() method of the
TxAnnotationDemo class and watch the console. If you see a message like Singer count: 3, the method was
executed correctly.

In this output, you can see that the transaction for countAll() was created with read-only equaling
true, as expected. But for the countAll() function, we don’t want it to be enlisted in a transaction at all.
We don’t need the result to be managed by the underlying JPA EntityManager. Instead, we just want to
get the count and forget about it. In this case, we can override the transaction propagation behavior to
Propagation.NEVER. The following method shows the revised countAll() method:

package com.apress.prospring5.ch9.services;
...

@Service("singerService")
@Transactional
public class SingerServiceImpl implements SingerService {
 ...
 @Override
 @Transactional(propagation = Propagation.NEVER)
 public long countAll() {
 return singerRepository.countAllSingers();
 }
}

Run the testing code again, and you will find that the transaction will not be created for the countAll()
method in the debug output.

This section covered some major configurations that you will deal with when processing transactions
on a day-to-day basis. For special cases, you may need to define the timeout, isolation level, rollback (or not)
for specific exceptions, and so on.

 S pring’s JpaTransactionManager doesn’t support a custom isolation level. Instead, it always uses the
default isolation level for the underlying data store. If you are using Hibernate as the JPA service provider, you
can use a workaround: extend the HibernateJpaDialect class to support a custom isolation level.

Chapter 9 ■ Transaction Management

486

Using AOP Configuration for Transaction Management
Another common approach of declarative transaction management is to use Spring’s AOP support.
Before Spring version 2, we needed to use the TransactionProxyFactoryBean class to define transaction
requirements for Spring beans. However, ever since version 2, Spring provides a much simpler way
by introducing the aop namespace and using the common AOP configuration technique for defining
transaction requirements. Of course, after introducing annotations, this way of configuring transaction
management is deprecated as well. But is useful to know it exists, just in case you might need to wrap in a
transaction code that is not part of your project and you cannot edit it to add @Transaction annotations in it.

In the following configuration snippet, the example in the previous section is configured using XML and
makes use of the aop namespace:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop.xsd">

 <bean name="dataJpaConfig"
 class="com.apress.prospring5.ch9.config.DataJpaConfig" />

 <aop:config>
 <aop:pointcut id="serviceOperation" expression=
 "execution(* com.apress.prospring5.ch9.*ServiceImpl.*(..))"/>
 <aop:advisor pointcut-ref="serviceOperation" advice-ref="txAdvice"/>
 </aop:config>

 <tx:advice id="txAdvice">
 <tx:attributes>
 <tx:method name="find*" read-only="true"/>
 <tx:method name="count*" propagation="NEVER"/>
 <tx:method name="*"/>
 </tx:attributes>
 </tx:advice>

 <bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager
 <property name="entityManagerFactory" ref="entityManagerFactory"/>
 </bean>

 <context:component-scan
 base-package="com.apress.prospring5.ch9.services" />
 </beans>

Chapter 9 ■ Transaction Management

487

The configuration is quite similar to the XML one introduced at the beginning of the section. Basically,
the <tx:annotation-driven> tag is removed, and the <context:component-scan> tag is modified for the
package name we used for declarative transaction management. The most important tags are <aop:config>
and <tx:advice>.

Under the <aop:config> tag, a pointcut is defined for all operations within the service layer (that is,
all implementation classes under the com.apress.prospring5.ch9.services package). The advice is
referencing the bean with an ID of txAdvice, which is defined by the <tx:advice> tag. In the <tx:advice>
tag, we configure the transaction attributes for various methods that we want to participate in a transaction.
As shown in the tag, you specify that all finder methods (methods with the prefix find) will be read-only, and
we specify that the count methods (methods with the prefix count) will not participate in the transaction.
For the rest of the methods, the default transaction behavior will be applied. This configuration is the same
as the one in the annotation example.

Because transaction management is done explicitly through aop, the @Transactional annotation is no
longer needed on the SingerServiceImpl class or methods within.

To test the previous configuration, you can use the following class:

package com.apress.prospring5.ch9;

import java.util.List;

import com.apress.prospring5.ch9.entities.Singer;
import com.apress.prospring5.ch9.services.SingerService;
import org.springframework.context.support.GenericXmlApplicationContext;

public class TxDeclarativeDemo {
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/tx-declarative-app-context.xml");
 ctx.refresh();

 SingerService singerService = ctx.getBean(SingerService.class);

 // Testing findAll()
 List<Singer> singers = singerService.findAll();
 singers.forEach(s -> System.out.println(s));

 // Testing save()
 Singer singer = singerService.findById(1L);
 singer.setFirstName("John Clayton");
 singerService.save(singer);
 System.out.println("Singer saved successfully: " + singer);

 // Testing countAll()
 System.out.println("Singer count: " + singerService.countAll());

 ctx.close();
 }
}

We will leave you to test the program and observe the output for transaction-related operations that
Spring and Hibernate have performed. Basically, they are the same as the annotation example.

Chapter 9 ■ Transaction Management

488

Using Programmatic Transactions
The third option is to control the transaction behavior programmatically. In this case, we have two options.
The first one is to inject an instance of PlatformTransactionManager into the bean and interact with the
transaction manager directly. Another option is to use the Spring-provided TransactionTemplate class,
which simplifies your work a lot. In this section, we demonstrate using the TransactionTemplate class. To
make it simple, we focus on implementing the SingerServiceImpl.countAll() method. The following code
snippet depicts the ServiceConfig class, modified for using programmatic transactions:

package com.apress.prospring5.ch9.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.TransactionDefinition;
import org.springframework.transaction.support.TransactionTemplate;

import javax.persistence.EntityManagerFactory;

@Configuration
@ComponentScan(basePackages = "com.apress.prospring5.ch9")
public class ServicesConfig {

 @Autowired EntityManagerFactory entityManagerFactory;

 @Bean
 public TransactionTemplate transactionTemplate() {
 TransactionTemplate tt = new TransactionTemplate();
 tt.setPropagationBehavior(TransactionDefinition.PROPAGATION_NEVER);
 tt.setTimeout(30);
 tt.setTransactionManager(transactionManager());
 return tt;
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory);
 }
}

Here the AOP transaction advice is removed. In addition, a transactionTemplate bean is defined,
using the org.springframework.transaction.support.TransactionTemplate class, with a few transaction
attributes. Also, the @EnableTransactionManagement was removed, because transaction management is not
now done explicitly. Let’s take a look at the implementation of the countAll() method, which is shown here:

package com.apress.prospring5.ch9.services;

import com.apress.prospring5.ch9.entities.Singer;
import com.apress.prospring5.ch9.repos.SingerRepository;

Chapter 9 ■ Transaction Management

489

import com.google.common.collect.Lists;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.support.TransactionTemplate;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.List;

@Service("singerService")
@Repository
public class SingerServiceImpl implements SingerService {
 @Autowired
 private SingerRepository singerRepository;

 @Autowired
 private TransactionTemplate transactionTemplate;

 @PersistenceContext
 private EntityManager em;

 @Override
 public long countAll() {
 return transactionTemplate.execute(
 transactionStatus -> em.createNamedQuery(Singer.COUNT_ALL,
 Long.class).getSingleResult());
 }
}

Here the TransactionTemplate class is injected from Spring. And then in the countAll() method,
the TransactionTemplate.execute() method is invoked, passing in a declaration of an inner class that
implements the TransactionCallback<T> interface. Then doInTransaction() is overridden with the
desired logic. The logic will run within the attributes as defined by the transactionTemplate bean. The
reason you are not clearly seeing all that in the previous code snippet is because Java 8 lambda expression
are used. The following code is the expanded version (because it was written before lambda expressions
were introduced) of the previous method:

public long countAll() {
 return transactionTemplate.execute(new TransactionCallback<Long>() {
 public Long doInTransaction(TransactionStatus transactionStatus) {
 return em.createNamedQuery(Singer.COUNT_ALL,
 Long.class).getSingleResult();
 }
 });
 }

Chapter 9 ■ Transaction Management

490

The following code snippet shows the testing program:

package com.apress.prospring5.ch9;

import com.apress.prospring5.ch9.config.DataJpaConfig;
import com.apress.prospring5.ch9.config.ServicesConfig;
import com.apress.prospring5.ch9.services.SingerService;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class TxProgrammaticDemo {

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(ServicesConfig.class,
 DataJpaConfig.class);
 SingerService singerService = ctx.getBean(SingerService.class);
 System.out.println("Singer count: " + singerService.countAll());

 ctx.close();
 }
}

We will leave it to you to run the program and observe the result. Try to tweak the transaction attributes
and see what happens in the transaction processing of the countAll() method.

Considerations on Transaction Management
So, having discussed the various ways for implementing transaction management, which one should you
use? The declarative approach is recommended in all cases, and you should avoid implementing transaction
management within your code as much as possible. Most of the time, when you find it necessary to code
transaction control logic in the application, it is because of bad design, and in this case, you should consider
refactoring your logic into manageable pieces and have the transaction requirements defined on those
pieces declaratively.

For the declarative approach, using XML and using annotations both have their own pros and
cons. Some developers prefer not to declare transaction requirements in code, while others prefer using
annotations for easy maintenance, because you can see all the transaction requirement declarations within
the code. Again, let the application requirements drive your decision, and once your team or company has
standardized on the approach, stay consistent with the configuration style.

Global Transactions with Spring
Many enterprise Java applications need to access multiple back-end resources. For example, a piece of
customer information received from an external business partner may need to update the databases for
multiple systems (CRM, ERP, and so on). Some may even need to produce a message and send it to an MQ
server via JMS for all other applications within the company that are interested in customer information.
Transactions that span multiple back-end resources are referred to as global (or distributed) transactions.

Chapter 9 ■ Transaction Management

491

A main characteristic of a global transaction is the guarantee of atomicity, which means that involved
resources are all updated, or none is updated. This includes complex coordination and synchronization
logic that should be handled by the transaction manager. In the Java world, JTA is the de facto standard for
implementing global transactions.

Spring supports JTA transactions equally well as local transactions and hides that logic from the business
code. In this section, we demonstrate how to implement global transactios by using JTA with Spring.

Infrastructure for Implementing the JTA Sample
We are using the same tables as for the previous samples in this chapter. However, the embedded H2
database doesn’t fully support XA (at least at the time of writing), so in this example, we use MySQL as the
back-end database.

We also want to show how to implement global transactions with JTA in a stand-alone application
or web container environment. So, in this example, we use Atomikos (www.atomikos.com/Main/
TransactionsEssentials), which is a widely used open source JTA transaction manager for use in a non-
JEE environment.

To show how global transactions work, we need at least two back-end resources. To make things simple,
we will use one MySQL database but two JPA entity managers to simulate the use case. The effect is the same
because you have multiple JPA persistence units to distinct back-end databases.

In the MySQL database, we create two schemas and corresponding users, as shown in the following
DDL script:

CREATE USER 'prospring5_a'@'localhost' IDENTIFIED BY 'prospring5_a';
CREATE SCHEMA MUSICDB_A;
GRANT ALL PRIVILEGES ON MUSICDB_A . * TO 'prospring5_a'@'localhost';
 PRIVILEGES;

CREATE USER 'prospring5_b'@'localhost' IDENTIFIED BY 'prospring5_b';
CREATE SCHEMA MUSICDB_B;
GRANT ALL PRIVILEGES ON MUSICDB_B . * TO 'prospring5_b'@'localhost';
 PRIVILEGES;

After the setup has completed, we can proceed to the Spring configuration and implementation.

Implementing Global Transactions with JTA
First let’s take a look at Spring’s configuration. The following code snippet depicts the XAJpaConfig
configuration class that declares beans needed to access the two databases:

package com.apress.prospring5.ch9.config;

import com.atomikos.jdbc.AtomikosDataSourceBean;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.SimpleDriverDataSource;
import org.springframework.orm.jpa.JpaVendorAdapter;

http://www.atomikos.com/Main/TransactionsEssentials
http://www.atomikos.com/Main/TransactionsEssentials

Chapter 9 ■ Transaction Management

492

import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.sql.Driver;
import java.util.Properties;

@Configuration
@EnableJpaRepositories
public class XAJpaConfig {

 private static Logger logger = LoggerFactory.getLogger(XAJpaConfig.class);
 @SuppressWarnings("unchecked")
 @Bean(initMethod = "init", destroyMethod = "close")
 public DataSource dataSourceA() {
 try {
 AtomikosDataSourceBean dataSource = new AtomikosDataSourceBean();
 dataSource.setUniqueResourceName("XADBMSA");
 dataSource.setXaDataSourceClassName(
 "com.mysql.cj.jdbc.MysqlXADataSource");
 dataSource.setXaProperties(xaAProperties());
 dataSource.setPoolSize(1);
 return dataSource;
 } catch (Exception e) {
 logger.error("Populator DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean
 public Properties xaAProperties() {
 Properties xaProp = new Properties();
 xaProp.put("databaseName", "musicdb_a");
 xaProp.put("user", "prospring5_a");
 xaProp.put("password", "prospring5_a");
 return xaProp;
 }

 @SuppressWarnings("unchecked")
 @Bean(initMethod = "init", destroyMethod = "close")
 public DataSource dataSourceB() {
 try {
 AtomikosDataSourceBean dataSource = new AtomikosDataSourceBean();
 dataSource.setUniqueResourceName("XADBMSB");
 dataSource.setXaDataSourceClassName(
 "com.mysql.cj.jdbc.MysqlXADataSource");
 dataSource.setXaProperties(xaBProperties());
 dataSource.setPoolSize(1);
 return dataSource;
 } catch (Exception e) {

Chapter 9 ■ Transaction Management

493

 logger.error("Populator DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean
 public Properties xaBProperties() {
 Properties xaProp = new Properties();
 xaProp.put("databaseName", "musicdb_b");
 xaProp.put("user", "prospring5_b");
 xaProp.put("password", "prospring5_b");
 return xaProp;
 }

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.transaction.factory_class",
 "org.hibernate.transaction.JTATransactionFactory");
 hibernateProp.put("hibernate.transaction.jta.platform",
 "com.atomikos.icatch.jta.hibernate4.AtomikosPlatform");
 // required by Hibernate 5
 hibernateProp.put("hibernate.transaction.coordinator_class", "jta");
 hibernateProp.put("hibernate.dialect",
 "org.hibernate.dialect.MySQL5Dialect");
 // this will work only if users/schemas are created first,
 // use ddl.sql script for this
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public EntityManagerFactory emfA() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch9.entities");
 factoryBean.setDataSource(dataSourceA());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setPersistenceUnitName("emfA");
 factoryBean.afterPropertiesSet();
 return factoryBean.getObject();
 }

 @Bean
 public EntityManagerFactory emfB() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();

Chapter 9 ■ Transaction Management

494

 factoryBean.setPackagesToScan("com.apress.prospring5.ch9.entities");
 factoryBean.setDataSource(dataSourceB());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setPersistenceUnitName("emfB");
 factoryBean.afterPropertiesSet();
 return factoryBean.getObject();
 }
}

The configuration is long but not too complex. First, two DataSource beans are defined to indicate
the two database resources. The bean names are dataSourceA and dataSourceB, which connect to the
schemas musicdb_a and musicdb_a, respectively. Both DataSource beans use the class com.atomikos.
jdbc.AtomikosDataSourceBean, which supports an XA-compliant DataSource, and within the two
beans’ definitions, MySQL’s XA DataSource implementation class is defined: com.mysql.cj.jdbc.
MysqlXADataSource, which is the resource manager for MySQL. Then, the database connection information
is provided. Note that the poolSize attribute defines the number of connections within the connection pool
that Atomikos needs to maintain. It’s not mandatory. However, if the attribute is not provided, Atomikos will
use the default value 1.

Then, two EntityManagerFactory beans are defined, named emfA and emfB. The common JPA properties
are wrapped together in the hibernateProperties bean. The only difference between the two beans is
that they were injected with the corresponding data source (that is, dataSourceA injected into emfA, and
dataSourceB injected into emfB). Consequently, emfA will connect to MySQL’s prospring5_a schema via the
dataSourceA bean, while emfB will connect to the prospring5_b schema via the dataSourceB bean. Take a look
at the properties hibernate.transaction.factory_class and hibernate.transaction.jta.platform in
the emfBase bean. These two properties are very important because they are used by Hibernate to look up the
underlying UserTransaction and TransactionManager beans to participate in the persistence context that it’s
managing into the global transaction. Also important is the hibernate.transaction.coordinator_class that
is needed to make the Atomikos classes for Hibernate 4 work with Hibernate 5.4

The following codes snippet depicts ServicesConfig, which declares beans used for implementing the
global transactions management:

package com.apress.prospring5.ch9.config;

import com.atomikos.icatch.config.UserTransactionService;
import com.atomikos.icatch.config.UserTransactionServiceImp;
import com.atomikos.icatch.jta.UserTransactionImp;
import com.atomikos.icatch.jta.UserTransactionManager;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.DependsOn;
import org.springframework.transaction.PlatformTransactionManager;
import org.springframework.transaction.annotation.EnableTransactionManagement;
import org.springframework.transaction.jta.JtaTransactionManager;

4This configuration was created with help from the official Atomikos documentation for integration with Spring at
https://www.atomikos.com/Documentation/SpringIntegration and with help from the Stack Overflow community
at https://stackoverflow.com/questions/33127854/hibernate-5-with-spring-jta.

https://www.atomikos.com/Documentation/SpringIntegration
https://stackoverflow.com/questions/33127854/hibernate-5-with-spring-jta

Chapter 9 ■ Transaction Management

495

import javax.transaction.SystemException;
import javax.transaction.UserTransaction;
import java.util.Properties;

@Configuration
@EnableTransactionManagement
@ComponentScan(basePackages = "com.apress.prospring5.ch9.services")
public class ServicesConfig {

 private Logger logger = LoggerFactory.getLogger(ServicesConfig.class);
 @Bean(initMethod = "init", destroyMethod = "shutdownForce")
 public UserTransactionService userTransactionService(){
 Properties atProps = new Properties();
 atProps.put("com.atomikos.icatch.service",
 "com.atomikos.icatch.standalone.UserTransactionServiceFactory");
 return new UserTransactionServiceImp(atProps);
 }

 @Bean (initMethod = "init", destroyMethod = "close")
 @DependsOn("userTransactionService")
 public UserTransactionManager atomikosTransactionManager(){
 UserTransactionManager utm = new UserTransactionManager();
 utm.setStartupTransactionService(false);
 utm.setForceShutdown(true);
 return utm;
 }

 @Bean
 @DependsOn("userTransactionService")
 public UserTransaction userTransaction(){
 UserTransactionImp ut = new UserTransactionImp();
 try {
 ut.setTransactionTimeout(300);
 } catch (SystemException se) {
 logger.error("Configuration exception.", se);
 return null;
 }
 return ut;
 }

 @Bean
 public PlatformTransactionManager transactionManager(){
 JtaTransactionManager ptm = new JtaTransactionManager();
 ptm.setTransactionManager(atomikosTransactionManager());
 ptm.setUserTransaction(userTransaction());
 return ptm;
 }
}

Chapter 9 ■ Transaction Management

496

For the Atomikos part, two beans, the atomikosTransactionManager and atomikosUserTransaction
beans, are defined. The implementation classes are provided by Atomikos, which implements the standard
Spring org.springframework.transaction.PlatformTransactionManager and javax.transaction.
UserTransaction interfaces, respectively. Those beans provide the transaction coordination and
synchronization services required by JTA and communicate with the resource managers over the XA
protocol in supporting 2PC. Then, Spring’s transactionManager bean (with org.springframework.
transaction.jta.JtaTransactionManager as the implementation class) is defined, injecting the two
transaction beans provided by Atomikos. This instructs Spring to use Atomikos JTA for transaction
management. Also, notice the UserTransactionService bean that is used to configure the Atomikos
transaction service to administer pending transactions.5

The following code snippet shows the SingerServiceImpl class for JTA. Note that for simplicity, only
the save() method is implemented.

package com.apress.prospring5.ch9.services;

import com.apress.prospring5.ch9.entities.Singer;
import org.apache.commons.lang3.NotImplementedException;
import org.springframework.orm.jpa.JpaSystemException;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.PersistenceException;
import java.util.List;

@Service("singerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {

 @PersistenceContext(unitName = "emfA")
 private EntityManager emA;
 @PersistenceContext(unitName = "emfB")
 private EntityManager emB;

 @Override
 @Transactional(readOnly = true)
 public List<Singer> findAll() {
 throw new NotImplementedException("findAll");
 }

5This configuration is an annotation configuration adaptation of the XML configuration given as an example in the
Atomikos documentation at https://www.atomikos.com/Documentation/SpringIntegration#The_Advanced_
Case_40As_of_3.3_41.

https://www.atomikos.com/Documentation/SpringIntegration#The_Advanced_Case_40As_of_3.3_41
https://www.atomikos.com/Documentation/SpringIntegration#The_Advanced_Case_40As_of_3.3_41

Chapter 9 ■ Transaction Management

497

 @Override
 @Transactional(readOnly = true)
 public Singer findById(Long id) {
 throw new NotImplementedException("findById");
 }

 @Override
 public Singer save(Singer singer) {
 Singer singerB = new Singer();
 singerB.setFirstName(singer.getFirstName());
 singerB.setLastName(singer.getLastName());
 if (singer.getId() == null) {
 emA.persist(singer);
 emB.persist(singerB);
 //throw new JpaSystemException(new PersistenceException());
 } else {
 emA.merge(singer);
 emB.merge(singer);
 }
 return singer;
 }

 @Override
 public long countAll() {
 return 0;
 }
}

The two entity managers defined are injected into the SingerServiceImpl class. In the save() method,
we persist the contact object to the two schemas, respectively. Ignore the throw exception statement at
the moment; we will use it later to verify that the transaction was rolled back when saving to the schema
prospring5_b fails. The following code snippet shows the testing program:

package com.apress.prospring5.ch9;

import com.apress.prospring5.ch9.config.ServicesConfig;
import com.apress.prospring5.ch9.config.XAJpaConfig;
import com.apress.prospring5.ch9.entities.Singer;
import com.apress.prospring5.ch9.services.SingerService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import java.util.Date;
import java.util.GregorianCalendar;

public class TxJtaDemo {
 private static Logger logger = LoggerFactory.getLogger(TxJtaDemo.class);

Chapter 9 ■ Transaction Management

498

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(ServicesConfig.class,
 XAJpaConfig.class);
 SingerService singerService = ctx.getBean(SingerService.class);
 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()));
 singerService.save(singer);
 if (singer.getId() != null) {
 logger.info("--> Singer saved successfully");
 } else {
 logger.info("--> Singer was not saved, check the configuration!!");
 }
 ctx.close();
 }
}

The program creates a new contact object and calls the SingerService.save() method. The
implementation will try to persist the same object to two databases. Providing all went well, running the
program produces the following output (the other output was omitted):

--> Singer saved successfully

Atomikos creates a composite transaction, communicates with the XA DataSource (MySQL, in this
case), performs synchronization, commits the transaction, and so on. From the database, you will see that
the new contact is persisted to both schemas of the database, respectively. But if you want to check the
saving in the code, you can provide an implementation to the findAll() method that does that for you.

package com.apress.prospring5.ch9.services;
...
@Service("singerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {

 private static final String FIND_ALL= "select s from Singer s";

 @PersistenceContext(unitName = "emfA")
 private EntityManager emA;
 @PersistenceContext(unitName = "emfB")
 private EntityManager emB;

 @Override
 @Transactional(readOnly = true)
 public List<Singer> findAll()
 {
 List<Singer> singersFromA = findAllInA();
 List<Singer> singersFromB = findAllInB();

Chapter 9 ■ Transaction Management

499

 if (singersFromA.size()!= singersFromB.size()){
 throw new AsyncXAResourcesException("
 XA resources do not contain the same expected data.");
 }
 Singer sA = singersFromA.get(0);
 Singer sB = singersFromB.get(0);
 if (!sA.getFirstName().equals(sB.getFirstName())) {
 throw new AsyncXAResourcesException("
 XA resources do not contain the same expected data.");
 }
 List<Singer> singersFromBoth = new ArrayList<>();
 singersFromBoth.add(sA);
 singersFromBoth.add(sB);
 return singersFromBoth;
 }

 private List<Singer> findAllInA(){
 return emA.createQuery(FIND_ALL).getResultList();
 }

 private List<Singer> findAllInB(){
 return emB.createQuery(FIND_ALL).getResultList();
 }
 ...
}

So, the code to test the singer being saved in both databases can be modified like this:

package com.apress.prospring5.ch9;
...
public class TxJtaDemo {
 private static Logger logger = LoggerFactory.getLogger(TxJtaDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(ServicesConfig.class,
 XAJpaConfig.class);
 SingerService singerService = ctx.getBean(SingerService.class);
 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()));
 singerService.save(singer);
 if (singer.getId() != null) {
 logger.info("--> Singer saved successfully");
 } else {
 logger.error("--> Singer was not saved, check the configuration!!");
 }

Chapter 9 ■ Transaction Management

500

 // check saving in both databases
 List<Singer> singers = singerService.findAll();
 if (singers.size()!= 2) {
 logger.error("--> Something went wrong.");
 } else {
 logger.info("--> Singers form both DBs: " + singers);
 }

 ctx.close();
 }
}

Now let’s see how the rollback works. As shown in the next code snippet, instead of calling emB.
persist(), we just throw an exception to simulate that something went wrong and the data could not be
saved in the second database.

package com.apress.prospring5.ch9.services;
...
@Service("singerService")
@Repository
@Transactional
public class SingerServiceImpl implements SingerService {

 private static final String FIND_ALL= "select s from Singer s";

 @PersistenceContext(unitName = "emfA")
 private EntityManager emA;
 @PersistenceContext(unitName = "emfB")
 private EntityManager emB;
 ...
 @Override
 public Singer save(Singer singer) {
 Singer singerB = new Singer();
 singerB.setFirstName(singer.getFirstName());
 singerB.setLastName(singer.getLastName());
 if (singer.getId() == null) {
 emA.persist(singer);
 if(true) {
 throw new JpaSystemException(new PersistenceException(
 "Simulation of something going wrong."));
 }
 emB.persist(singerB);
 } else {
 emA.merge(singer);
 emB.merge(singer);
 }
 return singer;
 }

Chapter 9 ■ Transaction Management

501

 @Override
 public long countAll() {
 return 0;
 }
}

Running the program again produces the following results:

...
INFO o.h.h.i.QueryTranslatorFactoryInitiator - HHH000397:
 Using ASTQueryTranslatorFactory
INFO o.s.o.j.LocalContainerEntityManagerFactoryBean - Initialized JPA
 EntityManagerFactory for persistence unit 'emfA'
INFO o.s.o.j.LocalContainerEntityManagerFactoryBean - Initialized JPA
 EntityManagerFactory for persistence unit 'emfB'
INFO o.s.t.j.JtaTransactionManager - Using JTA UserTransaction:
 com.atomikos.icatch.jta.UserTransactionImp@6da9dc6
INFO o.s.t.j.JtaTransactionManager - Using JTA TransactionManager:
 com.atomikos.icatch.jta.UserTransactionManager@2216effc
DEBUG o.s.t.j.JtaTransactionManager - Creating new transaction with name
[com.apress.prospring5.ch9.services.SingerServiceImpl.save]:
 PROPAGATION_REQUIRED,ISOLATION_DEFAULT; ''
DEBUG o.s.o.j.EntityManagerFactoryUtils - Opening JPA EntityManager
DEBUG o.s.o.j.EntityManagerFactoryUtils - Registering transaction synchronization
 for JPA EntityManager
Hibernate: insert into singer (BIRTH_DATE, FIRST_NAME, LAST_NAME, VERSION)
values (?, ?, ?, ?)
DEBUG o.s.o.j.EntityManagerFactoryUtils - Closing JPA EntityManager
DEBUG o.s.t.j.JtaTransactionManager - Initiating transaction rollback
WARN c.a.j.AbstractConnectionProxy - Forcing close of pending statement:
 com.mysql.cj.jdbc.PreparedStatementWrapper@3f685162
Exception in thread "main" org.springframework.orm.jpa.JpaSystemException:
 Simulation of something going wrong.;
...
Caused by: javax.persistence.PersistenceException:
 Simulation of something going wrong.

As shown in the previous output, the first singer is persisted (note the insert statement). However,
when saving to the second DataSource, because an exception is thrown, Atomikos will roll back the entire
transaction. You can take a look at the schema musicdb_a to check that the new singer was not saved.

Spring Boot JTA
The Spring Boot for JTA starter comes out of the box with a set of preconfigured beans designed to help you
focus on the business functionality of the code and not on the environment setup. Then again, this is what
all Spring Boot starter libraries do, no matter the component, so the previous sentence might seem a little
redundant. Spring Boot for JTA contains a library for using Atomikos, which pulls the appropriate libraries
and configures Atomikos components for you. Migrating the previous example to Spring Boot would mean
basically importing the DataSource and transaction manager configurations into the Spring Boot application.
But as the purpose of this section is to show how Spring Boot can help speed up development for applications
involving global transaction management by the provided preconfigured beans, a different example is

Chapter 9 ■ Transaction Management

502

necessary. We’ll assume we want to transmit a message to a messaging queue signaling the creation of a
new Singer instance. Obviously, if saving the Singer record to the database fails, we want to roll back the
transaction and prevent the message from being sent. To wrap up this example, we need to do the following:

•	 Configure the Spring Boot Gradle project for JTA and JMS usage. The configuration is
as follows:

//build.gradle
ext {
 ...
 bootVersion = '2.0.0.M1'
 atomikosVersion = '4.0.4'

 boot = [
 ...
 starterJpa :
 "org.springframework.boot:spring-boot-starter-data-jpa:$bootVersion",
 starterJta :
 "org.springframework.boot:spring-boot-starter-jta-atomikos:$bootVersion",
 starterJms :
 "org.springframework.boot:spring-boot-starter-artemis:$bootVersion"
]

 misc = [
 ...
 artemis : "org.apache.activemq:artemis-jms-server:2.1.0"
]

 db = [
 ...
 h2 : "com.h2database:h2:$h2Version"
]
}
//chapter09/boot-jta/build.gradle
buildscript {
 repositories {
 ...
 }

 dependencies {
 classpath boot.springBootPlugin
 }
}

apply plugin: 'org.springframework.boot'

dependencies {
 compile boot.starterJpa, boot.starterJta, boot.starterJms, db.h2
 compilemisc.artemis {
 exclude group: 'org.apache.geronimo.specs',
 module: 'geronimo-jms_2.0_spec'
 }
}

Chapter 9 ■ Transaction Management

503

	 In Figure 9-3 you can see the Spring Boot starter libraries declared earlier as
dependencies for the project, and you can see the dependencies they add to the project.

•	 Define the Singer entity class and the repository handling it. The Singer entity class
has the same structure as mentioned earlier in the section, but without any related
entities. And the SingerRepository will be left empty as only methods already
provided by CrudRepository will be used in this example: save(..) and count().

•	 Define a service class that will save the Singer record and send the confirmation
message.

package com.apress.prospring5.ch9.services;

import com.apress.prospring5.ch9.entities.Singer;
import com.apress.prospring5.ch9.ex.AsyncXAResourcesException;
import com.apress.prospring5.ch9.repos.SingerRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Service("singerService")
@Transactional
public class SingerServiceImpl implements SingerService {

 private SingerRepository singerRepository;
 private JmsTemplate jmsTemplate;

Figure 9-3.  Spring Boot Starter libraries and their dependencies

Chapter 9 ■ Transaction Management

504

 public SingerServiceImpl(SingerRepository singerRepository,
 JmsTemplate jmsTemplate) {
 this.singerRepository = singerRepository;
 this.jmsTemplate = jmsTemplate;
 }

 @Override
 public Singer save(Singer singer) {
 jmsTemplate.convertAndSend("singers", "Just saved:" + singer);
 if(singer == null) {
 throw new AsyncXAResourcesException(
 "Simulation of something going wrong.");
 }
 singerRepository.save(singer);
 return singer;
 }

 @Override public long count() {
 return singerRepository.count();
 }
}

	 No @Autowired annotation is needed to inject the repository bean, nor for the
JmsTemplate. Spring Boot is magic like that and injects the required beans, if they are
the only ones declared.

•	 A bean that will listen for messages being delivered to the singers queue and print them.

package com.apress.prospring5.ch9;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.jms.annotation.JmsListener;
import org.springframework.stereotype.Component;

@Component
public class Messages {
 private static Logger logger = LoggerFactory.getLogger(Messages.class);

 @JmsListener(destination="singers")
 public void onMessage(String content){
 logger.info("--> Received content: " + content);
 }
}

•	 Configure the Artemis JMS server to create an embedded queue named singers.
This is done by setting the spring.artemis.embedded.queues property with the
value singers in the application.properties file, which is the file that can be used
to configure a Spring Boot application.

spring.artemis.embedded.queues=singers
spring.jta.log-dir=out

Chapter 9 ■ Transaction Management

505

	 The previous configuration snippet depicts the content of the application.
properties file. Besides the spring.artemis.embedded.queues property, spring.
jta.log-dir is used to set where the JTA log should be written by Atomikos, and in
this case the out directory was set.

•	 Here is the application class to wrap it all together and test it:

package com.apress.prospring5.ch9;

import com.apress.prospring5.ch9.entities.Singer;
import com.apress.prospring5.ch9.services.SingerService;
import com.atomikos.jdbc.AtomikosDataSourceBean;
import org.h2.jdbcx.JdbcDataSource;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.Properties;

import static org.hibernate.cfg.AvailableSettings.*;
import static org.hibernate.cfg.AvailableSettings.STATEMENT_FETCH_SIZE;

@SpringBootApplication(scanBasePackages = "com.apress.prospring5.ch9.services")
public class Application implements CommandLineRunner {

 private static Logger logger = LoggerFactory.getLogger(Application.class);

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);

 System.in.read();
 ctx.close();
 }

 @Autowired SingerService singerService;

 @Override public void run(String... args) throws Exception {
 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");

Chapter 9 ■ Transaction Management

506

 singer.setBirthDate(new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()));
 singerService.save(singer);

 long count = singerService.count();
 if (count == 1) {
 logger.info("--> Singer saved successfully");
 } else {
 logger.error("--> Singer was not saved, check the configuration!!");
 }

 try {
 singerService.save(null);
 } catch (Exception ex) {
 logger.error(ex.getMessage() + "Final count:" + singerService.count());
 }
 }
}

If you run Application, you will see output similar to this:

...
INFO c.a.j.AtomikosConnectionFactoryBean - AtomikosConnectionFactoryBean
 'jmsConnectionFactory': init...
INFO o.s.t.j.JtaTransactionManager - Using JTA UserTransaction:
 com.atomikos.icatch.jta.UserTransactionManager@408a247c
INFO c.a.j.AtomikosJmsXaSessionProxy - atomikos xa session proxy for resource
 jmsConnectionFactory: calling createQueue on JMS driver session...
INFO c.a.j.AtomikosJmsXaSessionProxy - atomikos xa session proxy for resource
 jmsConnectionFactory: calling getTransacted on JMS driver session...
DEBUG o.s.t.j.JtaTransactionManager - Participating in existing transaction
DEBUG o.s.t.j.JtaTransactionManager - Initiating transaction commit
INFO c.a.d.x.XAResourceTransaction - XAResource.start ...
INFO c.a.d.x.XAResourceTransaction - XAResource.end ...
DEBUG o.s.t.j.JtaTransactionManager - Initiating transaction commit
DEBUG o.s.t.j.JtaTransactionManager - Creating new transaction with name
 [com.apress.prospring5.ch9.services.SingerServiceImpl.save]:
 PROPAGATION_REQUIRED,ISOLATION_DEFAULT; ''
INFO c.a.i.i.BaseTransactionManager - createCompositeTransaction (10000):
 created new ROOT transaction with id 127.0.0.1.tm0000200001
DEBUG o.s.t.j.JtaTransactionManager - Participating in existing transaction
INFO c.a.p.c.Application - --> Singer saved successfully
...//etc

From the log you can clearly see the global transaction being created and reused for each of the
operations. If you exit the application normally by pressing any key and then Enter, be patient, because it
takes a while for the application to shut down gracefully.

Here are some conclusions about creating JTA applications with Spring Boot: although it seems easy,
when working with multiple data sources, configuring the environment is something you cannot get out of.
Also, if the JTA provider is provided by a JEE server, things get quite complicated. But for sample applications
used for educational purposes and testing, it is quite practical.

Chapter 9 ■ Transaction Management

507

Considerations on Using JTA Transaction Manager
Whether to use JTA for global transaction management is under hot debate. For example, the Spring
development team generally does not recommend using JTA for global transactions.

As a general principle, when your application is deployed to a full-blown JEE application server, there is
no point in not using JTA because all the vendors of the popular JEE application servers have optimized their
JTA implementation for their platforms. That’s one major feature you are paying for.

For stand-alone or web container deployment, let the application requirements drive your decision.
Perform load testing as early as possible to verify that performance is not being impaired by using JTA.

One piece of good news is that Spring works seamlessly with both local and global transactions in most
major web and JEE containers, so code modification is generally not required when you switch from one
transaction management strategy to another. If you decide to use JTA within your application, make sure you
use Spring’s JtaTransactionManager.

Summary
Transaction management is a key part of ensuring data integrity in almost any type of application. In this
chapter, we discussed how to use Spring to manage transactions with almost no impact on your source code.
You also learned how to use local and global transactions.

We provided various examples of transaction implementation, including declarative ways of using XML
configuration and annotation, as well as the programmatic approach.

Local transactions are supported inside/outside a JEE application server, and only simple configuration
is required to enable local transaction support in Spring. However, setting up a global transaction
environment involves more work and greatly depends on which JTA provider and corresponding back-end
resources your application needs to interact with.

509© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_10

CHAPTER 10

Validation with Type Conversion
and Formatting

In an enterprise application, validation is critical. The purpose of validation is to verify that the data being
processed fulfills all predefined business requirements as well as ensures the data integrity and usefulness in
other layers of the application.

In application development, data validation is always mentioned alongside conversion and formatting.
The reason is that the format of the source of data most likely is different from the format being used in the
application. For example, in a web application, a user enters information in the web browser front end.
When the user saves that data, it is sent to the server (after the local validation has completed). On the server
side, a data-binding process is performed, in which the data from the HTTP request is extracted, converted,
and bound to corresponding domain objects (for example, a user enters singer information in an HTML
form that is then bound to a Singer object in the server), based on the formatting rules defined for each
attribute (for example, the date format pattern is yyyy-MM-dd). When the data binding is complete, validation
rules are applied to the domain object to check for any constraint violation. If everything runs fine, the
data is persisted, and a success message is displayed to the user. Otherwise, validation error messages are
populated and displayed to the user.

In the first part of this chapter, you will learn how Spring provides sophisticated support for type
conversion, field formatting, and validation. Specifically, this chapter covers the following topics:

•	 The Spring type conversion system and the Formatter service provider interface (SPI):
We present the generic type conversion system and Formatter SPI. We cover how the
new services can be used to replace the previous PropertyEditor support and how
they convert between any Java types.

•	 Validation in Spring: We discuss how Spring supports domain object validation.
First, we provide a short introduction to Spring’s own Validator interface. Then, we
focus on the JSR-349 (Bean Validation) support.

https://doi.org/10.1007/978-1-4842-2808-1_10

Chapter 10 ■ Validation with Type Conversion and Formatting

510

Dependencies
As in prior chapters, the samples presented in this chapter require some dependencies, which are depicted
in the following configuration snippet. One dependency you may notice is joda-time. If you are running
Java 8, Spring 5 also supports JSR-310, which is the javax.time API.

//pro-spring-15/build.gradle
ext {
 //spring libs
 springVersion = '5.0.0.RC1'

 jodaVersion = '2.9.9'
 javaxValidationVersion = '2.0.0.Beta2' //1.1.0.Final
 javaElVersion = '3.0.1-b04' // 3.0.0
 glasshfishELVersion = '2.2.1-b05' // 2.2

 hibernateValidatorVersion = '6.0.0.Beta2' //5.4.1.Final

 spring = [...]

 hibernate = [
 validator :
 "org.hibernate:hibernate-validator:$hibernateValidatorVersion",
 ...
]

 misc = [
 validation :
 "javax.validation:validation-api:$javaxValidationVersion",
 joda : "joda-time:joda-time:$jodaVersion",
 ...
]
 ...
}
//chapter10/build.gradle
dependencies {
 compile spring.contextSupport, misc.slf4jJcl, misc.logback,
 db.h2, misc.lang3, hibernate.em, hibernate.validator,
 misc.joda, misc.validation

 testCompile testing.junit
}

Spring Type Conversion System
In Spring 3, a new type conversion system was introduced, providing a powerful way to convert between
any Java types within Spring-powered applications. This section shows how this new service can perform
the same functionality provided by the previous PropertyEditor support, as well as how it supports the
conversion between any Java types. We also demonstrate how to implement a custom type converter by
using the Converter SPI.

Chapter 10 ■ Validation with Type Conversion and Formatting

511

Conversion from a String Using PropertyEditors
Chapter 3 covered how Spring handles the conversion from a String in the properties files into the
properties of POJOs by supporting PropertyEditors. Let’s do a quick review here and then cover how
Spring’s Converter SPI (available since 3.0) provides a more powerful alternative.

Consider this simpler version of the Singer class:

package com.apress.prospring5.ch10;

import java.net.URL;
import java.text.SimpleDateFormat;

import org.joda.time.DateTime;

public class Singer {
 private String firstName;
 private String lastName;
 private DateTime birthDate;
 private URL personalSite;

 //getters and setters
 ...

 public String toString() {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
 return String.format("{First name: %s, Last name: %s,
 Birthday: %s, Site: %s}",
 firstName, lastName, sdf.format(birthDate.toDate()), personalSite);
 }
}

For the birthDate attribute, we use JodaTime’s DateTime class. In addition, there is a URL type field that
indicates the singer’s personal web site, if applicable. Now suppose we want to construct Singer objects in
Spring’s ApplicationContext, with values stored either in Spring’s configuration file or in a properties file.
The following configuration snippet shows the Spring XML configuration file (prop-editor-app-context.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util.xsd">

http://dx.doi.org/10.1007/978-1-4842-2808-1_3

Chapter 10 ■ Validation with Type Conversion and Formatting

512

 <context:annotation-config/>

 <context:property-placeholder location="classpath:application.properties"/>

 <bean id="customEditorConfigurer"
 class="org.springframework.beans.factory.config.CustomEditorConfigurer"
 p:propertyEditorRegistrars-ref="propertyEditorRegistrarsList"/>

 <util:list id="propertyEditorRegistrarsList">
 <bean class="com.apress.prospring5.ch10.DateTimeEditorRegistrar">
 <constructor-arg value="${date.format.pattern}"/>
 </bean>
 </util:list>

 <bean id="eric" class="com.apress.prospring5.ch10.Singer"
 p:firstName="Eric"
 p:lastName="Clapton"
 p:birthDate="1945-03-30"
 p:personalSite="http://www.ericclapton.com"/>

 <bean id="countrySinger" class="com.apress.prospring5.ch10.Singer"
 p:firstName="${countrySinger.firstName}"
 p:lastName="${countrySinger.lastName}"
 p:birthDate="${countrySinger.birthDate}"
 p:personalSite="${countrySinger.personalSite}"/>
</beans>

Here we construct two different beans of the Singer class. The eric bean is constructed with values
provided in the configuration file, while for the countrysinger bean, the attributes are externalized into a
properties file. In addition, a custom editor is defined for converting from a String to JodaTime’s DateTime
type, and the date-time format pattern is externalized in the properties file too. The following snippet shows
the properties file (application.properties):

date.format.pattern=yyyy-MM-dd

countrySinger.firstName=John
countrySinger.lastName=Mayer
countrySinger.birthDate=1977-10-16
countrySinger.personalSite=http://johnmayer.com/

The following code snippet shows the custom editor for converting String values into the JodaTime
DateTime type:

package com.apress.prospring5.ch10;

import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
import org.springframework.beans.PropertyEditorRegistrar;
import org.springframework.beans.PropertyEditorRegistry;

Chapter 10 ■ Validation with Type Conversion and Formatting

513

import java.beans.PropertyEditorSupport;

public class DateTimeEditorRegistrar implements PropertyEditorRegistrar {
 private DateTimeFormatter dateTimeFormatter;

 public DateTimeEditorRegistrar(String dateFormatPattern) {
 dateTimeFormatter = DateTimeFormat.forPattern(dateFormatPattern);
 }

 @Override
 public void registerCustomEditors(PropertyEditorRegistry registry) {
 registry.registerCustomEditor(DateTime.class,
 new DateTimeEditor(dateTimeFormatter));
 }
 private static class DateTimeEditor extends PropertyEditorSupport {
 private DateTimeFormatter dateTimeFormatter;

 public DateTimeEditor(DateTimeFormatter dateTimeFormatter) {
 this.dateTimeFormatter = dateTimeFormatter;
 }

 @Override
 public void setAsText(String text) throws IllegalArgumentException {
 setValue(DateTime.parse(text, dateTimeFormatter));
 }
 }
}

DateTimeEditorRegistrar implements the PropertyEditorRegister interface to register our
custom PropertyEditor. We then create an inner class called DateTimeEditor that handles the
conversion of the String to a DateTime. We use an inner class in this sample, as it’s accessed by only the
PropertyEditorRegistrar implementation. Now let’s test it. The next code snippet shows the testing
program:

package com.apress.prospring5.ch10;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.support.GenericXmlApplicationContext;

public class PropEditorDemo {

 private static Logger logger =
 LoggerFactory.getLogger(PropEditorDemo.class);

 public static void main(String... args) {
 GenericXmlApplicationContext ctx =
 new GenericXmlApplicationContext();

 ctx.load("classpath:spring/prop-editor-app-context.xml");
 ctx.refresh();

Chapter 10 ■ Validation with Type Conversion and Formatting

514

 Singer eric = ctx.getBean("eric", Singer.class);
 logger.info("Eric info: " + eric);
 Singer countrySinger = ctx.getBean("countrySinger", Singer.class);
 logger.info("John info: " + countrySinger);

 ctx.close();
 }
}

As you can see, the two Singer beans are retrieved from ApplicationContext and printed. Running the
program produces the following output:

[main] INFO c.a.p.c.PropEditorDemo - Eric info: {First name: Eric,
 Last name: Clapton, Birthday: 1945-03-30, Site: http://www.ericclapton.com}
[main] INFO c.a.p.c.PropEditorDemo - John info: {First name: John,
 Last name: Mayer, Birthday: 1977-10-16, Site: http://johnmayer.com/}

As shown in the output, the properties are converted and applied to the Singer beans. The reason why
XML is used here instead of a Java configuration class is that the values to be injected are declared as text
values and Spring does the conversion in the background, transparently.

Introducing Spring Type Conversion
With Spring 3.0, a general type conversion system was introduced, which resides under the package org.
springframework.core.convert. In addition to providing an alternative to PropertyEditor support,
the type conversion system can be configured to convert between any Java types and POJOs (while
PropertyEditor is focused on converting String representations in the properties file into Java types).

Implementing a Custom Converter
To see the type conversion system in action, let’s revisit the previous example and use the same Singer
class. Suppose this time we want to use the type conversion system to convert the date in String format
into the Singer’s birthDate property, which is of JodaTime’s DateTime type. To support the conversion,
instead of creating a custom PropertyEditor, we create a custom converter by implementing the org.
springframework.core.convert.converter.Converter<S,T> interface. The following code snippet shows
the custom converter:

package com.apress.prospring5.ch10;

import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
import org.springframework.core.convert.converter.Converter;

import javax.annotation.PostConstruct;

public class StringToDateTimeConverter implements Converter<String, DateTime> {
 private static final String DEFAULT_DATE_PATTERN = "yyyy-MM-dd";
 private DateTimeFormatter dateFormat;

Chapter 10 ■ Validation with Type Conversion and Formatting

515

 private String datePattern = DEFAULT_DATE_PATTERN;

 public String getDatePattern() {
 return datePattern;
 }

 public void setDatePattern(String datePattern) {
 this.datePattern = datePattern;
 }

 @PostConstruct
 public void init() {
 dateFormat = DateTimeFormat.forPattern(datePattern);
 }

 @Override
 public DateTime convert(String dateString) {
 return dateFormat.parseDateTime(dateString);
 }
}

We implement the interface Converter<String, DateTime>, which means the converter is responsible
for converting a String (the source type S) to a DateTime type (the target type T). The injection of the date-time
pattern is optional and can be done by calling the setter setDatePattern. If not injected, the default pattern
yyyy-MM-dd is used. Then, in the initialization method (the init() method annotated with @PostConstruct),
an instance of JodaTime’s DateTimeFormat class is constructed, which will perform the conversion based on
the specified pattern. Finally, the convert() method is implemented to provide the conversion logic.

Configuring ConversionService
To use the conversion service instead of PropertyEditor, we need to configure an instance of the org.
springframework.core.convert.ConversionService interface in Spring’s ApplicationContext. The
following code snippet shows the Java configuration class:

package com.apress.prospring5.ch10.config;

import com.apress.prospring5.ch10.Singer;
import com.apress.prospring5.ch10.StringToDateTimeConverter;
import org.joda.time.DateTime;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.PropertySource;
import org.springframework.context.support.ConversionServiceFactoryBean;
import org.springframework.context.support.PropertySourcesPlaceholderConfigurer;
import org.springframework.core.convert.converter.Converter;

import java.net.URL;
import java.util.HashSet;
import java.util.Set;

Chapter 10 ■ Validation with Type Conversion and Formatting

516

@PropertySource("classpath:application.properties")
@Configuration
@ComponentScan(basePackages = "com.apress.prospring5.ch10")
public class AppConfig {

 @Value("${date.format.pattern}")
 private String dateFormatPattern;

 @Bean
 public static PropertySourcesPlaceholderConfigurer
 propertySourcesPlaceholderConfigurer() {
 return new PropertySourcesPlaceholderConfigurer();
 }

 @Bean
 public Singer john(@Value("${countrySinger.firstName}") String firstName,
 @Value("${countrySinger.lastName}") String lastName,
 @Value("${countrySinger.personalSite}") URL personalSite,
 @Value("${countrySinger.birthDate}") DateTime birthDate)
 throws Exception {
 Singer singer = new Singer();
 singer.setFirstName(firstName);
 singer.setLastName(lastName);
 singer.setPersonalSite(personalSite);
 singer.setBirthDate(birthDate);
 return singer;
 }

 @Bean
 public ConversionServiceFactoryBean conversionService() {
 ConversionServiceFactoryBean conversionServiceFactoryBean =
 new ConversionServiceFactoryBean();
 Set<Converter> convs = new HashSet<>();
 convs.add(converter());
 conversionServiceFactoryBean.setConverters(convs);
 conversionServiceFactoryBean.afterPropertiesSet();
 return conversionServiceFactoryBean;
 }

 @Bean
 StringToDateTimeConverter converter(){
 StringToDateTimeConverter conv = new StringToDateTimeConverter();
 conv.setDatePattern(dateFormatPattern);
 conv.init();
 return conv;
 }
}

The values are read from a property file with contents identical to the file introduced in the previous
section and are injected into the created bean using @Value annotations.

Here we instruct Spring to use the type conversion system by declaring a conversionService bean
with the class ConversionServiceFactoryBean. If no conversion service bean is defined, Spring will use the
PropertyEditor-based system.

Chapter 10 ■ Validation with Type Conversion and Formatting

517

By default, the type conversion service supports conversion between common types including strings,
numbers, enums, collections, maps, and so on. In addition, the conversion from Strings to Java types within
the PropertyEditor-based system is supported.

For the conversionService bean, a custom converter is configured for conversion from a String to
DateTime. The testing program is shown here:

package com.apress.prospring5.ch10;

import com.apress.prospring5.ch10.config.AppConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class ConvServDemo {
 private static Logger logger = LoggerFactory.getLogger(ConvServDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 Singer john = ctx.getBean("john", Singer.class);
 logger.info("Singer info: " + john);
 ctx.close();
 }
}

Running the testing program produces the following output:

15:41:09.960 main INFO c.a.p.c.ConvServDemo - Singer info: {First name: John,
 Last name: Mayer, Birthday: 1977-10-16, Site: http://johnmayer.com/}

As you can see, the john bean’s property conversion result is the same as when we use PropertyEditors.

Converting Between Arbitrary Types
The real strength of the type conversion system is the ability to convert between arbitrary types. To see it in
action, suppose we have another class, called AnotherSinger, that is the same as the Singer class. The code
is shown here:

package com.apress.prospring5.ch10;

import java.net.URL;
import java.text.SimpleDateFormat;

import org.joda.time.DateTime;

public class AnotherSinger {
 private String firstName;
 private String lastName;
 private DateTime birthDate;
 private URL personalSite;

Chapter 10 ■ Validation with Type Conversion and Formatting

518

 //seters and getters
 ...

 public String toString() {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
 return String.format("{First name: %s, Last name: %s,
 Birthday: %s, Site: %s}", firstName, lastName,
 sdf.format(birthDate.toDate()), personalSite);
 }
}

We want to be able to convert any instance of the Singer class to the AnotherSinger class. When
converted, the firstName and lastName values of Singer will become lastName and firstName of
AnotherSinger, respectively. Let’s implement another custom converter to perform the conversion. The
following code snippet shows the custom converter:

package com.apress.prospring5.ch10;

import org.springframework.core.convert.converter.Converter;

public class SingerToAnotherSingerConverter
 implements Converter<Singer, AnotherSinger> {

 @Override
 public AnotherSinger convert(Singer singer) {
 AnotherSinger anotherSinger = new AnotherSinger();
 anotherSinger.setFirstName(singer.getLastName());
 anotherSinger.setLastName(singer.getFirstName());
 anotherSinger.setBirthDate(singer.getBirthDate());
 anotherSinger.setPersonalSite(singer.getPersonalSite());

 return anotherSinger;
 }
}

The class is simple; just swap the firstName and lastName property values between the Singer and
AnotherSinger classes. To register the custom converter into ApplicationContext, replace the definition of
the conversionService bean in the AppConfig class with the code snippet in the following code snippet:

package com.apress.prospring5.ch10.config;

import com.apress.prospring5.ch10.Singer;
import com.apress.prospring5.ch10.SingerToAnotherSingerConverter;
import com.apress.prospring5.ch10.StringToDateTimeConverter;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.ConversionServiceFactoryBean;
import org.springframework.core.convert.converter.Converter;

Chapter 10 ■ Validation with Type Conversion and Formatting

519

import java.net.URL;
import java.util.HashSet;
import java.util.Set;

@Configuration
@ComponentScan(basePackages = "com.apress.prospring5.ch10")
public class AppConfig {

 @Bean
 public Singer john() throws Exception {
 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setPersonalSite(new URL("http://johnmayer.com/"));
 singer.setBirthDate(converter().convert("1977-10-16"));
 return singer;
 }

 @Bean
 public ConversionServiceFactoryBean conversionService() {
 ConversionServiceFactoryBean conversionServiceFactoryBean =
 new ConversionServiceFactoryBean();
 Set<Converter> convs = new HashSet<>();
 convs.add(converter());
 convs.add(singerConverter());
 conversionServiceFactoryBean.setConverters(convs);
 conversionServiceFactoryBean.afterPropertiesSet();
 return conversionServiceFactoryBean;
 }

 @Bean
 StringToDateTimeConverter converter() {
 return new StringToDateTimeConverter();
 }

 @Bean
 SingerToAnotherSingerConverter singerConverter() {
 return new SingerToAnotherSingerConverter();
 }
}

The order of the beans within the converter property is not important. To test the conversion, we use the
following testing program, which is the MultipleConvServDemo class shown here:

package com.apress.prospring5.ch10;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;
import org.springframework.core.convert.ConversionService;

import com.apress.prospring5.ch10.config.AppConfig;

Chapter 10 ■ Validation with Type Conversion and Formatting

520

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

public class MultipleConvServDemo {
 private static Logger logger =
 LoggerFactory.getLogger(MultipleConvServDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 Singer john = ctx.getBean("john", Singer.class);

 logger.info("Singer info: " + john);

 ConversionService conversionService =
 ctx.getBean(ConversionService.class);

 AnotherSinger anotherSinger =
 conversionService.convert(john, AnotherSinger.class);
 logger.info("Another singer info: " + anotherSinger);

 String[] stringArray = conversionService.convert("a,b,c",
 String[].class);
 logger.info("String array: " + stringArray[0]
 + stringArray[1] + stringArray[2]);
 List<String> listString = new ArrayList<>();
 listString.add("a");
 listString.add("b");
 listString.add("c");

 Set<String> setString =
 conversionService.convert(listString, HashSet.class);

 for (String string: setString)
 System.out.println("Set: " + string);
 }
}

A handle to the ConversionService interface is obtained from ApplicationContext. Because we
already registered ConversionService in ApplicationContext with our custom converters, we can use it
to convert the Singer object, as well as convert between other types that the conversion service already
supports. As shown in the listing, examples of converting from a String (delimited by a comma character)
to an Array and from a List to a Set were also added for demonstration purposes. Running the program
produces the following output:

[main] INFO c.a.p.c.MultipleConvServDemo - Singer info:
 {First name: John, Last name: Mayer, Birthday: 1977-10-16,
 Site: http://johnmayer.com/}
[main] INFO c.a.p.c.MultipleConvServDemo - Another singer info:

Chapter 10 ■ Validation with Type Conversion and Formatting

521

 {First name: Mayer, Last name: John, Birthday: 1977-10-16,
 Site: http://johnmayer.com/}
[main] INFO c.a.p.c.MultipleConvServDemo - String array: abc
Set: a
Set: b
Set: c

In the output, you will see that Singer and AnotherSinger are converted correctly, as well as the String
to Array and the List to Set. With Spring’s type conversion service, you can create custom converters
easily and perform conversion at any layer within your application. One possible use case is that you have
two systems with the same singer information that you need to update. However, the database structure is
different (for example, the last name in system A means the first name in system B, and so on). You can use
the type conversion system to convert the objects before persisting to each individual system.

Starting with Spring 3.0, Spring MVC makes heavy use of the conversion service (as well as the
Formatter SPI discussed in the next section). In the web application context configuration, the declaration of
the tag <mvc:annotation-driven/>, or in the Java configuration class the use of @EnableWebMvc introduced
in Spring 3.1, will automatically register all default converters (for example, StringToArrayConverter,
StringToBooleanConverter, and StringToLocaleConverter, all residing under the org.springframework.
core.convert.support package) and formatters (for example, CurrencyFormatter, DateFormatter,
and NumberFormatter, all residing under various subpackages within the org.springframework.format
package). More is covered in Chapter 16, when we discuss web application development in Spring.

Field Formatting in Spring
Besides the type conversion system, another great feature that Spring brings to developers is the Formatter
SPI. As you might expect, this SPI can help configure the field-formatting aspects.

In the Formatter SPI, the main interface for implementing a formatter is the org.springframework.
format.Formatter<T> interface. Spring provides a few implementations of commonly used types, including
CurrencyFormatter, DateFormatter, NumberFormatter, and PercentFormatter.

Implementing a Custom Formatter
Implementing a custom formatter is easy too. We will use the same Singer class and implement a custom
formatter for converting the DateTime type of the birthDate attribute to and from a String.

However, this time we will take a different approach; we will extend Spring’s org.springframework.
format.support.FormattingConversionServiceFactoryBean class and provide our custom formatter. The
FormattingConversionServiceFactoryBean class is a factory class that provides convenient access to the
underlying FormattingConversionService class, which supports the type conversion system, as well as field
formatting according to the formatting rules defined for each field type.

The following code snippet shows a custom class that extends the
FormattingConversionServiceFactoryBean class, with a custom formatter defined for formatting
JodaTime’s DateTime type.

package com.apress.prospring5.ch10;

import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 10 ■ Validation with Type Conversion and Formatting

522

import org.springframework.format.Formatter;
import org.springframework.format.support.FormattingConversionServiceFactoryBean;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import java.text.ParseException;
import java.util.HashSet;
import java.util.Locale;
import java.util.Set;

@Component("conversionService")
public class ApplicationConversionServiceFactoryBean extends
 FormattingConversionServiceFactoryBean {
 private static Logger logger =
 LoggerFactory.getLogger(ApplicationConversionServiceFactoryBean.class);

 private static final String DEFAULT_DATE_PATTERN = "yyyy-MM-dd";
 private DateTimeFormatter dateFormat;
 private String datePattern = DEFAULT_DATE_PATTERN;
 private Set<Formatter<?>> formatters = new HashSet<>();
 public String getDatePattern() {
 return datePattern;
 }

 @Autowired(required = false)
 public void setDatePattern(String datePattern) {
 this.datePattern = datePattern;
 }

 @PostConstruct
 public void init() {
 dateFormat = DateTimeFormat.forPattern(datePattern);
 formatters.add(getDateTimeFormatter());
 setFormatters(formatters);
 }

 public Formatter<DateTime> getDateTimeFormatter() {
 return new Formatter<DateTime>() {

 @Override
 public DateTime parse(String dateTimeString, Locale locale)
 throws ParseException {
 logger.info("Parsing date string: " + dateTimeString);
 return dateFormat.parseDateTime(dateTimeString);
 }

 @Override
 public String print(DateTime dateTime, Locale locale) {
 logger.info("Formatting datetime: " + dateTime);
 return dateFormat.print(dateTime);
 }
 };
 }
}

Chapter 10 ■ Validation with Type Conversion and Formatting

523

In the preceding listing, the custom formatter is underlined. It implements the Formatter<DateTime>
interface and implements two methods defined by the interface. The parse() method parses the String
format into the DateTime type (the locale was also passed for localization support), while the logger.info()
method is to format a DateTime instance into a String. The date pattern can be injected into the bean (or
the default will be yyyy-MM-dd). Also, in the init() method, the custom formatter is registered by calling the
setFormatters() method. You can add as many formatters as required.

Configuring ConversionServiceFactoryBean
Declaring a bean of type FormattingConversionServiceFactoryBean greatly reduces in size the AppConfig
configuration class.

package com.apress.prospring5.ch10.config;

import com.apress.prospring5.ch10.ApplicationConversionServiceFactoryBean;
import com.apress.prospring5.ch10.Singer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

import java.net.URL;
import java.util.Locale;

@Configuration
@ComponentScan(basePackages = "com.apress.prospring5.ch10")
public class AppConfig {

 @Autowired
 ApplicationConversionServiceFactoryBean conversionService;

 @Bean
 public Singer john() throws Exception {
 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setPersonalSite(new URL("http://johnmayer.com/"));
 singer.setBirthDate(conversionService.
 getDateTimeFormatter().parse("1977-10-16", Locale.ENGLISH));
 return singer;
 }
}

The testing program is shown here:

package com.apress.prospring5.ch10;

import com.apress.prospring5.ch10.config.AppConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;

Chapter 10 ■ Validation with Type Conversion and Formatting

524

import org.springframework.context.support.GenericApplicationContext;
import org.springframework.core.convert.ConversionService;

public class ConvFormatServDemo {

 private static Logger logger =
 LoggerFactory.getLogger(ConvFormatServDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 Singer john = ctx.getBean("john", Singer.class);
 logger.info("Singer info: " + john);
 ConversionService conversionService =
 ctx.getBean("conversionService", ConversionService.class);
 logger.info("Birthdate of singer is : " +
 conversionService.convert(john.getBirthDate(), String.class));

 ctx.close();
 }
}

Running the program produces the following output:

Parsing date string: 1977-10-16
[main] INFO c.a.p.c.ConvFormatServDemo - Singer info: {
 First name: John, Last name: Mayer, Birthday: 1977-10-16,
 Site: http://johnmayer.com/}
Formatting datetime: 1977-10-16T00:00:00.000+03:00
[main] INFO c.a.p.c.ConvFormatServDemo -
 Birthdate of singer is : 1977-10-16

In the output, you can see that Spring uses our custom formatter’s parse() method to convert
the property from a String to the DateTime type of the birthDate attribute. When we call the
ConversionService.convert() method and pass in the birthDate attribute, Spring will call the logger’s
info method to format the output.

Validation in Spring
Validation is a critical part of any application. Validation rules applied on domain objects ensure that all
business data is well structured and fulfills all the business definitions. The ideal case is that all validation
rules are maintained in a centralized location, and the same set of rules are applied to the same type of data,
no matter which source the data comes from (for example, from user input via a web application, from a
remote application via web services, from a JMS message, or from a file).

When talking about validation, conversion and formatting are important too, because before a piece of
data can be validated, it should be converted to the desired POJO according to the formatting rules defined
for each type. For example, a user enters some singer information via a web application within a browser
and then submits that data to a server. On the server side, if the web application was developed in Spring
MVC, Spring will extract the data from the HTTP request and perform the conversion from a String to the

Chapter 10 ■ Validation with Type Conversion and Formatting

525

desired type based on the formatting rule (for example, a String representing a date will be converted into a
Date field, with the formatting rule yyyy-MM-dd). The process is called data binding. When the data binding
is complete and the domain object constructed, validation will then be applied to the object, and any errors
will be returned and displayed to the user. If validation succeeds, the object will be persisted to the database.

Spring supports two main types of validation. The first one is provided by Spring, within which custom
validators can be created by implementing the org.springframework.validation.Validator interface.
The other one is via Spring’s support of JSR-349 (Bean Validation). We present both of them in the coming
sections.

Using the Spring Validator Interface
Using Spring’s Validator interface, we can develop some validation logic by creating a class to implement
the interface. Let’s see how it works. For the Singer class that we’ve worked with so far, suppose the first
name cannot be empty. To validate Singer objects against this rule, we can create a custom validator. The
following code snippet shows the validator class:

package com.apress.prospring5.ch10;

import org.springframework.stereotype.Component;
import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;

@Component("singerValidator")
public class SingerValidator implements Validator {
 @Override
 public boolean supports(Class<?> clazz) {
 return Singer.class.equals(clazz);
 }

 @Override
 public void validate(Object obj, Errors e) {
 ValidationUtils.rejectIfEmpty(e, "firstName",
 "firstName.empty");
 }
}

The validator class implements the Validator interface and implements two methods. The supports()
method indicates whether validation of the passed-in class type is supported by the validator. The
validate() method performs validation on the passed-in object. The result will be stored in an instance of
the org.springframework.validation.Errors interface. In the validate() method, we perform a check
only on the firstName attribute and use the convenient ValidationUtils.rejectIfEmpty() method to
ensure that the first name of the singer is not empty. The last argument is the error code, which can be used
for looking up validation messages from resource bundles to display localized error messages.

The following code snippet depicts the configuration class:

package com.apress.prospring5.ch10.config;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

Chapter 10 ■ Validation with Type Conversion and Formatting

526

@Configuration
@ComponentScan(basePackages = "com.apress.prospring5.ch10")
public class AppConfig {
}

The following code snippet contains the testing program:

package com.apress.prospring5.ch10;

import com.apress.prospring5.ch10.config.AppConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;
import org.springframework.validation.BeanPropertyBindingResult;
import org.springframework.validation.ObjectError;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;

import java.util.List;

public class SpringValidatorDemo {

 private static Logger logger =
 LoggerFactory.getLogger(SpringValidatorDemo.class);

 public static void main(String... args) {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 Singer singer = new Singer();
 singer.setFirstName(null);
 singer.setLastName("Mayer");

 Validator singerValidator = ctx.getBean("singerValidator",
 Validator.class);
 BeanPropertyBindingResult result =
 new BeanPropertyBindingResult(singer, "John");

 ValidationUtils.invokeValidator(singerValidator, singer, result);

 List<ObjectError> errors = result.getAllErrors();
 logger.info("No of validation errors: " + errors.size());
 errors.forEach(e -> logger.info(e.getCode()));

 ctx.close();
 }
}

Chapter 10 ■ Validation with Type Conversion and Formatting

527

A Singer object is constructed with the first name set to null. Then, the validator is retrieved from
ApplicationContext. To store the validation result, an instance of the BeanPropertyBindingResult class is
constructed. To perform the validation, the ValidationUtils.invokeValidator() method is called. Then
we check for validation errors. Running the program produces the following output:

[main] INFO c.a.p.c.SpringValidatorDemo - No of validation errors: 1
[main] INFO c.a.p.c.SpringValidatorDemo - firstName.empty

The validation produces one error, and the error code is displayed correctly.

Using JSR-349 Bean Validation
As of Spring 4, full support for JSR-349 (Bean Validation) has been implemented. The Bean Validation API
defines a set of constraints in the form of Java annotations (for example, @NotNull) under the package
javax.validation.constraints that can be applied to the domain objects. In addition, custom validators
(for example, class-level validators) can be developed and applied by using annotation.

Using the Bean Validation API frees you from coupling to a specific validation service provider. By using
the Bean Validation API, you can use standard annotations and the API for implementing validation logic to
your domain objects, without knowing the underlying validation service provider. For example, the Hibernate
Validator version 5 (http://hibernate.org/subprojects/validator) is the JSR-349 reference implementation.

Spring provides seamless support for the Bean Validation API. The main features include support for
JSR-349 standard annotations for defining validation constraints, custom validators, and configuration of
JSR-349 validation within Spring’s ApplicationContext. Let’s go through them one by one in the following
sections. Spring still seamlessly provides support for JSR-303 when using Hibernate Validator version 4 and
the 1.0 version of the validation API on your classpath.

Defining Validation Constraints on Object Properties
Let’s begin with applying validation constraints to domain object properties. The following code snippet shows a
more advanced Singer class with validation constraints applied to the firstName and genre attributes:

package com.apress.prospring5.ch10.obj;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

public class Singer {

 @NotNull
 @Size(min=2, max=60)
 private String firstName;

 private String lastName;

 @NotNull
 private Genre genre;

 private Gender gender;

 //setters and getters
 ...
}

http://hibernate.org/subprojects/validator

Chapter 10 ■ Validation with Type Conversion and Formatting

528

Here the validation constraints applied are shown underlined. For the firstName attribute, two
constraints are applied. The first one is governed by the @NotNull annotation, which indicates that the
value should not be null. Moreover, the @Size annotation governs the length of the firstName attribute.
The @NotNull constraint is applied to the genre attribute too.

The following code sample shows the Genre and Gender enum classes, respectively:

//Genre.java
package com.apress.prospring5.ch10.obj;
public enum Genre {
 POP("P"),
 JAZZ("J"),
 BLUES("B"),
 COUNTRY("C");
 private String code;

 private Genre(String code) {
 this.code = code;
 }

 public String toString() {
 return this.code;
 }
}

//Genfer.java
package com.apress.prospring5.ch10.obj;

public enum Gender {
 MALE("M"), FEMALE("F");
 private String code;

 Gender(String code) {
 this.code = code;
 }

 @Override
 public String toString() {
 return this.code;
 }
}

The genre indicates the music genre a singer belongs to, while the gender is not really that relevant for a
musical career, so it could be null.

Configuring Bean Validation Support in Spring
To configure the support of the Bean Validation API in Spring’s ApplicationContext, we define a bean
of type org.springframework.validation.beanvalidation.LocalValidatorFactoryBean in Spring’s
configuration. The following code snippet depicts the configuration class:

Chapter 10 ■ Validation with Type Conversion and Formatting

529

package com.apress.prospring5.ch10.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.validation.beanvalidation.LocalValidatorFactoryBean;

@Configuration
@ComponentScan(basePackages = "com.apress.prospring5.ch10")
public class AppConfig {

 @Bean LocalValidatorFactoryBean validator() {
 return new LocalValidatorFactoryBean();
 }
}

The declaration of a bean with the type LocalValidatorFactoryBean is all that is required. By default,
Spring will search for the existence of the Hibernate Validator library in the classpath. Now, let’s create a
service class that provides a validation service for the Singer class. The validator class is shown here:

package com.apress.prospring5.ch10;

import com.apress.prospring5.ch10.obj.Singer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import javax.validation.ConstraintViolation;
import javax.validation.Validator;
import java.util.Set;

@Service("singerValidationService")
public class SingerValidationService {

 @Autowired
 private Validator validator;

 public Set<ConstraintViolation<Singer>>
 validateSinger(Singer singer) {
 return validator.validate(singer);
 }
}

An instance of the javax.validation.Validator was injected (note the difference from the Spring-
provided Validator interface, which is org.springframework.validation.Validator). Once the
LocalValidatorFactoryBean is defined, you can create a handle to the Validator interface anywhere
in your application. To perform validation on a POJO, the Validator.validate() method is called. The
validation results will be returned as a List of the ConstraintViolation<T> interface.

Chapter 10 ■ Validation with Type Conversion and Formatting

530

The testing program is shown here:

package com.apress.prospring5.ch10;

import com.apress.prospring5.ch10.config.AppConfig;
import com.apress.prospring5.ch10.obj.Singer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

import javax.validation.ConstraintViolation;
import java.util.Set;

public class Jsr349Demo {
 private static Logger logger =
 LoggerFactory.getLogger(Jsr349Demo.class);

 public static void main(String... args) {

 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 SingerValidationService singerBeanValidationService =
 ctx.getBean(SingerValidationService.class);

 Singer singer = new Singer();
 singer.setFirstName("J");
 singer.setLastName("Mayer");
 singer.setGenre(null);
 singer.setGender(null);

 validateSinger(singer, singerBeanValidationService);

 ctx.close();
 }

 private static void validateSinger(Singer singer,
 SingerValidationService singerValidationService) {
 Set<ConstraintViolation<Singer>> violations =
 singerValidationService.validateSinger(singer);
 listViolations(violations);
 }

 private static void listViolations(
 Set<ConstraintViolation<Singer>> violations) {
 logger.info("No. of violations: " + violations.size());
 for (ConstraintViolation<Singer> violation : violations) {
 logger.info("Validation error for property: " +
 violation.getPropertyPath()
 + " with value: " + violation.getInvalidValue()
 + " with error message: " + violation.getMessage());
 }
 }
}

Chapter 10 ■ Validation with Type Conversion and Formatting

531

As shown in this listing, a Singer object is constructed with firstName and genre violating the
constraints. In the validateSinger() method, the SingerValidationService.validateSinger() method
is called, which in turn will invoke JSR-349 (Bean Validation). Running the program produces the following
output:

[main] INFO o.h.v.i.u.Version - HV000001:
 Hibernate Validator 6.0.0.Beta2
[main] INFO c.a.p.c.Jsr349Demo - No. of violations: 2
[main] INFO c.a.p.c.Jsr349Demo - Validation error for property:
 firstName with value: J with error message: size must be between 2 and 60
[main] INFO c.a.p.c.Jsr349Demo - Validation error for property:
 genre with value: null with error message: may not be null

As you can see, there are two violations, and the messages are shown. In the output, you will also see
that Hibernate Validator had already constructed default validation error messages based on the annotation.
You can also provide your own validation error message, which we demonstrate in the next section.

Creating a Custom Validator
Besides property-level validation, we can apply class-level validation. For example, for the Singer class,
for country singers, we want to make sure that the lastName and gender attributes are not null, not that it
really matters, but just for educational purposes. In this case, we can develop a custom validator to perform
the check. In the Bean Validation API, developing a custom validator is a two-step process. First create an
Annotation type for the validator, as shown in the following code snippet. The second step is to develop the
class that implements the validation logic.

package com.apress.prospring5.ch10;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

import javax.validation.Constraint;
import javax.validation.Payload;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
@Constraint(validatedBy=CountrySingerValidator.class)
@Documented
public @interface CheckCountrySinger {
 String message() default "Country Singer should
 have gender and last name defined";
 Class<?> groups() default {};
 Class<? extends Payload> payload() default {};
}

Chapter 10 ■ Validation with Type Conversion and Formatting

532

The @Target(ElementType.TYPE) annotation means that the annotation should be applied only at
the class level. The @Constraint annotation indicates that it’s a validator, and the validatedBy attribute
specifies the class providing the validation logic. Within the body, three attributes are defined (in the form of
a method), as follows:

•	 The message attribute defines the message (or error code) to return when the
constraint is violated. A default message can also be provided in the annotation.

•	 The groups attribute specifies the validation group if applicable. It’s possible to
assign validators to different groups and perform validation on a specific group.

•	 The payload attribute specifies additional payload objects (of the class
implementing the javax.validation.Payload interface). It allows you to attach
additional information to the constraint (for example, a payload object can indicate
the severity of a constraint violation).

The following code snippet shows the CountrySingerValidator class that provides the validation logic:

package com.apress.prospring5.ch10;

import com.apress.prospring5.ch10.obj.Singer;

import javax.validation.ConstraintValidator;
import javax.validation.ConstraintValidatorContext;

public class CountrySingerValidator implements
 ConstraintValidator<CheckCountrySinger, Singer> {

 @Override
 public void initialize(CheckCountrySinger constraintAnnotation) {
 }

 @Override
 public boolean isValid(Singer singer,
 ConstraintValidatorContext context) {
 boolean result = true;
 if (singer.getGenre() != null && (singer.isCountrySinger() &&
 (singer.getLastName() == null || singer.getGender() == null))) {
 result = false;
 }
 return result;
 }
}

CountrySingerValidator implements the ConstraintValidator<CheckCountrySinger, Singer>
interface, which means that the validator checks the CheckCountrySinger annotation on the Singer classes.
The isValid() method is implemented, and the underlying validation service provider (for example,
Hibernate Validator) will pass the instance under validation to the method. In the method, we verify that if
the singer is a country music singer, the lastName and gender properties should not be null. The result is a
Boolean value that indicates the validation result.

Chapter 10 ■ Validation with Type Conversion and Formatting

533

To enable the validation, apply the @CheckCountrySinger annotation to the Singer class, as shown
here:

package com.apress.prospring5.ch10.obj;

import com.apress.prospring5.ch10.CheckCountrySinger;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@CheckCountrySinger
public class Singer {

 @NotNull
 @Size(min = 2, max = 60)
 private String firstName;

 private String lastName;

 @NotNull
 private Genre genre;

 private Gender gender;

 //getters and setter
 ...

 public boolean isCountrySinger() {
 return genre == Genre.COUNTRY;
 }
}

To test the custom validation, the following Singer instance will be created in the testing class
Jsr349CustomDemo:

public class Jsr349CustomDemo {
 ...

 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setGenre(Genre.COUNTRY);
 singer.setGender(null);

 validateSinger(singer, singerValidationService);

 ...
}

Chapter 10 ■ Validation with Type Conversion and Formatting

534

Running the program produces the following output (the other output was omitted):

[main] INFO o.h.v.i.u.Version - HV000001: Hibernate Validator 6.0.0.Beta2
[main] INFO c.a.p.c.Jsr349CustomDemo - No. of violations: 1
[main] INFO c.a.p.c.Jsr349CustomDemo - Validation error for property:
 with value: com.apress.prospring5.ch10.obj.Singer@3116c353
 with error message: Country Singer should have gender and last name defined

In the output, you can see that the value being checked (which is the Singer instance) violates the
validation rule for country singers, because the gender attribute is null. Note also that in the output, the
property path is empty because it’s a class-level validation error.

Using AssertTrue for Custom Validation
Besides implementing a custom validator, another way to apply custom validation in the Bean
Validation API is to use the @AssertTrue annotation. Let’s see how it works. For the Singer class, the
@CheckCountrySinger annotation is removed, and the isCountrySinger() method is modified as follows:

public class Singer {

 @NotNull
 @Size(min = 2, max = 60)
 private String firstName;

 private String lastName;

 @NotNull
 private Genre genre;

 private Gender gender;
 ...

 @AssertTrue(message="ERROR! Individual customer should have
 gender and last name defined")
 public boolean isCountrySinger() {
 boolean result = true;

 if (genre!= null &&
 (genre.equals(Genre.COUNTRY) &&
 (gender == null || lastName == null))) {
 result = false;
 }

 return result;
 }
}

As you can probably infer, the @CheckCountrySinger annotation and the CountrySingerValidator
class are no longer necessary.

Chapter 10 ■ Validation with Type Conversion and Formatting

535

The isCountrySinger() method is added to the Singer class and annotated with @AssertTrue (which
is under the package javax.validation.constraints). When invoking validation, the provider will invoke
the checking and make sure that the result is true. JSR-349 also provides the @AssertFalse annotation to
check for some condition that should be false. Now run the testing program Jsr349AssertTrueDemo, and you
will get the same output as produced by the custom validator.

Considerations for Custom Validation
So, for custom validation in JSR-349, which approach should you use: the custom validator or the @AssertTrue
annotation? Generally, the @AssertTrue method is simpler to implement, and you can see the validation
rules right in the code of the domain objects. However, for validators with more complicated logic
(for example, say you need to inject a service class, access a database, and check for valid values), then
implementing a custom validator is the way to go because you never want to inject service-layer objects
into your domain objects. Also, custom validators can be reused across similar domain objects.

Deciding Which Validation API to Use
Having discussed Spring’s own Validator interface and the Bean Validation API, which one should you use
in your application? JSR-349 is definitely the way to go. The following are the major reasons:

•	 JSR-349 is a JEE standard and is broadly supported by many front-end/back-end
frameworks (for example, Spring, JPA 2, Spring MVC, and GWT).

•	 JSR-349 provides a standard validation API that hides the underlying provider, so you
are not tied to a specific provider.

•	 Spring tightly integrates with JSR-349 starting with version 4. For example, in the
Spring MVC web controller, you can annotate the argument in a method with the
@Valid annotation (under the package javax.validation), and Spring will invoke
JSR-349 validation automatically during the data-binding process. Moreover,
in a Spring MVC web application context configuration, a simple tag called
<mvc:annotation-driven/> will configure Spring to automatically enable the Spring
type conversion system and field formatting, as well as support of JSR-349 (Bean
Validation).

•	 If you are using JPA 2, the provider will automatically perform JSR-349 validation to
the entity before persisting, providing another layer of protection.

For detailed information about using JSR-349 (Bean Validation) with Hibernate Validator as the
implementation provider, please refer to Hibernate Validator’s documentation page: http://docs.jboss.
org/hibernate/validator/5.1/reference/en-US/html.

Summary
In this chapter, we covered the Spring type conversion system as well as the field Formatter SPI. You
saw how the new type conversion system can be used for arbitrary type conversion, in addition to the
PropertyEditors support.

We also covered validation support in Spring, Spring’s Validator interface, and the recommended
JSR-349 (Bean Validation) support in Spring.

http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html
http://docs.jboss.org/hibernate/validator/5.1/reference/en-US/html

537© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_11

CHAPTER 11

Task Scheduling

Task scheduling is a common feature in enterprise applications. Task scheduling is composed mainly of
three parts: the task (which is the piece of business logic needed to run at a specific time or on a regular
basis), the trigger (which specifies the condition under which the task should be executed), and the
scheduler (which executes the task based on the information from the trigger). Specifically, this chapter
covers the following topics:

•	 Task scheduling in Spring: We discuss how Spring supports task scheduling, focusing
on the TaskScheduler abstraction introduced in Spring 3. We also cover scheduling
scenarios such as fixed-interval scheduling and cron expressions.

•	 Asynchronous task execution: We show how to use the @Async annotation in Spring to
execute tasks asynchronously.

•	 Task execution in Spring: We briefly discuss Spring’s TaskExecutor interface and how
tasks are executed.

Dependencies for the Task Scheduling Samples
You can see the dependencies needed for this chapter in the following Gradle configuration snippet:

//pro-spring-15/build.gradle
ext {
 springDataVersion = '2.0.0.M3'

 //logging libs
 slf4jVersion = '1.7.25'
 logbackVersion = '1.2.3'

 guavaVersion = '21.0'
 jodaVersion = '2.9.9'
 utVersion = '6.0.1.GA'

 junitVersion = '4.12'

 spring = [
 data :
 "org.springframework.data:spring-data-jpa:$springDataVersion",
 ...
]

https://doi.org/10.1007/978-1-4842-2808-1_11

Chapter 11 ■ Task Scheduling

538

 testing = [
 junit: "junit:junit:$junitVersion"
]

 misc = [
 slf4jJcl : "org.slf4j:jcl-over-slf4j:$slf4jVersion",
 logback : "ch.qos.logback:logback-classic:$logbackVersion",
 guava : "com.google.guava:guava:$guavaVersion",
 joda : "joda-time:joda-time:$jodaVersion",
 usertype : "org.jadira.usertype:usertype.core:$utVersion",
 ...
]
 ...
}
...
//chapter11/build.gradle
dependencies {

 compile (spring.contextSupport) {
 exclude module: 'spring-context'
 exclude module: 'spring-beans'
 exclude module: 'spring-core'
 }
 compile misc.slf4jJcl, misc.logback, misc.lang3, spring.data,
 misc.guava, misc.joda, misc.usertype, db.h2

 testCompile testing.junit
}

Task Scheduling in Spring
Enterprise applications often need to schedule tasks. In many applications, various tasks (such as sending
e-mail notifications to customers, running day-end jobs, doing data housekeeping, and updating data in
batches) need to be scheduled to run on a regular basis, either in a fixed interval (for example, every hour) or at
a specific schedule (for example, at 8 p.m. every night, from Monday to Friday). As mentioned, task scheduling
consists of three parts: the schedule definition (trigger), the task execution (scheduler), and the task itself.

There are many ways to trigger the execution of a task in a Spring application. One way is to trigger a
job externally from a scheduling system that already exists in the application deployment environment.
For example, many enterprises use commercial systems, such as Control-M or CA AutoSys, for scheduling
tasks. If the application is running on a Linux/Unix platform, the crontab scheduler can be used. The job
triggering can be done by sending a RESTful-WS request to the Spring application and having Spring’s MVC
controller trigger the task.

Another way is to use the task scheduling support in Spring. Spring provides three options in terms of
task scheduling.

•	 Support of JDK Timer: Spring supports JDK’s Timer object for task scheduling.

•	 Integrates with Quartz: The Quartz Scheduler1 is a popular open source scheduling
library.

1You can find the official page at www.quartz-scheduler.org.

http://www.quartz-scheduler.org/

Chapter 11 ■ Task Scheduling

539

•	 Spring’s own Spring TaskScheduler abstraction: Spring 3 introduces the
TaskScheduler abstraction, which provides a simple way to schedule tasks and
supports most typical requirements.

This section focuses on using Spring’s TaskScheduler abstraction for task scheduling.

Introducing the Spring TaskScheduler Abstraction
Spring’s TaskScheduler abstraction has mainly three participants.

•	 The Trigger interface: The org.springframework.scheduling.Trigger interface
provides support for defining the triggering mechanism. Spring provides two
Trigger implementations. The CronTrigger class supports triggering based on a
cron expression, while the PeriodicTrigger class supports triggering based on an
initial delay and then a fixed interval.

•	 The task: The task is the piece of business logic that needs to be scheduled. In Spring,
a task can be specified as a method within any Spring bean.

•	 The TaskScheduler interface: The org.springframework.scheduling.TaskScheduler
interface provides support for task scheduling. Spring provides three implementation
classes of the TaskScheduler interface. The TimerManagerTaskScheduler class
(in package org.springframework. scheduling.commonj) wraps CommonJ’s
commonj.timers.TimerManager interface, which is commonly used in
commercial JEE application servers such as WebSphere and WebLogic. The
ConcurrentTaskScheduler and ThreadPoolTaskScheduler classes (both
under the package org.springframework.scheduling.concurrent) wrap the
java.util.concurrent.ScheduledThreadPoolExecutor class. Both classes support
task execution from a shared thread pool.

Figure 11-1 shows the relationships between the Trigger interface, the TaskScheduler interface, and
the task implementation that implements the java.lang.Runnable interface. To schedule tasks by using
Spring’s TaskScheduler abstraction, you have two options. One is to use task-namespace in Spring’s XML
configuration, and the other is to use annotations. Let’s go through each of them.

Figure 11-1.  Relationship between trigger, task, and scheduler

Chapter 11 ■ Task Scheduling

540

Exploring a Sample Task
To demonstrate task scheduling in Spring, let’s implement a simple job first, namely, an application
maintaining a database of car information. The following code snippet shows the Car class, which is
implemented as a JPA entity class:

package com.apress.prospring5.ch11;

import static javax.persistence.GenerationType.IDENTITY;

import javax.persistence.Column;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;
import javax.persistence.Version;

import org.hibernate.annotations.Type;
import org.joda.time.DateTime;

@Entity
@Table(name="car")
public class Car {
 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Column(name="LICENSE_PLATE")
 private String licensePlate;

 @Column(name="MANUFACTURER")
 private String manufacturer;

 @Column(name="MANUFACTURE_DATE")
 @Type(type="org.jadira.usertype.dateandtime.joda.PersistentDateTime")
 private DateTime manufactureDate;
 @Column(name="AGE")
 private int age;

 @Version
 private int version;

 //getters and setters
 ...

Chapter 11 ■ Task Scheduling

541

 @Override
 public String toString() {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
 return String.format("{License: %s, Manufacturer: %s,
 Manufacture Date: %s, Age: %d}",
 licensePlate, manufacturer, sdf.format(manufactureDate.toDate()), age);
 }
}

This entity class is used as a model for the CAR table generated by Hibernate. The configuration for the
data access and services layer, all merged into one for this chapter, is provided by the DataServiceConfig
class depicted in the following code snippet:

package com.apress.prospring5.ch11.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch11.repos"})
@ComponentScan(basePackages = {"com.apress.prospring5.ch11"})
public class DataServiceConfig {

 private static Logger logger =
 LoggerFactory.getLogger(DataServiceConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2).build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

Chapter 11 ■ Task Scheduling

542

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 //hibernateProp.put("hibernate.format_sql", true);
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch11.entities");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }
}

A class named DBInitializer is responsible for populating the CAR table.

package com.apress.prospring5.ch11.config;

import com.apress.prospring5.ch11.entities.Car;
import com.apress.prospring5.ch11.repos.CarRepository;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

Chapter 11 ■ Task Scheduling

543

import javax.annotation.PostConstruct;

@Service
public class DBInitializer {

 private Logger logger = LoggerFactory.getLogger(DBInitializer.class);
 @Autowired CarRepository carRepository;

 @PostConstruct
 public void initDB() {
 logger.info("Starting database initialization...");
 DateTimeFormatter formatter = DateTimeFormat.forPattern("yyyy-MM-dd");

 Car car = new Car();
 car.setLicensePlate("GRAVITY-0405");
 car.setManufacturer("Ford");
 car.setManufactureDate(DateTime.parse("2006-09-12", formatter));
 carRepository.save(car);

 car = new Car();
 car.setLicensePlate("CLARITY-0432");
 car.setManufacturer("Toyota");
 car.setManufactureDate(DateTime.parse("2003-09-09", formatter));
 carRepository.save(car);

 car = new Car();
 car.setLicensePlate("ROSIE-0402");
 car.setManufacturer("Toyota");
 car.setManufactureDate(DateTime.parse("2017-04-16", formatter));
 carRepository.save(car);

 logger.info("Database initialization finished.");
 }
}

Let’s define a DAO layer for the Car entity. We will use Spring Data’s JPA and its repository abstraction
support. Here you can see the CarRepository interface, which is a simple extension of CrusRepository
because as we are not interested in any special DAO operations.

package com.apress.prospring5.ch11.repos;

import com.apress.prospring5.ch11.entities.Car;
import org.springframework.data.repository.CrudRepository;

public interface CarRepository extends CrudRepository<Car, Long> {
}

Chapter 11 ■ Task Scheduling

544

The service layer is represented by the CarService interface and its implementation CarServiceImpl.

package com.apress.prospring5.ch11.services;
//CarService.jar
import com.apress.prospring5.ch11.entities.Car;

import java.util.List;

public interface CarService {
 List<Car> findAll();
 Car save(Car car);
 void updateCarAgeJob();
 boolean isDone();
}

//CarServiceImpl.jar
...
@Service("carService")
@Repository
@Transactional
public class CarServiceImpl implements CarService {
 public boolean done;

 final Logger logger = LoggerFactory.getLogger(CarServiceImpl.class);

 @Autowired
 CarRepository carRepository;

 @Override
 @Transactional(readOnly=true)
 public List<Car> findAll() {
 return Lists.newArrayList(carRepository.findAll());
 }

 @Override
 public Car save(Car car) {
 return carRepository.save(car);
 }

 @Override
 public void updateCarAgeJob() {
 List<Car> cars = findAll();

 DateTime currentDate = DateTime.now();
 logger.info("Car age update job started");

 cars.forEach(car -> {
 int age = Years.yearsBetween(car.getManufactureDate(),
 currentDate).getYears();

 car.setAge(age);
 save(car);
 logger.info("Car age update --> " + car);
 });

Chapter 11 ■ Task Scheduling

545

 logger.info("Car age update job completed successfully");
 done = true;
 }

 @Override
 public boolean isDone() {
 return done;
 }
}

Four methods were provided, as shown here:

•	 One retrieves the information about all cars: List<Car> findAll().

•	 One persists an updated Car object: Car save(Car car).

•	 The third method, void updateCarAgeJob(), is the job that needs to be run
regularly to update the age of the car based on the manufacture date of the car and
the current date.

•	 The fourth method, boolean isDone(), is a utility method designed to be used to
know when the job ended, so the application can be shut down gracefully.

Like the support for other namespaces in Spring, task-namespace provides a simplified configuration
for scheduling tasks by using Spring’s TaskScheduler abstraction. The following XML configuration snippet
shows the contents of the task-namespace-app-context.xml file and shows the configuration for a Spring
application that contains scheduled tasks. Using task-namespace for task scheduling is very simple.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:task="http://www.springframework.org/schema/task"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/task
 http://www.springframework.org/schema/task/spring-task.xsd">

 <task:scheduler id="carScheduler" pool-size="10"/>

 <task:scheduled-tasks scheduler="carScheduler">
 <task:scheduled ref="carService"
 method="updateCarAgeJob" fixed-delay="10000"/>
 </task:scheduled-tasks>
</beans>

When it encounters the <task:scheduler> tag, Spring instantiates an instance of the
ThreadPoolTaskScheduler class, while the attribute pool-size specifies the size of the thread pool that the
scheduler can use. Within the <task:scheduled-tasks> tag, one or more tasks can be scheduled. In the
<task:scheduled> tag, a task can reference a Spring bean (the carService bean, in this case) and a specific
method within the bean (in this case, the updateCarAgeJob() method). The attribute fixed-delay instructs
Spring to instantiate PeriodicTrigger as the Trigger implementation for TaskScheduler.

The task scheduling configuration is combined with the data access configuration by declaring a new
configuration class and importing the two configurations using @Import for configuration classes and
@ImportResource for XML configurations.

Chapter 11 ■ Task Scheduling

546

package com.apress.prospring5.ch11.config;

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import org.springframework.context.annotation.ImportResource;

@Configuration
@Import({ DataServiceConfig.class })
@ImportResource("classpath:spring/task-namespace-app-context.xml")
public class AppConfig {}

This configuration class, the AppConfig class, is used to create a Spring ApplicationContext to test the
Spring scheduling capabilities:

package com.apress.prospring5.ch11;

import com.apress.prospring5.ch11.config.AppConfig;
import com.apress.prospring5.ch11.services.CarService;
import com.apress.prospring5.ch11.services.CarServiceImpl;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class ScheduleTaskDemo {

 final static Logger logger = LoggerFactory.getLogger(CarServiceImpl.class);

 public static void main(String... args) throws Exception{
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);
 CarService carService = ctx.getBean("carService", CarService.class);

 while (!carService.isDone()) {
 logger.info("Waiting for scheduled job to end ...");
 Thread.sleep(250);
 }
 ctx.close();
 }
}

Running the program produces the following batch job output:

[main] INFO c.a.p.c.s.CarServiceImpl - Waiting for scheduled job to end ...
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update job started
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 GRAVITY-0405, Manufacturer: Ford, Manufacture Date: 2006-09-12, Age: 10}
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 CLARITY-0432, Manufacturer: Toyota, Manufacture Date: 2003-09-09, Age: 13}

Chapter 11 ■ Task Scheduling

547

[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 ROSIE-0402, Manufacturer: Toyota, Manufacture Date: 2017-04-16, Age: 0}
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl -
 Car age update job completed successfully

In the previous example, the application is stopped after only one run of the scheduled task. As we’ve
declared we want the task to run every 10 seconds, by setting the fixed-delay="10000" attribute; we
should allow the repeated run of the task by letting the application run until the user presses a key. Modify
ScheduleTaskDemo as follows:

package com.apress.prospring5.ch11;

import com.apress.prospring5.ch11.config.AppConfig;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class ScheduleTaskDemo {

 public static void main(String... args) throws Exception {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 System.in.read();
 ctx.close();
 }
}

From the output, you can see that the cars’ age attributes are updated. Besides a fixed interval, a more
flexible scheduling mechanism is to use a cron expression. In the XML configuration file, change the line
from this:

<task:scheduled ref="carService" method="updateCarAgeJob" fixed-delay="10000"/>

to the following:

<task:scheduled ref="carService" method="updateCarAgeJob" cron="0 * * * * *"/>

After the change, run the ScheduleTaskDemo class again, and let the application run for more than a
minute. You will see that the job will run every minute.

Using Annotations for Task Scheduling
Another option for scheduling tasks with Spring’s TaskScheduler abstraction is to use an annotation. Spring
provides the @Scheduled annotation for this purpose. To enable annotation support for task scheduling, we
need to provide the <task:annotation-driven> tag in Spring’s XML configuration. Or, if a configuration
class is used, it has to be annotated with @EnableScheduling. Let’s go for this approach and remove the
XML altogether.

Chapter 11 ■ Task Scheduling

548

package com.apress.prospring5.ch11.config;

import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import org.springframework.scheduling.annotation.EnableScheduling;

@Configuration
@Import({DataServiceConfig.class})
@EnableScheduling
public class AppConfig {
}

Yep, that is all that is needed. You do not even need to declare the scheduler yourself anymore,
because Spring will take care of it. The @EnableScheduling annotation used on a @Configuration class
enables detection of @Scheduled annotations on any Spring-managed bean in the container or their
methods. The fun part is that methods annotated with @Scheduled may even be declared directly within
@Configuration classes. This annotation tell Spring to look for an associated scheduler definition:
either a unique TaskScheduler bean in the context or a TaskScheduler bean named taskScheduler or a
ScheduledExecutorService bean. If none is found, a local single-threaded default scheduler will be created
and used within the registrar.

To schedule a specific method in a Spring bean, the method must be annotated with @Scheduled and
pass in the scheduling requirements. In the following code snippet, the CarServiceImpl class was extended
and used to declare a new bean with a scheduled method, which overrides the updateCarAgeJob() method
in the parent class to make use of the @Scheduled annotation:

package com.apress.prospring5.ch11.services;

import com.apress.prospring5.ch11.entities.Car;
import org.joda.time.DateTime;
import org.joda.time.Years;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import java.util.List;

@Service("scheduledCarService")
@Repository
@Transactional

public class ScheduledCarServiceImpl extends CarServiceImpl{

 @Override
 @Scheduled(fixedDelay=10000)
 public void updateCarAgeJob() {
 List<Car> cars = findAll();

 DateTime currentDate = DateTime.now();

Chapter 11 ■ Task Scheduling

549

 logger.info("Car age update job started");

 cars.forEach(car -> {
 int age = Years.yearsBetween(
 car.getManufactureDate(), currentDate).getYears();

 car.setAge(age);
 save(car);
 logger.info("Car age update --> " + car);
 });

 logger.info("Car age update job completed successfully");
 }
}

The testing program is shown here:

package com.apress.prospring5.ch11;

import com.apress.prospring5.ch11.config.AppConfig;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class ScheduleTaskAnnotationDemo {

 public static void main(String... args) throws Exception {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 System.in.read();

 ctx.close();
 }
}

Running the program produces almost the same output as using task-namespace. You can try different
triggering mechanisms by changing the attribute within the @Scheduled annotation (that is, fixedDelay,
fixedRate, cron). Feel free to test it yourself.

[main] DEBUG o.s.s.a.ScheduledAnnotationBeanPostProcessor - Could not find default
 TaskScheduler bean
org.springframework.beans.factory.NoSuchBeanDefinitionException:
 No qualifying bean of type 'org.springframework.scheduling.TaskScheduler' available
... // more stacktrace here
[main] DEBUG o.s.s.a.ScheduledAnnotationBeanPostProcessor - Could not find default
 ScheduledExecutorService bean
org.springframework.beans.factory.NoSuchBeanDefinitionException:
 No qualifying bean of type 'java.util.concurrent.ScheduledExecutorService' available
... // more stacktrace here
[pool-1-thread-1] INFO c.a.p.c.s.CarServiceImpl - Car age update job started
[pool-1-thread-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:

Chapter 11 ■ Task Scheduling

550

 GRAVITY-0405, Manufacturer: Ford, Manufacture Date: 2006-09-12, Age: 10}
[pool-1-thread-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 CLARITY-0432, Manufacturer: Toyota, Manufacture Date: 2003-09-09, Age: 13}
[pool-1-thread-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 ROSIE-0402, Manufacturer: Toyota, Manufacture Date: 2017-04-16, Age: 0}
[pool-1-thread-1] INFO c.a.p.c.s.CarServiceImpl - Car age update job
 completed successfully

Also, you can define your own TaskScheduler bean if you want. The following example declares a
ThreadPoolTaskScheduler bean that is equivalent to the one declared in the XML configuration from the
previous section:

package com.apress.prospring5.ch11.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import org.springframework.scheduling.TaskScheduler;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.concurrent.DefaultManagedTaskScheduler;
import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler;

@Configuration
@Import({DataServiceConfig.class})
@EnableScheduling
public class AppConfig {

 @Bean TaskScheduler carScheduler() {
 ThreadPoolTaskScheduler carScheduler =
 new ThreadPoolTaskScheduler();
 carScheduler.setPoolSize(10);
 return carScheduler;
 }
}

If you run the testing example now, you will see that the exceptions are not printed in the log anymore
and that the name of the scheduler executing the method has changed because the TaskScheduler bean is
named carScheduler.

[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update job started
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 GRAVITY-0405, Manufacturer: Ford, Manufacture Date: 2006-09-12, Age: 10}
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 CLARITY-0432, Manufacturer: Toyota, Manufacture Date: 2003-09-09, Age: 13}
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update --> {License:
 ROSIE-0402, Manufacturer: Toyota, Manufacture Date: 2017-04-16, Age: 0}
[carScheduler-1] INFO c.a.p.c.s.CarServiceImpl - Car age update job
 completed successfully

Chapter 11 ■ Task Scheduling

551

Asynchronous Task Execution in Spring
Since version 3.0, Spring also supports using annotations to execute a task asynchronously. To do this, you
just need to annotate the method with @Async.

package com.apress.prospring5.ch11;

import java.util.concurrent.Future;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.scheduling.annotation.Async;
import org.springframework.scheduling.annotation.AsyncResult;
import org.springframework.stereotype.Service;

@Service("asyncService")
public class AsyncServiceImpl implements AsyncService {
 final Logger logger = LoggerFactory.getLogger(AsyncServiceImpl.class);

 @Async
 @Override
 public void asyncTask() {
 logger.info("Start execution of async. task");

 try {
 Thread.sleep(10000);
 } catch (Exception ex) {
 logger.error("Task Interruption", ex);
 }

 logger.info("Complete execution of async. task");
 }

 @Async
 @Override
 public Future<String> asyncWithReturn(String name) {
 logger.info("Start execution of async. task with return for "+ name);

 try {
 Thread.sleep(5000);
 } catch (Exception ex) {
 logger.error("Task Interruption", ex);
 }

 logger.info("Complete execution of async. task with return for " + name);

 return new AsyncResult<>("Hello: " + name);
 }
}

AsyncService defines two methods. The asyncTask() method is a simple task that logs information
to the logger. The method asyncWithReturn() accepts a String argument and returns an instance of
the java.util.concurrent.Future<V> interface. Upon completion of asyncWithReturn(), the result is

Chapter 11 ■ Task Scheduling

552

stored in an instance of the org.springframework.scheduling.annotation.AsyncResult<V> class, which
implements the Future<V> interface and can be used by the caller to retrieve the result of the execution later.
The @Async annotation is picked up by enabling Spring’s asynchronous method execution capability, and
that is done by annotating a Java configuration class wth @EnableAsync.2

package com.apress.prospring5.ch11.config;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import org.springframework.context.annotation.ImportResource;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.annotation.EnableScheduling;

@Configuration
@EnableAsync
@ComponentScan(basePackages = {"com.apress.prospring5.ch11"})
public class AppConfig {
}

The testing program is shown here:

package com.apress.prospring5.ch11;

import java.util.concurrent.Future;

import com.apress.prospring5.ch11.config.AppConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class AsyncTaskDemo {
 private static Logger logger =
 LoggerFactory.getLogger(AsyncTaskDemo.class);

 public static void main(String... args) throws Exception{
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 AsyncService asyncService = ctx.getBean("asyncService",
 AsyncService.class);

 for (int i = 0; i < 5; i++) {
 asyncService.asyncTask();
 }

2In XML just declaring <task:annotation-driven /> will do it.

Chapter 11 ■ Task Scheduling

553

 Future<String> result1 = asyncService.asyncWithReturn("John Mayer");
 Future<String> result2 = asyncService.asyncWithReturn("Eric Clapton");
 Future<String> result3 = asyncService.asyncWithReturn("BB King");
 Thread.sleep(6000);

 logger.info("Result1: " + result1.get());
 logger.info("Result2: " + result2.get());
 logger.info("Result3: " + result3.get());

 System.in.read();
 ctx.close();
 }
}

We call the asyncTask() method five times and then asyncWithReturn() three times with different
arguments and then retrieve the result after sleeping for six seconds. Running the program produces the
following output:

...
17:55:31.851 [SimpleAsyncTaskExecutor-1] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task
17:55:31.851 [SimpleAsyncTaskExecutor-2] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task
17:55:31.851 [SimpleAsyncTaskExecutor-3] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task
17:55:31.851 [SimpleAsyncTaskExecutor-4] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task
17:55:31.852 [SimpleAsyncTaskExecutor-5] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task
17:55:31.852 [SimpleAsyncTaskExecutor-6] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task with return for John Mayer
17:55:31.852 [SimpleAsyncTaskExecutor-7] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task with return for Eric Clapton
17:55:31.852 [SimpleAsyncTaskExecutor-8] INFO c.a.p.c.AsyncServiceImpl -
 Start execution of async. task with return for BB King
17:55:36.856 [SimpleAsyncTaskExecutor-8] INFO c.a.p.c.AsyncServiceImpl -
 Complete execution of async. task with return for BB King
17:55:36.856 [SimpleAsyncTaskExecutor-6] INFO c.a.p.c.AsyncServiceImpl -
 Complete execution of async. task with return for John Mayer
17:55:36.856 [SimpleAsyncTaskExecutor-7] INFO c.a.p.c.AsyncServiceImpl -
 Complete execution of async. task with return for Eric Clapton
17:55:37.852 [main] INFO c.a.p.c.AsyncTaskDemo - Result1: Hello: John Mayer
17:55:37.853 [main] INFO c.a.p.c.AsyncTaskDemo - Result2: Hello: Eric Clapton
17:55:37.853 [main] INFO c.a.p.c.AsyncTaskDemo - Result3: Hello: BB King
17:55:41.852 [SimpleAsyncTaskExecutor-1] INFO c.a.p.c.AsyncServiceImpl -
 Complete execution of async. task
17:55:41.852 [SimpleAsyncTaskExecutor-4] INFO c.a.p.c.AsyncServiceImpl -
 Complete execution of async. task
17:55:41.852 [SimpleAsyncTaskExecutor-3] INFO c.a.p.c.AsyncServiceImpl -
 Complete execution of async. task
17:55:41.852 [SimpleAsyncTaskExecutor-5] INFO c.a.p.c.AsyncServiceImpl -

Chapter 11 ■ Task Scheduling

554

 Complete execution of async. task
17:55:41.852 [SimpleAsyncTaskExecutor-2] INFO c.a.p.c.AsyncServiceImpl -
 Complete execution of async. task

From the output, you can see that all the calls were started at the same time. The three calling with
return values complete first and are displayed on the console output. Finally, the five asyncTask() methods
called are completed too.

Task Execution in Spring
Since Spring 2.0, the framework provided an abstraction for executing tasks by way of the TaskExecutor
interface. A TaskExecutor does as exactly as it sounds: it executes a task represented by a Java Runnable
implementation. Out of the box, Spring provides a number of TaskExecutor implementations suited for
different needs. You can find a full list of TaskExecutor implementations at http://docs.spring.io/
spring/docs/current/javadoc-api/org/springframework/core/task/TaskExecutor.html.

Some commonly used TaskExecutor implementations are listed here:

•	 SimpleAsyncTaskExecutor: Creates new threads on each invocation; does not reuse
existing threads

•	 SyncTaskExecutor: Does not execute asynchronously; invocation occurs in the
calling thread

•	 SimpleThreadPoolTaskExecutor: Subclass of Quartz’s SimpleThreadPool; used
when you need to share a thread pool by both Quartz and non-Quartz components

•	 ThreadPoolTaskExecutor: TaskExecutor implementation providing the ability
to configure ThreadPoolExecutor via bean properties and expose it as a Spring
TaskExecutor

Each TaskExecutor implementation serves its own purpose, and the calling convention is the same.
The only variation is in the configuration, when defining which TaskExecutor implementation you want to
use and its properties, if any. Let’s take a look at a simple example that prints out a number of messages. The
TaskExecutor implementation that we will use is SimpleAsyncTaskExecutor. First let’s create a bean class
that holds the task execution logic, as shown here:

package com.apress.prospring5.ch11;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.task.TaskExecutor;
import org.springframework.stereotype.Component;

@Component
public class TaskToExecute {
 private final Logger logger =
 LoggerFactory.getLogger(TaskToExecute.class);

 @Autowired
 private TaskExecutor taskExecutor;

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/task/TaskExecutor.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/core/task/TaskExecutor.html

Chapter 11 ■ Task Scheduling

555

 public void executeTask() {
 for(int i=0; i < 10; ++ i) {
 taskExecutor.execute(() ->
 logger.info("Hello from thread: " +
 Thread.currentThread().getName()));
 }
 }
}

This class is just a regular bean that needs TaskExecutor to be injected as a dependency and
defines a method executeTask(). The executeTask() method calls the execute method of the provided
TaskExecutor by creating a new Runnable instance containing the logic we would like want to execute for
this task. This might not be obvious here as a lambda expression is used to create the Runnable instance.
The configuration is quite simple; it is similar to the configuration depicted in the previous section. The only
thing we have to take into account here is that we need to provide a declaration for a TaxExecutor bean,
which needs to be injected in the TaskToExecute bean.

package com.apress.prospring5.ch11.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.SimpleAsyncTaskExecutor;
import org.springframework.core.task.TaskExecutor;
import org.springframework.scheduling.TaskScheduler;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler;

@Configuration
@EnableAsync
@ComponentScan(basePackages = {"com.apress.prospring5.ch11"})
public class AppConfig {

 @Bean TaskExecutor taskExecutor() {
 return new SimpleAsyncTaskExecutor();
 }
}

A simple bean called taskExecutor of type SimpleAsyncTaskExecutor is declared in the previous
configuration. That bean is injected by the Spring IoC container into the TaskToExecute bean. To test the
execution, you can use the following program:

package com.apress.prospring5.ch11;

import com.apress.prospring5.ch11.config.AppConfig;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

Chapter 11 ■ Task Scheduling

556

public class TaskExecutorDemo {

 public static void main(String... args) throws Exception {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 TaskToExecute taskToExecute = ctx.getBean(TaskToExecute.class);
 taskToExecute.executeTask();

 System.in.read();
 ctx.close();
 }
}

When the example is run, it should print output similar to the following:

Hello from thread: SimpleAsyncTaskExecutor-1
Hello from thread: SimpleAsyncTaskExecutor-5
Hello from thread: SimpleAsyncTaskExecutor-3
Hello from thread: SimpleAsyncTaskExecutor-10
Hello from thread: SimpleAsyncTaskExecutor-8
Hello from thread: SimpleAsyncTaskExecutor-6
Hello from thread: SimpleAsyncTaskExecutor-2
Hello from thread: SimpleAsyncTaskExecutor-4
Hello from thread: SimpleAsyncTaskExecutor-9
Hello from thread: SimpleAsyncTaskExecutor-7

As you can see from the output, each task (the message we are printing) is displayed as it’s executed.
We print out the message plus the thread name, which is by default the class name
SimpleAsyncTaskExecutor, and the thread number.

Summary
In this chapter, we covered Spring’s support for task scheduling. We focused on Spring’s built-in
TaskScheduler abstraction and demonstrated how to use it to fulfill task scheduling needs with a sample
batch data update job. We also covered how Spring supports annotation for executing tasks asynchronously.
Additionally, we briefly covered Spring’s TaskExecutor and common implementations.

A Spring Boot section was not needed as the scheduling and asynchronous execution of tasks
annotations are part of the spring-context library and they have to be used with a Spring Boot
configuration as well. Plus, configuring scheduled and asynchronous tasks is already as easy as it can be with
Spring; there is not much Spring Boot could do to improve on this topic.3

3But if you are curios and want to convert the provided project to Spring Boot, you can find a small tutorial here:
https://spring.io/guides/gs/scheduling-tasks/

https://spring.io/guides/gs/scheduling-tasks/
https://spring.io/guides/gs/scheduling-tasks/

557© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_12

CHAPTER 12

Using Spring Remoting

An enterprise application typically needs to communicate with other applications. Take, for example, a
company selling products; when a customer places an order, an order-processing system processes that
order and generates a transaction. During order processing, an inquiry is made to the inventory system
to check whether the product is in stock. Upon order confirmation, a notification is sent to the fulfillment
system to deliver the product to the customer. Finally, the information is sent to the accounting system, an
invoice is generated, and the payment is processed.

Most of the time, this business process is not fulfilled by a single application but by a number of
applications working together. Some of the applications may be developed in-house, and others may be
purchased from external vendors. Moreover, the applications may be running on different machines in
different locations and implemented with different technologies and programming languages (for example,
Java, .NET, or C++). Performing the handshaking between applications in order to build an efficient business
process is always a critical task when architecting and implementing an application. As a result, remoting
support via various protocols and technologies is needed for an application to participate well in an
enterprise environment.

In the Java world, remoting support has existed since Java was first created. In the early days (Java 1.x),
most remoting requirements were implemented by using traditional TCP sockets or Java Remote Method
Invocation (RMI). After J2EE came on the scene, EJB and JMS became common choices for interapplication
server communications. The rapid evolution of XML and the Internet gave rise to remote support using XML
over HTTP, including the Java API for XML-based RPC (JAX-RPC), the Java API for XML Web Services (JAX-
WS), and HTTP-based technologies (for example, Hessian and Burlap). Spring also offers its own HTTP-
based remoting support, called the Spring HTTP invoker. In recent years, to cope with the explosive growth
of the Internet and more responsive web application requirements (for example, via Ajax), more lightweight
and efficient remoting support of applications has become critical for the success of an enterprise.
Consequently, the Java API for RESTful Web Services (JAX-RS) was created and quickly gained popularity.
Other protocols, such as Comet and HTML5 WebSocket, also attracted a lot of developers. Needless to say,
remoting technologies keep evolving at a rapid pace.

In terms of remoting, as mentioned, Spring provides its own support (via the Spring HTTP invoker), as
well as supporting a lot of technologies mentioned earlier (for example, RMI, EJB, JMS, Hessian, Burlap,1
JAX-RPC, JAX- WS, and JAX-RS). It’s not possible to cover all of them in this chapter. So, here we focus on
those that are most commonly used. Specifically, this chapter covers the following topics:

•	 Spring HTTP invoker: If both applications that need to communicate are Spring
based, the Spring HTTP invoker provides a simple and efficient way to invoke the
services exposed by other applications. We show you how to use the Spring HTTP
invoker to expose a service within its service layer, as well as invoking the services
provided by a remote application.

1When Spring 4 was released, it was mentioned that Burlap is no longer under active development and support will be
dropped entirely in the future.

https://doi.org/10.1007/978-1-4842-2808-1_12

Chapter 12 ■ Using Spring Remoting

558

•	 Using JMS in Spring: The Java Message Service (JMS) provides another asynchronous
and loosely coupled way of exchanging messages between applications. We show
you how Spring simplifies application development with JMS.

•	 Using RESTful web services in Spring: Designed specifically around HTTP, RESTful
web services are the most commonly used technology for providing remote support
for an application, as well as supporting highly interactive web application front ends
using Ajax. We show how Spring MVC provides comprehensive support for exposing
services using JAX-RS and how to invoke services by using the RestTemplate class.
We also discuss how to secure the services from unauthorized access.

•	 Using AMQP in Spring: The sister project Spring Advanced Message Queuing
Protocol (AMQP) provides a typical Spring-like abstraction around AMQP along with
a RabbitMQ implementation. This project offers a rich set of capabilities, but in this
chapter we focus on its remoting capabilities through the projects RPC supports.

Using a Data Model for Samples
In the samples in this chapter, we will use a simple data model, which contains only the SINGER table for
storing information. The table is generated by Hibernate, based on the Singer class shown next. The class
and its properties are decorated with standard JPA annotations.

package com.apress.prospring5.ch12.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.util.Date;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer")
public class Singer implements Serializable {
 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @Column(name = "FIRST_NAME")
 private String firstName;

 @Column(name = "LAST_NAME")
 private String lastName;

Chapter 12 ■ Using Spring Remoting

559

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

 //setters and getters
 ...
}

To populate the table, you use an initializer bean. The class is shown here:

package com.apress.prospring5.ch12.services;

import com.apress.prospring5.ch12.entities.Singer;
import com.apress.prospring5.ch12.repos.SingerRepository;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import javax.annotation.PostConstruct;
import java.util.Date;
import java.util.GregorianCalendar;

@Service
public class DBInitializer {

 private Logger logger = LoggerFactory.getLogger(DBInitializer.class);
 @Autowired
 SingerRepository singerRepository;

 @PostConstruct
 public void initDB() {
 logger.info("Starting database initialization...");
 Singer singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()));
 singerRepository.save(singer);

 singer = new Singer();
 singer.setFirstName("Eric");
 singer.setLastName("Clapton");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1945, 2, 30)).getTime().getTime()));
 singerRepository.save(singer);

Chapter 12 ■ Using Spring Remoting

560

 singer = new Singer();
 singer.setFirstName("John");
 singer.setLastName("Butler");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1975, 3, 1)).getTime().getTime()));

 singerRepository.save(singer);
 logger.info("Database initialization finished.");
 }
}

Adding Required Dependencies for the JPA Back End
We need to add the required dependencies to the project. The following configuration snippet shows
the dependencies required for implementing a service layer with JPA 2 and Hibernate as the persistence
provider. Also, Spring Data JPA will be used.

//pro-spring-15/build.gradle
ext {
 //spring libs
 springVersion = '5.0.0.RC1'
 springDataVersion = '2.0.0.M3'

 //logging libs
 slf4jVersion = '1.7.25'
 logbackVersion = '1.2.3'

 junitVersion = '4.12'

 //database library
 h2Version = '1.4.194'

 //persistency libraries
 hibernateVersion = '5.2.10.Final'
 hibernateJpaVersion = '1.0.0.Final'
 atomikosVersion = '4.0.0M4'

 spring = [
 context : "org.springframework:spring-context:$springVersion",
 aop : "org.springframework:spring-aop:$springVersion",
 aspects : "org.springframework:spring-aspects:$springVersion",
 tx : "org.springframework:spring-tx:$springVersion",
 jdbc : "org.springframework:spring-jdbc:$springVersion",
 contextSupport: "org.springframework:spring-context-support:$springVersion",
 orm : "org.springframework:spring-orm:$springVersion",
 data : "org.springframework.data:spring-data-jpa:$springDataVersion",
 test : "org.springframework:spring-test:$springVersion"
]

Chapter 12 ■ Using Spring Remoting

561

 hibernate = [
 ...
 em : "org.hibernate:hibernate-entitymanager:$hibernateVersion",
 tx : "com.atomikos:transactions-hibernate4:$atomikosVersion"
]

 testing = [
 junit: "junit:junit:$junitVersion"
]

 misc = [
 ...
 slf4jJcl : "org.slf4j:jcl-over-slf4j:$slf4jVersion",
 logback : "ch.qos.logback:logback-classic:$logbackVersion",
 lang3 : "org.apache.commons:commons-lang3:3.5",
 guava : "com.google.guava:guava:$guavaVersion"
]

 db = [
 ...
 h2 : "com.h2database:h2:$h2Version"
]
}

//chapter12/spring-invoker/build.gradle
dependencies {
 //we specify these dependencies for all submodules, except
 // the boot module, that defines its own
 if (!project.name.contains("boot")) {
 //we exclude transitive dependencies, because spring-data
 //will take care of these
 compile (spring.contextSupport) {
 exclude module: 'spring-context'
 exclude module: 'spring-beans'
 exclude module: 'spring-core'
 }
 //we exclude the 'hibernate' transitive dependency
 //to have control over the version used
 compile (hibernate.tx) {
 exclude group: 'org.hibernate', module: 'hibernate'
 }
 compile misc.slf4jJcl, misc.logback, misc.lang3,
 hibernate.em, misc.guava
 }
 testCompile testing.junit
}

Chapter 12 ■ Using Spring Remoting

562

Implementing and Configuring SingerService
With the dependencies outlined, we start showing how to implement and configure the service layer for the
samples in this chapter. In the following sections, we discuss the implementation of SingerService using
JPA 2, Spring Data JPA, and Hibernate as the persistence service provider. Then, we cover how to configure
the service layer in the Spring project.

Implementing SingerService
In the samples, we show how to expose the services for various operations on the singer information to
remote clients; the SingerService interface is shown here:

package com.apress.prospring5.ch12.services;

import com.apress.prospring5.ch12.entities.Singer;

import java.util.List;

public interface SingerService {

 List<Singer> findAll();
 List<Singer> findByFirstName(String firstName);
 Singer findById(Long id);
 Singer save(Singer singer);
 void delete(Singer singer);
}

The methods should be self-explanatory. Because we will use Spring Data JPA’s repository support, we
implement the SingerRepository interface, as shown here:

package com.apress.prospring5.ch12.repos;

import com.apress.prospring5.ch12.entities.Singer;
import org.springframework.data.repository.CrudRepository;

import java.util.List;

public interface SingerRepository extends CrudRepository<Singer, Long> {
 List<Singer> findByFirstName(String firstName);
}

By extending the CrudRepository<T,ID extends Serializable> interface, for the methods in
SingerService, we need to explicitly declare only the findByFirstName() method.

The next code snippet shows the implementation class of the SingerService interface:

package com.apress.prospring5.ch12.services;

import com.apress.prospring5.ch12.entities.Singer;
import com.apress.prospring5.ch12.repos.SingerRepository;
import com.google.common.collect.Lists;

Chapter 12 ■ Using Spring Remoting

563

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import java.util.List;

@Service("singerService")
@Transactional
public class SingerServiceImpl implements SingerService {

 @Autowired
 private SingerRepository singerRepository;

 @Override
 @Transactional(readOnly = true)
 public List<Singer> findAll() {
 return Lists.newArrayList(singerRepository.findAll());
 }

 @Override
 @Transactional(readOnly = true)
 public List<Singer> findByFirstName(String firstName) {
 return singerRepository.findByFirstName(firstName);
 }

 @Override
 @Transactional(readOnly = true)
 public Singer findById(Long id) {
 return singerRepository.findById(id).get();
 }

 @Override
 public Singer save(Singer singer) {
 return singerRepository.save(singer);
 }

 @Override
 public void delete(Singer singer) {
 singerRepository.delete(singer);
 }
}

The implementation is basically completed, and the next step is to configure the service in Spring’s
ApplicationContext within the web project, which is discussed in the next section.

Chapter 12 ■ Using Spring Remoting

564

Configuring SingerService
For the data access and transactions, you use a simple Java configuration class, as introduced before and
shown here:

package com.apress.prospring5.ch12.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch12.repos"})
@ComponentScan(basePackages = {"com.apress.prospring5.ch12"})
public class DataServiceConfig {

 private static Logger logger =
 LoggerFactory.getLogger(DataServiceConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder =
 new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2).build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);

Chapter 12 ■ Using Spring Remoting

565

 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch12.entities");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }
}

Since we are exposing the HTTP invoker via Spring MVC, we need to configure the web application. To
configure a Spring Web MVC application without using any XML, two configuration classes are needed, as
listed here:

•	 One configuration class implements the WebMvcConfigurer interface. This interface
was introduced in Spring 3.1 and defines callback methods to customize the
Java-based configuration for Spring MVC enabled using @EnableWebMvc. Because we
only need to expose an HTTP service (a web interface is not necessary), an empty
implementation is sufficient in this case. An implementation of this interface that
is annotated with @EnableWebMvc replaces a Spring XML configuration using the
mvc namespace. A more complex sample configuration will be covered in detail in
Chapter 16.

package com.apress.prospring5.ch12.config;

import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
@EnableWebMvc
public class WebConfig implements WebMvcConfigurer {

}

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 12 ■ Using Spring Remoting

566

•	 The other configuration class implements org.springframework.web.
WebApplicationInitializer or extends one of the out-of-the-box Spring
implementations. This interface needs to be implemented in Spring 3.0+
environments to configure the ServletContext programmatically. This removes the
necessity of providing a web.xml file to configure a web application. This class imports
the configuration for data access and transactions and creates the root application
context based on it. The web application context is created using the WebConfig
class and the configuration class that defines the configuration for the HTTP invoker
service. These classes can also be combined into one, but good practice when using
Spring is to keep custom services and infrastructure beans in different classes.

package com.apress.prospring5.ch12.config;

import org.springframework.web.servlet.support.
 AbstractAnnotationConfigDispatcherServletInitializer;

public class WebInitializer
 extends AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{
 DataServiceConfig.class
 };
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{
 HttpInvokerConfig.class, WebConfig.class
 };
 }

 @Override
 protected String[] getServletMappings() {
 return new String[]{"/invoker/*"};
 }
}

As this is a Spring MVC web application, a WAR file needs to be created and deployed to a servlet
container. There are multiple ways to do this, for example, a stand-alone container such as Tomcat, an
IDE-launched instance of Tomcat, or an embedded Tomcat instance that runs with a build tool such
as Maven. Which option you choose is up to your needs, but for a local development environment, an
embedded instance launched from your build tool or directly from your IDE is recommended. In the code
for this book, we use Tomcat Server version 9.x, and a launcher is set up in Intellij IDEA to start the web
application. See the book source code for more details. At this point, you should build the web application
and deploy via the method of your choice. If you try loading the http://localhost:8080/ URL in the
browser, you will see the following message:

Spring Remoting: Simplifying Development of Distributed Applications

RMI services over HTTP should be correctly exposed when this page is visible.

Chapter 12 ■ Using Spring Remoting

567

This means the web application has been deployed correctly, and now the singerService bean should
be accessible at the http://localhost:8080/invoker/httpInvoker/singerService URL.

Exposing the Service
If the application you are going to communicate with is also Spring-powered, using the Spring HTTP
invoker is a good choice. It provides an extremely simple way to expose the services within the Spring
WebApplicationContext to remote clients also using the Spring HTTP invoker to invoke the service.
The procedures for exposing and accessing the service are elaborated in the following sections. The
HttpInvokerConfig class contains a single bean used to expose the HTTP invoker service.

package com.apress.prospring5.ch12.config;

import com.apress.prospring5.ch12.services.SingerService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter;

@Configuration
public class HttpInvokerConfig {

 @Autowired
 SingerService singerService;

 @Bean(name = "/httpInvoker/singerService")
 public HttpInvokerServiceExporter httpInvokerServiceExporter() {
 HttpInvokerServiceExporter invokerService =
 new HttpInvokerServiceExporter();
 invokerService.setService(singerService);
 invokerService.setServiceInterface(SingerService.class);
 return invokerService;
 }

}

An httpInvokerServiceExporter bean is defined with the HttpInvokerServiceExporter class, which
is for exporting any Spring bean as a service via the HTTP invoker. Within the bean, two properties are
defined. The first one is the service property, indicating the bean providing the service. For this property,
the singerService bean is injected. The second property is the interface type to expose, which is the com.
apress.prospring5.ch12.serviced.SingerService interface.

Now, the service layer is completed and ready to be exposed and used by remote clients.

Chapter 12 ■ Using Spring Remoting

568

Invoking the Service
Invoking a service via the Spring HTTP invoker is simple. First we configure a Spring ApplicationContext,
as shown in the following configuration class:

package com.apress.prospring5.ch12.config;

import com.apress.prospring5.ch12.services.SingerService;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean;

@Configuration
public class RmiClientConfig {

 @Bean
 public SingerService singerService() {
 HttpInvokerProxyFactoryBean factoryBean =
 new HttpInvokerProxyFactoryBean();
 factoryBean.setServiceInterface(SingerService.class);
 factoryBean.setServiceUrl(
 "http://localhost:8080/invoker/httpInvoker/singerService");
 factoryBean.afterPropertiesSet();
 return (SingerService) factoryBean.getObject();
 }
}

As shown previously for the client side, a bean of type HttpInvokerProxyFactoryBean is declared.
Two properties are set. serviceUrl specifies the location of the remote service, which is http://
localhost:8080/invoker/httpInvoker/singerService. The second property is the interface of the
service (that is, SingerService). If you are developing another project for the client, you need to have the
SingerService interface and the Singer entity class within your client application’s classpath.

The following code snippet shows a test class for invoking the remote service. We are using a test
class that uses the RmiClientConfig class to create a test context. The SpringRunner class is an alias for
SpringJUnit4ClassRunner that is needed to run Junit tests in a Spring context. You will learn more about
this in Chapter 13.

package com.apress.prospring5.ch12;

import com.apress.prospring5.ch12.config.RmiClientConfig;
import com.apress.prospring5.ch12.entities.Singer;
import com.apress.prospring5.ch12.services.DBInitializer;
import com.apress.prospring5.ch12.services.SingerService;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringRunner;

http://dx.doi.org/10.1007/978-1-4842-2808-1_13

Chapter 12 ■ Using Spring Remoting

569

import java.util.List;

import static org.junit.Assert.assertEquals;

@ContextConfiguration(classes = RmiClientConfig.class)
@RunWith(SpringRunner.class)
public class RmiTests {
 private Logger logger = LoggerFactory.getLogger(RmiTests.class);

 @Autowired
 private SingerService singerService;

 @Test
 public void testRmiAll() {
 List<Singer> singers = singerService.findAll();
 assertEquals(3, singers.size());
 listSingers(singers);
 }

 @Test
 public void testRmiJohn() {
 List<Singer> singers = singerService.findByFirstName("John");
 assertEquals(2, singers.size());
 listSingers(singers);
 }

 private void listSingers(List<Singer> singers){
 singers.forEach(s -> logger.info(s.toString()));
 }
}

The test class should be executed after deploying the web application. The tests should pass and list the
Singer instances returned by the singerService bean. The expected output is shown here:

//testRmiAll
INFO c.a.p.c.RmiTests - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-16
INFO c.a.p.c.RmiTests - Singer - Id: 2, First name: Eric, Last name: Clapton,
 Birthday: 1945-03-30
INFO c.a.p.c.RmiTests - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-04-01
//testRmiJohn - all singers with firstName='John'
INFO c.a.p.c.RmiTests - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: 1977-10-16
INFO c.a.p.c.RmiTests - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: 1975-04-01

Chapter 12 ■ Using Spring Remoting

570

Using JMS in Spring
Using message-oriented middleware (generally referred to as an MQ server) is another popular way to
support communication between applications. The main benefits of a message queue (MQ) server are that it
provides an asynchronous and loosely coupled way for application integration. In the Java world, JMS is the
standard for connecting to an MQ server for sending or receiving messages. An MQ server maintains a list of
queues and topics for which applications can connect to and send and receive messages. The following is a
brief description of the difference between a queue and a topic:

•	 Queue: A queue is used to support a point-to-point message exchange model. When
a producer sends a message to a queue, the MQ server keeps the message within the
queue and delivers it to one, and only one, consumer the next time the consumer
connects.

•	 Topic: A topic is used to support the publish-subscribe model. Any number of
clients can subscribe to the message within a topic. When a message arrives for that
topic, the MQ server delivers it to all clients that have subscribed to the message.
This model is particularly useful when you have multiple applications that will be
interested in the same piece of information (for example, a news feed).

In JMS, a producer connects to an MQ server and sends a message to a queue or topic. A consumer also
connects to the MQ server and listens to a queue or topics for messages of interest. In JMS 1.1, the API was
unified, so the producer and consumer didn’t need to deal with different APIs for interacting with queues
and topics. In this section, we focus on the point-to-point style for using queues, which is a more commonly
used pattern within an enterprise.

As of Spring Framework 4.0, support for JMS 2.0 has been implemented. JMS 2.0 functionality is usable
simply by having the JMS 2.0 JAR in your classpath while retaining backward compatibility for 1.x. As of
Spring Framework 5.0, JMS 1.1 is no longer supported; thus, in this book the examples will be relevant only
to JMS 2.x.

At the time of this writing, ActiveMQ does not support JMS 2.0; thus, we will utilize HornetQ (containing
JMS 2.0 support starting with 2.4.0.Final) as the message broker in this sample and will use a stand-alone server.
Downloading and installing HornetQ is outside the scope of this book; please refer to the documentation at
http://docs.jboss.org/hornetq/2.4.0.Final/docs/quickstart-guide/html/index.html.2

Several new dependencies are required, and the Gradle configurations needed are shown here:

//pro-spring-15/build.gradle
ext {
 jmsVersion = '2.0'
 hornetqVersion = '2.4.0.Final'

 spring = [
 ...
 jms : "org.springframework:spring-jms:$springVersion"
]

2If you prefer Apache products, Apache ActiveMQ Artemis is a JMS 2.0 implementation with a nonblocking architecture.
It delivers outstanding performance. You can find more details at https://activemq.apache.org/artemis/.
Also, a project using Artemis ActiveMQ is provided in the code samples.

http://docs.jboss.org/hornetq/2.4.0.Final/docs/quickstart-guide/html/index.html
https://activemq.apache.org/artemis/

Chapter 12 ■ Using Spring Remoting

571

 misc = [
 ...
 Hornetq : "org.hornetq:hornetq-jms-client:$hornetqVersion"
]
...
}
//chapter12/jms-hornetq/build.gradle
dependencies {
 compile spring.jms, misc.jms
}

After installing the server, we need to create a queue within the HornetQ JMS configuration file. This file
resides under the directory that you extracted HornetQ in. The location of the file is config/stand-alone/
non-clustered hornetq-jms.xml, and we need to add the queue definition, as shown here:

<configuration xmlns="urn:hornetq"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:hornetq /schema/hornetq-jms.xsd">
 ...

 <queue name="prospring5">
 <entry name="/queue/prospring5"/>
 </queue>
</configuration>

Now, start the HornetQ server by running the run.sh script (depending on your operating system) and
ensure that the server starts without any errors. Just make sure you see something similar in the log, with no
exceptions, and make sure the underlined line is there.

...
00:36:21,171 INFO [org.hornetq.core.server] HQ221035: Live Server Obtained live lock
00:36:21,841 INFO [org.hornetq.core.server] HQ221003:
 trying to deploy queue jms.queue.DLQ
00:36:21,852 INFO [org.hornetq.core.server] HQ221003:
// the queue configured in the previous configuration sample
 trying to deploy queue jms.queue.prospring5
00:36:21,853 INFO [org.hornetq.core.server] HQ221003:
 trying to deploy queue jms.queue.ExpiryQueue
00:36:21,993 INFO [org.hornetq.core.server] HQ221020:
 Started Netty Acceptor version 4.0.13.Final localhost:5455
00:36:21,996 INFO [org.hornetq.core.server] HQ221020:
 Started Netty Acceptor version 4.0.13.Final localhost:5445
00:36:21,997 INFO [org.hornetq.core.server] HQ221007: Server is now live

Chapter 12 ■ Using Spring Remoting

572

Now a Spring configuration must be provided to connect to this server and access the prospring5
queue configured previously. Usually, there should be two configuration classes, one for the message sender
and one for the message listener, but because Spring JMS configuration using configuration classes is really
practical and not many beans are needed, we put all the configuration in a single class, as shown here:

package com.apress.prospring5.ch12.config;

import org.hornetq.api.core.TransportConfiguration;
import org.hornetq.core.remoting.impl.netty.NettyConnectorFactory;
import org.hornetq.core.remoting.impl.netty.TransportConstants;
import org.hornetq.jms.client.HornetQJMSConnectionFactory;
import org.hornetq.jms.client.HornetQQueue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.jms.annotation.EnableJms;
import org.springframework.jms.config.DefaultJmsListenerContainerFactory;
import org.springframework.jms.config.JmsListenerContainerFactory;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.listener.DefaultMessageListenerContainer;

import javax.jms.ConnectionFactory;
import java.util.HashMap;
import java.util.Map;
@Configuration
@EnableJms
@ComponentScan("com.apress.prospring5.ch12")
public class AppConfig {

 @Bean HornetQQueue prospring5() {
 return new HornetQQueue("prospring5");
 }

 @Bean ConnectionFactory connectionFactory() {
 Map<String, Object> connDetails = new HashMap<>();
 connDetails.put(TransportConstants.HOST_PROP_NAME, "127.0.0.1");
 connDetails.put(TransportConstants.PORT_PROP_NAME, "5445");
 TransportConfiguration transportConfiguration = new TransportConfiguration(
 NettyConnectorFactory.class.getName(), connDetails);
 return new HornetQJMSConnectionFactory(false, transportConfiguration);
 }

 @Bean
 public JmsListenerContainerFactory<DefaultMessageListenerContainer>
 jmsListenerContainerFactory() {
 DefaultJmsListenerContainerFactory factory =
 new DefaultJmsListenerContainerFactory();
 factory.setConnectionFactory(connectionFactory());
 factory.setConcurrency("3-5");
 return factory;
 }

Chapter 12 ■ Using Spring Remoting

573

 @Bean JmsTemplate jmsTemplate() {
 JmsTemplate jmsTemplate = new JmsTemplate(connectionFactory());
 jmsTemplate.setDefaultDestination(prospring5());
 return jmsTemplate;
 }
}

The javax.jms.ConnectionFactory interface implementation is provided by the HornetQ Java library
(the HornetQJMSConnectionFactory class) and is used to create a connection with a JMS provider. Then, a
bean of type JmsListenerContainerFactory is declared, which will create message listener containers that
use plain JMS client APIs to receive JMS messages. The jmsTemplate bean will be used to send JMS messages
to the prospring5 queue.

To receive JMS messages, a message listener component must be declared, providing the destination
(that is, the prospring5 queue) and the JMS container factory jmsListenerContainerFactory.

Implementing a JMS Listener in Spring
Before Spring 4.1, to develop a message listener, we needed to create a class that implements the javax.
jms.MessageListener interface and implements its onMessage() method. In Spring 4.1 the @JmsListener
annotation was added. This annotation is used on bean methods to mark them to be the target of a JMS
message listener on the specified destination (queue or topic). The following code snippet depicts the
SimpleMessageListener class and bean declaration:

package com.apress.prospring5.ch12;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.jms.annotation.JmsListener;
import org.springframework.stereotype.Component;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.TextMessage;

@Component("messageListener")
public class SimpleMessageListener{
 private static final Logger logger =
 LoggerFactory.getLogger(SimpleMessageListener.class);

 @JmsListener(destination = "prospring5", containerFactory =
 "jmsListenerContainerFactory")
 public void onMessage(Message message) {
 TextMessage textMessage = (TextMessage) message;

 try {
 logger.info(">>> Received: " + textMessage.getText());
 } catch (JMSException ex) {
 logger.error("JMS error", ex);
 }
 }
}

Chapter 12 ■ Using Spring Remoting

574

The method is named onMessage here to make its purpose obvious. In onMessage(), which is annotated
with the @JmsListener method, an instance of the javax.jms.Message interface will be passed upon
message arrival. Within the method, the message is cast to an instance of the javax.jms.TextMessage
interface, and the message body in text is retrieved using the TextMessage.getText() method. For a list of
possible message formats, please refer to the current JEE online documentation.

Processing of the @JmsListener annotation is done by using @EnableJms on the configuration class or
by using the equivalent XML element declaration, which is <jms:annotation-driven/>.

Now let’s see how to send a message to the propring5 queue.

Sending JMS Messages in Spring
Let’s see how to send messages by using JMS in Spring. We will use the handy bean jmsTemplate of type org.
springframework.jms.core.JmsTemplate for this purpose. First we will develop a MessageSender interface
and its implementation class, SimpleMessageSender. The following code snippet shows the interface and the
class, respectively:

//MessageSender.java
package com.apress.prospring5.ch12;

public interface MessageSender {
 void sendMessage(String message);
}

//SimpleMessageSender.java
package com.apress.prospring5.ch12;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.TextMessage;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.core.MessageCreator;
import org.springframework.stereotype.Component;

@Component("messageSender")
public class SimpleMessageSender implements MessageSender {
 private static final Logger logger =
 LoggerFactory.getLogger(SimpleMessageSender.class);
 @Autowired
 private JmsTemplate jmsTemplate;
 @Override

 public void sendMessage(final String message) {
 jmsTemplate.setDeliveryDelay(5000L);

Chapter 12 ■ Using Spring Remoting

575

 this.jmsTemplate.send(new MessageCreator() {
 @Override
 public Message createMessage(Session session)
 throws JMSException {
 TextMessage jmsMessage = session.createTextMessage(message);
 logger.info(">>> Sending: " + jmsMessage.getText());
 return jmsMessage;
 }
 });
 }
}

As you can see, an instance of JmsTemplate is injected. In the sendMessage() method, we call the
JmsTemplate.send() method, with an in-place construction of an instance of the org.springframework.
jms.core.MessageCreator interface. In the MessageCreator instance, the createMessage() method is
implemented to create a new instance of TextMessage that will be sent to HornetQ.

Both message listener and sender bean declarations are picked up using component scanning.
Now let’s tie both sending and receiving together to see JMS in action. The following code snippet

shows the main testing program for sending messages and receiving messages:

package com.apress.prospring5.ch12;

import com.apress.prospring5.ch12.config.AppConfig;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;
import org.springframework.context.support.GenericXmlApplicationContext;

import java.util.Arrays;

public class JmsHornetQSample {
 public static void main(String... args) throws Exception{
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(AppConfig.class);

 MessageSender messageSender =
 ctx.getBean("messageSender", MessageSender.class);

 for(int i=0; i < 10; ++i) {
 messageSender.sendMessage("Test message: " + i);
 }

 System.in.read();
 ctx.close();
 }
}

Chapter 12 ■ Using Spring Remoting

576

The program is simple. Running the program sends messages to the queue. The SimpleMessageListener
class receives those messages, and you can see the following output in your console:

INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 0
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 1
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 2
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 3
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 4
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 5
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 6
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 7
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 8
INFO c.a.p.c.SimpleMessageSender - >>> Sending: Test message: 9
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 0
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 1
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 2
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 3
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 4
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 5
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 6
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 7
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 8
INFO c.a.p.c.SimpleMessageListener - >>> Received: Test message: 9

Spring Boot Artemis Starter
The possibility of using Spring Boot to make development of JMS application more practical was hinted in
Chapter 9 where a distributed transaction example involving a database and a queue was covered.

Spring Boot can autoconfigure a javax.jms.ConnectionFactory bean when it detects Artemis is
available in the classpath. Am embedded JMS broker is started and configured automatically. There are
multiple modes that Artemis can be used in, and it is configurable using special Artemis properties that can
be set in the application.properties file.

Artemis can be used in a native mode, with the connection to the broker being provided by the netty
protocol. The application.properties file can look something like this:

spring.artemis.mode=native
spring.artemis.host=0.0.0.0
spring.artemis.port=61617
spring.artemis.user=prospring5
spring.artemis.password=prospring5

The easiest way to use Spring Boot and Artemis to create a JMS application is to use an embedded
server; all that is needed is a name for the queue that will hold the messages. Thus, the application.
properties file looks like this:

spring.artemis.mode=embedded
spring.artemis.embedded.queues=prospring5

http://dx.doi.org/10.1007/978-1-4842-2808-1_9

Chapter 12 ■ Using Spring Remoting

577

This is the approach that will be used in the sources for this section because it requires the least
configuration customization. Using this approach, all that is needed is the application.properties
configuration file and the Application class, as shown here:

package com.apress.prospring5.ch12;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.
 jms.DefaultJmsListenerContainerFactoryConfigurer;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.jms.annotation.JmsListener;
import org.springframework.jms.config.DefaultJmsListenerContainerFactory;
import org.springframework.jms.config.JmsListenerContainerFactory;
import org.springframework.jms.core.JmsTemplate;

import javax.jms.ConnectionFactory;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.TextMessage;

@SpringBootApplication
public class Application {

 private static Logger logger =
 LoggerFactory.getLogger(Application.class);

 @Bean
 public JmsListenerContainerFactory<?>
 connectionFactory(ConnectionFactory connectionFactory,
 DefaultJmsListenerContainerFactoryConfigurer configurer) {
 DefaultJmsListenerContainerFactory factory =
 new DefaultJmsListenerContainerFactory();
 configurer.configure(factory, connectionFactory);
 return factory;
 }

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 JmsTemplate jmsTemplate = ctx.getBean(JmsTemplate.class);
 jmsTemplate.setDeliveryDelay(5000L);
 for (int i = 0; i < 10; ++i) {
 logger.info(">>> Sending: Test message: " + i);
 jmsTemplate.convertAndSend("prospring5", "Test message: " + i);
 }

Chapter 12 ■ Using Spring Remoting

578

 System.in.read();
 ctx.close();
 }

 @JmsListener(destination = "prospring5", containerFactory = "connectionFactory")
 public void onMessage(Message message) {
 TextMessage textMessage = (TextMessage) message;

 try {
 logger.info(">>> Received: " + textMessage.getText());
 } catch (JMSException ex) {
 logger.error("JMS error", ex);
 }
 }
}

Of course, to make this work, the Spring Boot JMS starter library must be used as a dependency, and the
Artemis server must be in the classpath. The Gradle configuration is shown here:

//pro-spring-15/build.gradle
ext {
 bootVersion = '2.0.0.M1'
 artemisVersion = '2.1.0'

 boot = [
 ...
 starterJms :
 "org.springframework.boot:spring-boot-starter-artemis:$bootVersion"
]

 testing = [
 junit: "junit:junit:$junitVersion"
]

 misc = [
 ...
 artemisServer :
 "org.apache.activemq:artemis-jms-server:$artemisVersion"

]
...
}
//boot-jms/build.gradle
buildscript {
 repositories {
 ...
 }

 dependencies {
 classpath boot.springBootPlugin
 }
}

Chapter 12 ■ Using Spring Remoting

579

apply plugin: 'org.springframework.boot'

dependencies {
 compile boot.starterJms, misc.artemisServer
}

Having the spring-boot-starter-artemis declared as a dependency removes the need to use
@EnableJms to process methods annotated with @JmsListener. The jmsTemplate bean is created by
Spring Boot with the default configuration provided by properties set in the application.properties
file and can be used to not only send but receive messages as well, using the receive() method, but this
is done synchronously, which means the jmsTemplate will block. That is why an explicitly configured
JmsListenerContainerFactory bean is used to create a DefaultMessageListenerContainer that will
consume messages asynchronously and with maximum connection efficiency.

If you run the Application class, you will get some output in the console, which is really similar to the
HornetQ output.

Using RESTful-WS in Spring
Nowadays, RESTful-WS is perhaps the most widely used technology for remote access. From remote service
invocation via HTTP to supporting an Ajax-style interactive web front end, RESTful-WS is being adopted
intensively. RESTful web services are popular for several reasons.

•	 Easy to understand: RESTful web services are designed around HTTP. The URL,
together with the HTTP method, specifies the intention of the request. For example,
the URL http://somedomain.com/restful/customer/1 with an HTTP method of
GET means that the client wants to retrieve the customer information, where the
customer ID equals 1.

•	 Lightweight: RESTful is much more lightweight when compared to SOAP-based
web services, which include a large amount of metadata to describe which service
the client wants to invoke. For a RESTful request and response, it’s simply an HTTP
request and response, as with any other web application.

•	 Firewall friendly: Because RESTful web services are designed to be accessible via
HTTP (or HTTPS), the application becomes much more firewall friendly and easily
accessed by remote clients.

In this section, we present the basic concepts of RESTful-WS and Spring’s support of RESTful-WS
through its Spring MVC module.

Introducing RESTful Web Services
The REST in RESTful-WS is short for REpresentational State Transfer, which is an architectural style. REST
defines a set of architectural constraints that together describe a uniform interface for accessing resources.
The main concepts of this uniform interface include the identification of resources and the manipulation
of resources through representations. For the identification of resources, a piece of information should be
accessible via a uniform resource identifier (URI). For example, the URL http://somedomain.com/api/singer/1
is a URI that represents a resource, which is a piece of singer information with an identifier of 1. If the singer
with an identifier of 1 does not exist, the client will get a 404 HTTP error, just like a “page not found” error on
a web site. Another example, http://somedomain.com/api/singers, is a URI that represents a resource that
is a list of singer information. Those identifiable resources can be managed through various representations,
as shown in Table 12-1.

http://somedomain.com/restful/customer/1
http://somedomain.com/api/singer/1
http://somedomain.com/api/singers

Chapter 12 ■ Using Spring Remoting

580

For a detailed description of RESTful web services, we recommend Ajax and REST Recipes: A Problem-
Solution Approach by Christian Gross (Apress, 2006).

Adding Required Dependencies for Samples
To build a Spring REST application, we need to add a few new dependencies. Because we will be sending
objects from a server to a client, we need a library to serialize and deserialize them. And we also want to
show you that multiple types of serialization can be used in the same application, in this case XML and
JSON, so libraries for each of them are needed. Table 12-2 lists the dependencies and their purpose.

Designing the Singer RESTful Web Service
When developing a RESTful-WS application, the first step is to design the service structure, which includes
what HTTP methods will be supported, together with the target URLs for different operations. For the singer
RESTful web services, we want to support query, create, update, and delete operations. For querying, we
want to support retrieving all singers or a single singer by ID.

The services will be implemented as a Spring MVC controller. The name is the SingerController
class, under the package com.apress.prospring5.ch12. Table 12-3 shows the URL pattern, HTTP
method, description, and corresponding controller methods. For the URLs, all will be relative to http://
localhost:8080. In terms of data format, both XML and JSON are supported. The corresponding format will
be provided according to the accept media type of the client’s HTTP request header.

Table 12-1.  Representations for Manipulating Resources

HTTP Method Description

GET GET retrieves a representation of a resource.

HEAD Identical to GET, without the response body. Typically used for getting a header.

POST POST creates a new resource.

PUT PUT updates a resource.

DELETE DELETE deletes a resource.

OPTIONS OPTIONS retrieves allowed HTTP methods.

Table 12-2.  Dependencies for RESTful Web Services

GroupId:ModuleId Version Purpose

org.springframework:spring-oxm 5.0.0.RC1 Spring object-to-XML mapping module.

org.codehaus.
jackson:jacksonDatabind

2.9.0.pr3 Jackson JSON processor to support data in JSON
format.

org.codehaus.castor:castor-xml 1.4.1 The Castor XML library will be used for the
marshalling and unmarshalling of XML data.

org.apache.
httpcomponents:httpclient

4.5.3 Apache HTTP Components project. The HTTP
client library will be used for RESTful-WS
invocation.

Chapter 12 ■ Using Spring Remoting

581

Using Spring MVC to Expose RESTful Web Services
In this section, we show you how to use Spring MVC to expose the singer services as RESTful web services,
as designed in the previous section. This sample builds upon some of the SingerService classes that were
used in the Spring HTTP invoker sample.

You are already familiar with the Singer class, so we won’t show the code here again. But to serialize
and deserialize a list of singers, we need to encapsulate it in a container.3 Here you can see the Singers class.
It has a single property, which is a list of Singer objects. The purpose is to support the transformation from
a list of singers (returned by the listData() method within the SingerController class) into XML or JSON
format.

package com.apress.prospring5.ch12;

import com.apress.prospring5.ch12.entities.Singer;
import java.io.Serializable;
import java.util.List;

public class Singers implements Serializable {
 private List<Singer> singers;

 public Singers() {
 }

 public Singers(List<Singer> singers) {
 this.singers = singers;
 }

 public List<Singer> getSingers() {
 return singers;
 }

 public void setSingers(List<Singer> singers) {
 this.singers = singers;
 }
}

Table 12-3.  XMLHttpRequest Methods and Properties Table

URL HTTP Method Description Controller Method

/singer/listdata GET Retrieves all singers listData

/singer/id GET Retrieves a singer by ID findBySingerId(...)

/singer POST Creates a new singer create(...)

/singer/id PUT Updates a singer by ID update(...)

/singer/id DELETE Deletes a singer by ID delete(...)

3This is needed for XML serialization; JSON works without the container class.

Chapter 12 ■ Using Spring Remoting

582

Configuring Castor XML
To support the transformation of the returned singer information into XML format, we will use the Castor
XML library (http://castor.codehaus.org). Castor supports several modes between POJO and XML
transformation, and in this sample, we use an XML file to define the mapping. The following XML snippet
shows the mapping file (oxm-mapping.xml):

<mapping>
 <class name="com.apress.prospring5.ch12.Singers">
 <field name="singers"
 type="com.apress.prospring5.ch12.entities.Singer"
 collection="arraylist">
 <bind-xml name="singer"/>
 </field>
 </class>

 <class name="com.apress.prospring5.ch12.entities.Singer"
 identity="id">
 <map-to xml="singer" />

 <field name="id" type="long">
 <bind-xml name="id" node="element"/>
 </field>
 <field name="firstName" type="string">
 <bind-xml name="firstName" node="element" />
 </field>
 <field name="lastName" type="string">
 <bind-xml name="lastName" node="element" />
 </field>
 <field name="birthDate" type="string" handler="dateHandler">
 <bind-xml name="birthDate" node="element" />
 </field>
 <field name="version" type="integer">
 <bind-xml name="version" node="element" />
 </field>
 </class>

 <field-handler name="dateHandler"
 class="com.apress.prospring5.ch12.DateTimeFieldHandler">
 <param name="date-format" value="yyyy-MM-dd"/>
 </field-handler>
</mapping>

Two mappings are defined. The first <class> tag maps the Singers class, within which its singers
property (a List of singers objects) is mapped using the <bind-xml name="singer"/> tag. The Singer
object is then mapped (with the <map-to xml="singer" /> tag within the second <class> tag). In addition,
to support the transformation from java.util.Date type (for Singer’s birthDate attribute), we implement a
custom Castor field handler. The following code snippet shows the field handler:

http://castor.codehaus.org/

Chapter 12 ■ Using Spring Remoting

583

package com.apress.prospring5.ch12;

import org.exolab.castor.mapping.GeneralizedFieldHandler;
import org.exolab.castor.mapping.ValidityException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Properties;

public class DateTimeFieldHandler extends GeneralizedFieldHandler {

 private static Logger logger =
 LoggerFactory.getLogger(DateTimeFieldHandler.class);

 private static String dateFormatPattern;

 @Override
 public void setConfiguration(Properties config) throws ValidityException {
 dateFormatPattern = config.getProperty("date-format");
 }

 @Override
 public Object convertUponGet(Object value) {
 Date dateTime = (Date) value;
 return format(dateTime);
 }

 @Override
 public Object convertUponSet(Object value) {
 String dateTimeString = (String) value;
 return parse(dateTimeString);
 }

 @Override
 public Class<Date> getFieldType() {
 return Date.class;
 }

 protected static String format(final Date dateTime) {
 String dateTimeString = "";
 if (dateTime != null) {
 SimpleDateFormat sdf =
 new SimpleDateFormat(dateFormatPattern);
 dateTimeString = sdf.format(dateTime);
 }
 return dateTimeString;
 }

Chapter 12 ■ Using Spring Remoting

584

 protected static Date parse(final String dateTimeString) {
 Date dateTime = new Date();
 if (dateTimeString != null) {
 SimpleDateFormat sdf =
 new SimpleDateFormat(dateFormatPattern);
 try {
 dateTime = sdf.parse(dateTimeString);
 } catch (ParseException e) {
 logger.error("Not a valida date:" + dateTimeString, e);
 }
 }
 return dateTime;
 }
}

We extend Castor’s org.exolab.castor.mapping.GeneralizedFieldHandler class and implement the
convertUponGet(), convertUponSet(), and getFieldType() methods. Within the methods, we implement
the logic to perform the transformation between Date and String for use by Castor.

In addition, we also define a properties file for use with Castor. The following snippet shows the
contents of the file (castor.properties):

org.exolab.castor.indent=true

The property instructs Castor to generate XML with an indent, which is much easier to read when testing.

Implementing SingerController
The next step is to implement the controller class, SingerController. The following code snippet shows the
contents of this class, which has all the methods in Table 12-3 implemented:

package com.apress.prospring5.ch12;

import com.apress.prospring5.ch12.entities.Singer;
import com.apress.prospring5.ch12.services.SingerService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.*;

@Controller
@RequestMapping(value="/singer")
public class SingerController {
 final Logger logger =
 LoggerFactory.getLogger(SingerController.class);

 @Autowired
 private SingerService singerService;

Chapter 12 ■ Using Spring Remoting

585

 @ResponseStatus(HttpStatus.OK)
 @RequestMapping(value = "/listdata", method = RequestMethod.GET)
 @ResponseBody
 public Singers listData() {
 return new Singers(singerService.findAll());
 }

 @RequestMapping(value="/{id}", method=RequestMethod.GET)
 @ResponseBody
 public Singer findSingerById(@PathVariable Long id) {
 return singerService.findById(id);
 }

 @RequestMapping(value="/", method=RequestMethod.POST)
 @ResponseBody
 public Singer create(@RequestBody Singer singer) {
 logger.info("Creating singer: " + singer);
 singerService.save(singer);
 logger.info("Singer created successfully with info: " + singer);
 return singer;
 }

 @RequestMapping(value="/{id}", method=RequestMethod.PUT)
 @ResponseBody
 public void update(@RequestBody Singer singer,
 @PathVariable Long id) {
 logger.info("Updating singer: " + singer);
 singerService.save(singer);
 logger.info("Singer updated successfully with info: " + singer);
 }

 @RequestMapping(value="/{id}", method=RequestMethod.DELETE)
 @ResponseBody
 public void delete(@PathVariable Long id) {
 logger.info("Deleting singer with id: " + id);
 Singer singer = singerService.findById(id);
 singerService.delete(singer);
 logger.info("Singer deleted successfully");
 }
}

The main points about the previous class are as follows:

•	 The class is annotated with @Controller, indicating that it’s a Spring MVC controller.

•	 The class-level annotation @RequestMapping(value="/singer") indicates that this
controller will be mapped to all URLs under the main web context. In this sample, all
URLs under http://localhost:8080/singer will be handled by this controller.

•	 The SingerService within the service layer implemented earlier in this chapter is
autowired into the controller.

Chapter 12 ■ Using Spring Remoting

586

•	 The @RequestMapping annotation for each method indicates the URL pattern and the
corresponding HTTP method that it will be mapped to. For example, the listData()
method will be mapped to the http://localhost:8080/singer/listdata URL,
with an HTTP GET method. For the update() method, it will be mapped to the URL
http://localhost:8080/singer/\protect\T1\textbraceleftid\ protect\T1\
textbraceright, with an HTTP PUT method.

•	 The @ResponseBody annotation is applied to all methods. This instructs that all the
return values from the methods should be written to the HTTP response stream
directly and not matched to a view.

•	 For methods that accept path variables (for example, the findSingerById()
method), the path variable is annotated with @PathVariable. This instructs
Spring MVC to bind the path variable within the URL (for example, http://
localhost:8080/singer/1) into the id argument of the findSingerById() method.
Note that for the id argument, the type is Long, while Spring’s type conversion
system will automatically handle the conversion from String to Long for us.

•	 For the create() and update() method, the Singer argument is annotated with
@RequestBody. This instructs Spring to automatically bind the content within the
HTTP request body into the Singer domain object. The conversion will be done by
the declared instances of the HttpMessageConverter<Object> interface (under the
package org.springframework.http.converter) for supporting formats, which will
be discussed later in this chapter.

 S tarting with Spring 4.0, a controller annotation dedicated for REST usage was introduced, the
@RestController. This is a convenience annotation that is itself annotated with @Controller and
@ResponseBody. When used on a controller class, all methods that are annotated with @RequestMapping
are automatically annotated with @ResponseBody. A version of the SingerController written using this
annotation will be covered later in the chapter.

Configuring a Spring Web Application
A Spring web application is needed to resolve the REST requests sent by a client, so it needs to be configured.
Earlier in the chapter we covered a simple web application configuration. That configuration now must be
enriched with HTTP message converter beans for XML and JSON.

Spring web applications follow the Front Controller design pattern,4 where all requests are received by
a single controller, which later dispatches them to the appropriate handlers (controller classes). This central
dispatcher is an instance of org.springframework.web.servlet.DispatcherServlet and is registered by an
AbstractAnnotationConfigDispatcherServletInitializer class, which needs to be extended to replace the
web.xml configuration. The class WebInitializer that does this in the samples for this section is shown here:

package com.apress.prospring5.ch12.init;

import com.apress.prospring5.ch12.config.DataServiceConfig;
import org.springframework.web.servlet.support.
 AbstractAnnotationConfigDispatcherServletInitializer;

4You can find a good explanation of this design pattern here: www.oracle.com/technetwork/
java/frontcontroller-135648.html.

http://www.oracle.com/technetwork/java/frontcontroller-135648.html

Chapter 12 ■ Using Spring Remoting

587

public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{
 DataServiceConfig.class
 };
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{
 WebConfig.class
 };
 }

 @Override
 protected String[] getServletMappings() {
 return new String[]{"/"};
 }
}

In Spring MVC, each DispatchServlet will have its own WebApplicationContext (however, all service-
layer beans defined in DataServiceConfig.class, which is called the root WebApplicationContext, will be
available for each servlet’s own WebApplicationContext too).

The getServletMappings() method instructs the web container (for example, Tomcat) that all URLs
under the pattern / (for example, http://localhost:8080/singer) will be handled by the RESTful servlet.
Of course, we could have added a context, such as /ch12, there, but for the samples needed in this section,
we wanted to keep the URLs as short and as obvious in purpose as possible.

The Spring MVC configuration class (the WebConfig class) with HTTP message converters is shown here:

package com.apress.prospring5.ch12.init;

import com.fasterxml.jackson.annotation.JsonInclude;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.SerializationFeature;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.http.MediaType;
import org.springframework.http.converter.HttpMessageConverter;
import org.springframework.http.converter.json.
 MappingJackson2HttpMessageConverter;
import org.springframework.http.converter.xml.MarshallingHttpMessageConverter;
import org.springframework.oxm.castor.CastorMarshaller;
import org.springframework.web.servlet.config.annotation.
 DefaultServletHandlerConfigurer;

Chapter 12 ■ Using Spring Remoting

588

import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurerAdapter;

import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.List;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch12"})
public class WebConfig extends WebMvcConfigurer {

 @Autowired ApplicationContext ctx;

 @Bean
 public MappingJackson2HttpMessageConverter
 mappingJackson2HttpMessageConverter() {
 MappingJackson2HttpMessageConverter
 mappingJackson2HttpMessageConverter =
 new MappingJackson2HttpMessageConverter();
 mappingJackson2HttpMessageConverter.setObjectMapper(objectMapper());
 return mappingJackson2HttpMessageConverter;
 }

 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

 @Bean
 public ObjectMapper objectMapper() {
 ObjectMapper objMapper = new ObjectMapper();
 objMapper.enable(SerializationFeature.INDENT_OUTPUT);
 objMapper.setSerializationInclusion(JsonInclude.Include.NON_NULL);
 DateFormat df = new SimpleDateFormat("yyyy-MM-dd");
 objMapper.setDateFormat(df);
 return objMapper;
 }

 @Override
 public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {
 converters.add(mappingJackson2HttpMessageConverter());
 converters.add(singerMessageConverter());
 }

Chapter 12 ■ Using Spring Remoting

589

 @Bean MarshallingHttpMessageConverter singerMessageConverter() {
 MarshallingHttpMessageConverter mc = new MarshallingHttpMessageConverter();
 mc.setMarshaller(castorMarshaller());
 mc.setUnmarshaller(castorMarshaller());
 List<MediaType> mediaTypes = new ArrayList<>();
 MediaType mt = new MediaType("application", "xml");
 mediaTypes.add(mt);
 mc.setSupportedMediaTypes(mediaTypes);
 return mc;
 }

 @Bean CastorMarshaller castorMarshaller() {
 CastorMarshaller castorMarshaller = new CastorMarshaller();
 castorMarshaller.setMappingLocation(
 ctx.getResource("classpath:spring/oxm-mapping.xml"));
 return castorMarshaller;
 }
}

The important points for the previous class are as follows:

•	 The @EnableWebMvc annotation5 enables the annotation support for Spring MVC
(that is, the @Controller annotation), as well as registers Spring’s type conversion
and formatting system. In addition, JSR-303 validation support is enabled under the
definition of this annotation.

•	 The configureMessageConverters(...) method6 declares the instances of
HttpMessageConverter that will be used for media conversion for supported
formats. Because we will support both JSON and XML as the data format, two
converters are declared. The first one is MappingJackson2HttpMessageConverter,
which is Spring’s support for the Jackson JSON library.7 The other one is
MarshallingHttpMessageConverter, which is provided by the spring-oxm module
for XML marshalling/unmarshalling. Within MarshallingHttpMessageConverter,
we need to define the marshaller and unmarshaller to use, which is the one provided
by Castor in this case.

•	 For the castorMarshaller bean, we use the Spring-provided class org.
springframework.oxm.castor.CastorMarshaller, which integrates with Castor,
and we provide the mapping location that Castor requires for its processing.

•	 The @ComponentScan annotation8 instructs Spring to scan for the specified package
for controller classes.

Now, the server-side service is complete. At this point, you should build the WAR file containing the web
application, or if you are using an IDE such as IntelliJ IDEA or STS, launch the Tomcat instance.

5This is the equivalent of the <mvc:annotation-driven> tag/.
6This is the equivalent of the <mvc:message-converters> tag introduced in Spring 3.1.
7You can find the Jackson JSON library official site at http://jackson.codehaus.org.
8This is the equivalent of the <context:component-scan> tag.

http://jackson.codehaus.org/

Chapter 12 ■ Using Spring Remoting

590

Using curl to Test RESTful-WS
Let’s do a quick test of the RESTful web services that we implemented. One easy way is to use curl,9 which
is a command-line tool for transporting data with URL syntax. To use the tool, just download it from the web
site and extract it onto your computer.

For example, to test the retrieval of all singers, open a command prompt in Windows or a terminal in
Unix/Linux, deploy the WAR onto the server, and fire the following command:

$ curl -v -H "Accept: application/json" http://localhost:8080/singer/listdata
* Trying ::1...
* Connected to localhost (::1) port 8080 (#0)
> GET /singer/listdata HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.43.0
> Accept: application/json
>
< HTTP/1.1 200
< Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
< Date: Sat, 17 Jun 2017 17:16:43 GMT
<
{
 "singers" : [{
 "id" : 1,
 "version" : 0,
 "firstName" : "John",
 "lastName" : "Mayer",
 "birthDate" : "1977-10-16"
 }, {
 "id" : 2,
 "version" : 0,
 "firstName" : "Eric",
 "lastName" : "Clapton",
 "birthDate" : "1945-03-30"
 }, {
 "id" : 3,
 "version" : 0,
 "firstName" : "John",
 "lastName" : "Butler",
 "birthDate" : "1975-04-01"
 }]
* Connection #0 to host localhost left intact

This command sends an HTTP request to the server’s RESTful web service; in this case, it invokes the
listData() method in SingerController to retrieve and return all singer information. Also, the -H option
declares an HTTP header attribute, meaning that the client wants to receive data in JSON format. Running

9See http://curl.haxx.se.

http://curl.haxx.se/

Chapter 12 ■ Using Spring Remoting

591

the command produces output in JSON format for the initially populated singer information that was
returned. Now let’s take a look at the XML format; the command and results are shown here:

$ curl -v -H "Accept: application/xml" http://localhost:8080/singer/listdata
* Trying ::1...
* Connected to localhost (::1) port 8080 (#0)
> GET /singer/listdata HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.43.0
> Accept: application/xml
>
< HTTP/1.1 200
< Content-Type: application/xml
< Transfer-Encoding: chunked
< Date: Sat, 17 Jun 2017 17:18:22 GMT
<
<?xml version="1.0" encoding="UTF-8"?>
<singers>
 <singer>
 <id>1</id>
 <firstName>John</firstName>
 <lastName>Mayer</lastName>
 <birthDate>1977-10-16</birthDate>
 <version>0</version>
 </singer>
 <singer>
 <id>2</id>
 <firstName>Eric</firstName>
 <lastName>Clapton</lastName>
 <birthDate>1945-03-30</birthDate>
 <version>0</version>
 </singer>
 <singer>
 <id>3</id>
 <firstName>John</firstName>
 <lastName>Butler</lastName>
 <birthDate>1975-04-01</birthDate>
 <version>0</version>
 </singer>
</singers>
* Connection #0 to host localhost left intact

As you can see, there is only one difference between the two samples. The accept media was
changed from JSON to XML. Running the command produces XML output instead. This is because of the
HttpMessageConverter beans that were defined in the RESTful servlet’s WebApplicationContext, while
Spring MVC will invoke the corresponding message converter based on the client’s HTTP header’s accept
media information and will write to the HTTP response accordingly.

Chapter 12 ■ Using Spring Remoting

592

Using RestTemplate to Access RESTful-WS
For Spring-based applications, the RestTemplate class is designed to access RESTful web services. In this
section, we show how to use the class to access the singer service on the server. First let’s take a look at the
basic ApplicationContext configuration for Spring’s RestTemplate, as shown in the following code snippet:

package com.apress.prosring5.ch12;

import com.apress.prospring5.ch12.CustomCredentialsProvider;
import org.apache.http.auth.Credentials;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.client.HttpClient;
import org.apache.http.impl.client.HttpClientBuilder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.http.MediaType;
import org.springframework.http.client.HttpComponentsClientHttpRequestFactory;
import org.springframework.http.converter.HttpMessageConverter;
import org.springframework.http.converter.xml.MarshallingHttpMessageConverter;
import org.springframework.oxm.castor.CastorMarshaller;
import org.springframework.web.client.RestTemplate;

import java.util.ArrayList;
import java.util.List;

@Configuration
public class RestClientConfig {

 @Autowired ApplicationContext ctx;

 @Bean
 public HttpComponentsClientHttpRequestFactory httpRequestFactory() {
 HttpComponentsClientHttpRequestFactory httpRequestFactory =
 new HttpComponentsClientHttpRequestFactory();
 HttpClient httpClient = HttpClientBuilder.create().build();
 httpRequestFactory.setHttpClient(httpClient);
 return httpRequestFactory;
 }

 @Bean
 public RestTemplate restTemplate() {
 RestTemplate restTemplate = new RestTemplate(httpRequestFactory());
 List<HttpMessageConverter<?>> mcvs = new ArrayList<>();
 mcvs.add(singerMessageConverter());
 restTemplate.setMessageConverters(mcvs);
 return restTemplate;
 }

Chapter 12 ■ Using Spring Remoting

593

 @Bean MarshallingHttpMessageConverter singerMessageConverter() {
 MarshallingHttpMessageConverter mc =
 new MarshallingHttpMessageConverter();
 mc.setMarshaller(castorMarshaller());
 mc.setUnmarshaller(castorMarshaller());
 List<MediaType> mediaTypes = new ArrayList<>();
 MediaType mt = new MediaType("application", "xml");
 mediaTypes.add(mt);
 mc.setSupportedMediaTypes(mediaTypes);
 return mc;
 }

 @Bean CastorMarshaller castorMarshaller() {
 CastorMarshaller castorMarshaller = new CastorMarshaller();
 castorMarshaller.setMappingLocation(
 ctx.getResource("classpath:spring/oxm-mapping.xml"));
 return castorMarshaller;
 }
}

You declare a restTemplate bean using the RestTemplate class. The class uses Castor to inject the
property messageConverters with an instance of MarshallingHttpMessageConverter, the same as the one
on the server side. The mapping file will be shared between both the server and client sides. In addition,
for the restTemplate bean, within the anonymous class MarshallingHttpMessageConverter, the property
supportedMediaTypes is injected with a MediaType instance, indicating that the only supported media is
XML. As a result, the client is always expecting XML as the return data format, and Castor will help perform
the conversion between POJO and XML.

To test all REST URLs supported by the web application, a JUnit class is more appropriate, executed
within a Spring application context defined by RestClientConfig. The code is shown next, and in a smart
editor such as IntelliJ IDEA or STS, each method can be executed individually:

package com.apress.prosring5.ch12.test;

import com.apress.prospring5.ch12.Singers;
import com.apress.prospring5.ch12.entities.Singer;
import com.apress.prosring5.ch12.RestClientConfig;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.web.client.RestTemplate;

import java.util.Date;
import java.util.GregorianCalendar;

Chapter 12 ■ Using Spring Remoting

594

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {RestClientConfig.class})
public class RestClientTest {

 final Logger logger = LoggerFactory.getLogger(RestClientTest.class);
 private static final String URL_GET_ALL_SINGERS =
 "http://localhost:8080/singer/listdata";
 private static final String URL_GET_SINGER_BY_ID =
 "http://localhost:8080/singer/{id}";
 private static final String URL_CREATE_SINGER =
 "http://localhost:8080/singer/";
 private static final String URL_UPDATE_SINGER =
 "http://localhost:8080/singer/{id}";
 private static final String URL_DELETE_SINGER =
 "http://localhost:8080/singer/{id}";

 @Autowired RestTemplate restTemplate;

 @Before
 public void setUp() {
 assertNotNull(restTemplate);
 }

 @Test
 public void testFindAll() {
 logger.info("--> Testing retrieve all singers");
 Singers singers = restTemplate.getForObject(URL_GET_ALL_SINGERS,
 Singers.class);
 assertTrue(singers.getSingers().size() == 3);
 listSingers(singers);
 }

 @Test
 public void testFindbyId() {
 logger.info("--> Testing retrieve a singer by id : 1");
 Singer singer = restTemplate.getForObject(URL_GET_SINGER_BY_ID,
 Singer.class, 1);
 assertNotNull(singer);
 logger.info(singer.toString());
 }

 @Test
 public void testUpdate() {
 logger.info("--> Testing update singer by id : 1");
 Singer singer = restTemplate.getForObject(URL_UPDATE_SINGER,
 Singer.class, 1);
 singer.setFirstName("John Clayton");

Chapter 12 ■ Using Spring Remoting

595

 restTemplate.put(URL_UPDATE_SINGER, singer, 1);
 logger.info("Singer update successfully: " + singer);
 }

 @Test
 public void testDelete() {
 logger.info("--> Testing delete singer by id : 3");
 restTemplate.delete(URL_DELETE_SINGER, 3);
 Singers singers = restTemplate.getForObject(URL_GET_ALL_SINGERS,
 Singers.class);
 Boolean found = false;
 for(Singer s: singers.getSingers()) {
 if(s.getId() == 3) {
 found = true;
 }
 };
 assertFalse(found);
 listSingers(singers);
 }

 @Test
 public void testCreate() {
 logger.info("--> Testing create singer");
 Singer singerNew = new Singer();
 singerNew.setFirstName("BB");
 singerNew.setLastName("King");
 singerNew.setBirthDate(new Date(
 (new GregorianCalendar(1940, 8, 16)).getTime().getTime()));
 singerNew = restTemplate.postForObject(URL_CREATE_SINGER,
 singerNew, Singer.class);
 logger.info("Singer created successfully: " + singerNew);

 logger.info("Singer created successfully: " + singerNew);

 Singers singers = restTemplate.getForObject(URL_GET_ALL_SINGERS,
 Singers.class);
 listSingers(singers);
 }

 private void listSingers(Singers singers) {
 singers.getSingers().forEach(s -> logger.info(s.toString()));
 }
}

The URLs for accessing various operations are declared, which will be used in later samples.
The instance of RestTemplate is injected, and then in the testFindAll method the RestTemplate.
getForObject() method is called (which corresponds to the HTTP GET method), passing in the URL and
the expected return type, which is the Singers class that contains the full list of singers.

Chapter 12 ■ Using Spring Remoting

596

Make sure the application server is running. Running the testFindAll test method, the test should pass
and produce the following output:

INFO c.a.p.c.t.RestClientTest - --> Testing retrieve all singers
INFO c.a.p.c.t.RestClientTest - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: Sun Oct 16 00:00:00 EET 1977
INFO c.a.p.c.t.RestClientTest - Singer - Id: 2, First name: Eric, Last name: Clapton,
 Birthday: Fri Mar 30 00:00:00 EET 1945
INFO c.a.p.c.t.RestClientTest - Singer - Id: 3, First name: John, Last name: Butler,
 Birthday: Tue Apr 01 00:00:00 EET 1975

As you can see, the MarshallingHttpMessageConverter bean registered within RestTemplate converts
the message into a POJO automatically. Next, let’s try to retrieve a singer by ID. In this method we use a
variant of the RestTemplate.getForObject() method, which also passes in the ID of the singer we want to
retrieve as the path variable within the URL (the {id} path variable in URL_GET_CONTACT_BY_ID). If the URL
has more than one path variable, you can use an instance of Map<String,Object> or use the varargs support
of the method to pass in the path variables. With varargs, you need to follow the order of the path variable
as declared in the URL. Run the testFindbyId() test method. The test should pass, and you should see the
following output:

INFO c.a.p.c.t.RestClientTest - --> Testing retrieve a singer by id : 1
INFO c.a.p.c.t.RestClientTest - Singer - Id: 1, First name: John, Last name: Mayer,
 Birthday: Sun Oct 16 00:00:00 EET 1977

As you can see, the correct singer is retrieved. Now it’s update’s turn. First we retrieve the singer we
want to update. After the singer object is updated, we then use the RestTemplate.put() method, which
corresponds to the HTTP PUT method, passing in the update URL, the updated singer object, and the ID
of the singer to update. Running the testUpdate() produces the following output (other output has been
omitted):

INFO c.a.p.c.t.RestClientTest - --> Testing update singer by id : 1
INFO c.a.p.c.t.RestClientTest - Singer update successfully: Singer - Id: 1,
 First name: John Clayton,
 Last name: Mayer, Birthday: Sun Oct 16 00:00:00 EET 1977

Next is the delete operation. The RestTemplate.delete() method is called, which corresponds to the
HTTP DELETE method, passing in the URL and the ID. Then, all singers are retrieved and displayed again to
verify the deletion. Running the testDelete() test method produces the following output (other output has
been omitted):

INFO c.a.p.c.t.RestClientTest - --> Testing delete singer by id : 3
INFO c.a.p.c.t.RestClientTest - Singer - Id: 1,
 First name: John Clayton,
 Last name: Mayer, Birthday: Sun Oct 16 00:00:00 EET 1977
INFO c.a.p.c.t.RestClientTest - Singer - Id: 2, First name: Eric,
 Last name: Clapton, Birthday: Fri Mar 30 00:00:00 EET 1945

Chapter 12 ■ Using Spring Remoting

597

As you can see, the singer with an ID of 3 is deleted. Finally, let’s try the insert operation. A new instance
of the Singer object is constructed. Then the RestTemplate.postForObject() method is called, which
corresponds to the HTTP POST method, passing in the URL, the Singer object we want to create, and the
class type. Running the program again produces the following output:

INFO c.a.p.c.t.RestClientTest - --> Testing create singer
INFO c.a.p.c.t.RestClientTest - Singer created successfully: Singer - Id: 4,
 First name: BB, Last name: King, Birthday: Mon Sep 16 00:00:00 EET 1940
 //listing all singers
INFO c.a.p.c.t.RestClientTest - Singer - Id: 1,
 First name: John Clayton, Last name: Mayer,
 Birthday: Sun Oct 16 00:00:00 EET 1977
INFO c.a.p.c.t.RestClientTest - Singer - Id: 2, First name: Eric,
 Last name: Clapton, Birthday: Fri Mar 30 00:00:00 EET 1945
INFO c.a.p.c.t.RestClientTest - Singer - Id: 4, First name: BB,
 Last name: King, Birthday: Mon Sep 16 00:00:00 EET 1940

The server is created on the server and returned to the client.

Securing RESTful-WS with Spring Security
Any remoting service requires security to restrict unauthorized parties from accessing the service and
retrieving business information or acting on it. RESTful-WS is no exception. In this section, we demonstrate
how to use the Spring Security project to secure RESTful-WS on the server. In this example, we are using
Spring Security 5.0.0.M2 (the latest stable version at the time of writing), which provides some useful
support for RESTful-WS.

Using Spring Security to secure RESTful-WS is a three-step process. First, in the web application
deployment descriptor (web.xml), a security filter named springSecurityFilterChain needs to be
added, but as we are not configuring the application using XML, the filter is replaced by a class extending
AbstractSecurityWebApplicationInitializer. This class registers DelegatingFilterProxy to use
springSecurityFilterChain before any other registered Filter. The implementation is shown here, and
the class is empty because we are not doing any customization to it:

package com.apress.prospring5.ch12.init;

import org.springframework.security.web.
 context.AbstractSecurityWebApplicationInitializer;

public class SecurityWebApplicationInitializer
 extends AbstractSecurityWebApplicationInitializer {
}

We need now to add a Spring configuration class for security where we will declare who can access the
application and what they are allowed to do. In the case of this application, things are easy: we are using
in-memory authentication for teaching purposes, so add a user named prospring5 with the password
prospring5 and the role REMOTE.

Chapter 12 ■ Using Spring Remoting

598

package com.apress.prospring5.ch12.init;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.authentication.
 builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.
 EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.
 WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 private static Logger logger = LoggerFactory.getLogger(SecurityConfig.class);

 @Autowired
 protected void configureGlobal(AuthenticationManagerBuilder auth)
 throws Exception {
 try {
 auth.inMemoryAuthentication()
 .withUser("prospring5")
 .password("prospring5")
 .roles("REMOTE");
 } catch (Exception e) {
 logger.error("Could not configure authentication!", e);
 }
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .sessionManagement()
 .sessionCreationPolicy(SessionCreationPolicy.STATELESS)
 .and()
 .authorizeRequests()
 .antMatchers("/**").permitAll()
 .antMatchers("/rest/**").hasRole("REMOTE").anyRequest().authenticated()
 .and()
 .formLogin()
 .and()
 .httpBasic()
 .and()
 .csrf().disable();
 }
}

Chapter 12 ■ Using Spring Remoting

599

The class is annotated with the @EnableWebSecurity annotation to enable secured behavior in a Spring
web application. In the configure(...) method, we declare that the resources under the URL /rest/**
should be protected. The sessionCreationPolicy() method is used to allow us to configure whether the
HTTP session will be created upon authentication. Since the RESTful-WS we are using is stateless, we set the
value to SessionCreationPolicy.STATELESS, which instructs Spring Security not to create an HTTP session
for all RESTful requests. This can help improve the performance of the RESTful services.

Next, in antMatchers("/rest/**"), we set that only users with the REMOTE role assigned can access the
RESTful service. The httpBasic() method specifies that only HTTP basic authentication is supported for
RESTful services.

The configureGlobal(AuthenticationManagerBuilder auth) method defines the authentication
information. Here we define a simple authentication provider with a hard-coded user and password (both
set to remote) with the REMOTE role assigned. In an enterprise environment, most likely the authentication
will be done by either a database or an LDAP lookup.

The .formLogin() method is used to tell Spring to generate a basic login form that can be used to test that
the application has been secured correctly. The login form is accessible at http://localhost:8080/login.

The filter springSecurityFilterChain is used to enable Spring Security to intercept the HTTP request
for an authentication and authorization check. Because we want to secure only RESTful-WS, the filter is
applied only to the URL pattern /rest/* (see the antMatchers(...) methods). We want to secure all the
REST URLs but allow the user to see the main page of the application (a simple HTML file that is displayed
when http://localhost:8080/ is accessed in the browser), so this is the moment that you add the rest
application context, besides adding SecurityConfig to the root context application.

package com.apress.prospring5.ch12.init;

import com.apress.prospring5.ch12.config.DataServiceConfig;
import org.springframework.web.servlet.support.
 AbstractAnnotationConfigDispatcherServletInitializer;

public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{
 DataServiceConfig.class, SecurityConfig.class
 };
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{
 WebConfig.class
 };
 }

 @Override
 protected String[] getServletMappings() {
 return new String[]{"/rest/**"};
 }
}

Chapter 12 ■ Using Spring Remoting

600

Now the security setup is complete. If you redeploy the project and run any of the test methods under
RestClientTest, you will have the following output (other output has been omitted):

Exception in thread "main" org.springframework.web.cient.HttpClientErrorException:
 401 Unauthorized

You will get the HTTP status code 401, which means you are not authorized to access the service. Now
let’s configure the client’s RestTemplate to provide the credential information to the server.

package com.apress.prosring5.ch12;

import org.apache.http.HttpHost;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.Credentials;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client.HttpClientBuilder;
import org.apache.http.impl.client.HttpClients;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationContext;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.MediaType;
import org.springframework.http.client.HttpComponentsClientHttpRequestFactory;
import org.springframework.http.converter.HttpMessageConverter;
import org.springframework.http.converter.xml.MarshallingHttpMessageConverter;
import org.springframework.oxm.castor.CastorMarshaller;
import org.springframework.web.client.RestTemplate;

import java.util.ArrayList;
import java.util.List;

@Configuration
public class RestClientConfig {

 @Autowired ApplicationContext ctx;

 @Bean Credentials credentials(){
 return new UsernamePasswordCredentials("prospring5", "prospring5");
 }

 @Bean
 CredentialsProvider provider() {
 BasicCredentialsProvider provider =
 new BasicCredentialsProvider();
 provider.setCredentials(AuthScope.ANY, credentials());
 return provider;
 }

Chapter 12 ■ Using Spring Remoting

601

 @Bean
 public HttpComponentsClientHttpRequestFactory httpRequestFactory() {
 CloseableHttpClient client = HttpClients.custom()
 .setDefaultCredentialsProvider(provider()).build();
 return new HttpComponentsClientHttpRequestFactory(client);
 }

 @Bean
 public RestTemplate restTemplate() {
 RestTemplate restTemplate = new RestTemplate();
 restTemplate.setRequestFactory(httpRequestFactory());
 List<HttpMessageConverter<?>> mcvs = new ArrayList<>();
 mcvs.add(singerMessageConverter());
 restTemplate.setMessageConverters(mcvs);
 return restTemplate;
 }

 @Bean MarshallingHttpMessageConverter singerMessageConverter() {
 MarshallingHttpMessageConverter mc = n
 ew MarshallingHttpMessageConverter();
 mc.setMarshaller(castorMarshaller());
 mc.setUnmarshaller(castorMarshaller());
 List<MediaType> mediaTypes = new ArrayList<>();
 MediaType mt = new MediaType("application", "xml");
 mediaTypes.add(mt);
 mc.setSupportedMediaTypes(mediaTypes);
 return mc;
 }

 @Bean CastorMarshaller castorMarshaller() {
 CastorMarshaller castorMarshaller = new CastorMarshaller();
 castorMarshaller.setMappingLocation(ctx.getResource(
 "classpath:spring/oxm-mapping.xml"));
 return castorMarshaller;
 }
}

In the restTemplate bean, a constructor argument with a reference to the httpRequestFactory
bean is injected. For the httpRequestFactory bean, the HttpComponentsClientHttpRequestFactory
class is used, which is Spring’s support for the Apache HttpComponents HttpClient library, and we need
the library to construct an instance of CloseableHttpClient that stores the credentials for our client. To
support the injection of credentials, you create a simple bean of type UsernamePasswordCredentials. The
UsernamePasswordCredentials class is constructed with the prospring5 username and password. With the
httpRequestFactory constructed and injected into the RestTemplate, all RESTful requests fired using this
template will carry the credential provided. Now we can simply run the test methods in the RestClientTest
class again, and you will see that the services are invoked as usual.

Chapter 12 ■ Using Spring Remoting

602

RESTful-WS with Spring with Spring Boot
Because Spring Boot makes everything easier to develop, we needed to add a section about how Spring Boot
can make the development of a Spring RESTful service easier as well. The Singer entity, repository, and
service classes are the same as before; there’s no need to change anything. To make things simple and to
make use of as much of the default Spring Boot default configuration as possible, the XML serialization will
be removed as well. JSON serialization is supported by default. As the application is a web application, the
configuration is the same as for the Spring Boot web application introduced earlier, so we won’t go over it
again. The Application class and entry point for a Spring Boot application are as simple as shown here:

package com.apress.prospring5.ch12;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

import java.io.IOException;

@SpringBootApplication(scanBasePackages = "com.apress.prospring5.ch12")
public class Application {
 private static Logger logger = LoggerFactory.getLogger(Application.class);

 public static void main(String args) throws IOException {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 assert (ctx != null);
 logger.info("Application Started ...");

 System.in.read();
 ctx.close();
 }
}

And as promised earlier, here is the new and improved SingerController rewritten using
@RestController and HTTP method–specific mapping annotations introduced in Spring 4.3:

package com.apress.prospring5.ch12.controller;

import com.apress.prospring5.ch12.entities.Singer;
import com.apress.prospring5.ch12.services.SingerService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.*;

import java.util.List;

Chapter 12 ■ Using Spring Remoting

603

@RestController
@RequestMapping(value = "/singer")
public class SingerController {

 final Logger logger =
 LoggerFactory.getLogger(SingerController.class);

 @Autowired
 private SingerService singerService;

 @ResponseStatus(HttpStatus.OK)
 @GetMapping(value = "/listdata")
 public List<Singer> listData() {
 return singerService.findAll();
 }

 @ResponseStatus(HttpStatus.OK)
 @GetMapping(value = "/{id}")
 public Singer findSingerById(@PathVariable Long id) {
 return singerService.findById(id);
 }

 @ResponseStatus(HttpStatus.CREATED)
 @PostMapping(value="/")
 public Singer create(@RequestBody Singer singer) {
 logger.info("Creating singer: " + singer);
 singerService.save(singer);
 logger.info("Singer created successfully with info: " + singer);
 return singer;
 }

 @ResponseStatus(HttpStatus.OK)
 @PutMapping(value="/{id}")
 public void update(@RequestBody Singer singer,
 @PathVariable Long id) {
 logger.info("Updating singer: " + singer);
 singerService.save(singer);
 logger.info("Singer updated successfully with info: " + singer);
 }

 @ResponseStatus(HttpStatus.NO_CONTENT)
 @DeleteMapping(value="/{id}")
 public void delete(@PathVariable Long id) {
 logger.info("Deleting singer with id: " + id);
 Singer singer = singerService.findById(id);
 singerService.delete(singer);
 logger.info("Singer deleted successfully");
 }
}

Chapter 12 ■ Using Spring Remoting

604

Spring version 4.3 introduced some customization of the @RequestMapping annotations that match basic
HTTP methods. Table 12-4 lists the equivalence between the new annotations and old-style @RequestMapping.

Also, because we are using JSON, which supports lists and arrays, the class Singers is no longer needed.
Testing the application is simple because RestTemplate does not need any configuration. All that is

needed to create a RestTemplate instance by calling the default constructor. The test methods are the same
as before.

package com.apress.prosring5.ch12.test;

import com.apress.prospring5.ch12.entities.Singer;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.web.client.RestTemplate;

import java.util.Arrays;
import java.util.Date;
import java.util.GregorianCalendar;

import static org.junit.Assert.*;

public class RestClientTest {

 final Logger logger =
 LoggerFactory.getLogger(RestClientTest.class);

 private static final String URL_GET_ALL_SINGERS =
 "http://localhost:8080/singer/listdata";
 ...
 RestTemplate restTemplate;

 @Before
 public void setUp() {
 restTemplate = new RestTemplate();
 }

Table 12-4.  Annotations for Mapping HTTP Method Requests onto Specific Handler Methods
Introduced in Spring 4-3

Annotation Old-Style Equivalent

@GetMapping @RequestMapping(method = RequestMethod.GET)

@PostMapping @RequestMapping(method = RequestMethod.POST)

@PutMapping @RequestMapping(method = RequestMethod.PUT)

@DeleteMapping @RequestMapping(method = RequestMethod.DELETE)

Chapter 12 ■ Using Spring Remoting

605

 @Test
 public void testFindAll() {
 logger.info("--> Testing retrieve all singers");
 Singer singers = restTemplate.getForObject(
 URL_GET_ALL_SINGERS, Singer.class);
 assertTrue(singers.length == 3);
 listSingers(singers);
 }
 ...
}

Just run the Application class and then execute the test methods one by one.
And if you want to make sure that the application actually works and the singer instances are serialized

using the JSON format, you can use curl to test this Spring Boot application.

curl -v -H "Accept: application/json" http://localhost:8080/singer/listdata
* Trying ::1...
* Connected to localhost (::1) port 8080 (#0)
> GET /singer/listdata HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.43.0
> Accept: application/json
>
< HTTP/1.1 200
< Content-Type: application/json;charset=UTF-8
< Transfer-Encoding: chunked
< Date: Sun, 18 Jun 2017 11:14:17 GMT
<
* Connection #0 to host localhost left intact
[{"id":1,"version":1,"firstName":"John Clayton","lastName":"Mayer",
"birthDate":245797200000},{"id":2,"version":0,"firstName":"Eric",
"lastName":"Clapton","birthDate":-781326000000},{"id":4, "version":0,"firstName":"BB","last
Name":"King",
"birthDate":-924404400000}]

If the output troubles you, just keep in mind that without declaring an explicit JSON message converter,
the Date fields will be shown as numbers and the response won’t be formatted.

Using Spring Boot, you can also secure resources really easily, but this is a subject that will be covered
more in detail in Chapter 16.

Using AMQP in Spring
Remoting can also be accomplished by using remote procedure call (RPC) communication with Advanced
Message Queuing Protocol (AMQP) as a transport. AMQP is an open standard protocol for implementing
message-oriented middleware (MOM).

A JMS application works in any OS environment, but it supports only the Java platform. So, all
communicating applications must be developed in Java. The AMQP standard can be used to develop
applications in multiple languages that can easily communicate.

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 12 ■ Using Spring Remoting

606

Similar to using JMS, AMQP also uses a message broker to exchange messages through. In this
example, we use RabbitMQ10 as the AMQP server. Spring itself does not provide remoting capabilities in
the core framework. Instead, they are handled by a sister project called Spring AMQP,11 which we use as
the underlying communication API. The Spring AMQP project provides a base abstraction around AMQP
and an implementation for communicating with RabbitMQ. In this chapter, we won’t cover all of AMQP or
Spring AMQP’s features, just the remoting functionality via RPC communication.

The Spring AMQP project consists of two parts: spring-amqp is the base abstraction, and spring-
rabbit is the RabbitMQ implementation. The stable version of Spring AMQP at the time of writing is
2.0.0.M4.

First, you will need to obtain RabbitMQ from www.rabbitmq.com/download.html and start the
server. RabbitMQ will work fine out of box for our needs, and no configuration changes are needed. Once
RabbitMQ is running, the next thing we need to do is create a service interface. In this example, we create
a simple weather service that returns a forecast for the provided state code. Let’s get started by creating the
WeatherService interface shown here:

package com.apress.prospring5.ch12;

public interface WeatherService {
 String getForecast(String stateCode);
}

Next, let’s create an implementation of WeatherService that will simply reply with a weather forecast
for the provided state, or an unavailable message if no forecast is available, as shown here:

package com.apress.prospring5.ch12;
import org.springframework.stereotype.Component;

@Component
public class WeatherServiceImpl implements WeatherService {
 @Override
 public String getForecast(String stateCode) {
 if ("FL".equals(stateCode)) {
 return "Hot";
 } else if ("MA".equals(stateCode)) {
 return "Cold";
 }

 return "Not available at this time";
 }
}

With the weather service code in place, let’s build the configuration file (amqp-rpc-app-context.xml)
that will configure the AMQP connection and expose WeatherService, as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:rabbit="http://www.springframework.org/schema/rabbit"

10See www.rabbitmq.org.
11See http://projects.spring.io/spring-amqp.

http://www.rabbitmq.com/download.html
http://www.rabbitmq.org/
http://projects.spring.io/spring-amqp

Chapter 12 ■ Using Spring Remoting

607

 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/rabbit
 http://www.springframework.org/schema/rabbit/spring-rabbit.xsd">

 <rabbit:connection-factory id="connectionFactory" host="localhost" />

 <rabbit:template id="amqpTemplate" connection-factory="connectionFactory"
 reply-timeout="2000" routing-key="forecasts"
 exchange="weather" />

 <rabbit:admin connection-factory="connectionFactory" />

 <rabbit:queue name="forecasts" />

 <rabbit:direct-exchange name="weather">
 <rabbit:bindings>
 <rabbit:binding queue="forecasts" key="forecasts" />
 </rabbit:bindings>
 </rabbit:direct-exchange>

 <bean id="weatherServiceProxy"
 class="org.springframework.amqp.remoting.client.AmqpProxyFactoryBean">
 <property name="amqpTemplate" ref="amqpTemplate" />
 <property name="serviceInterface"
 value="com.apress.prospring5.ch12.WeatherService" />
 </bean>

 <rabbit:listener-container connection-factory="connectionFactory">
 <rabbit:listener ref="weatherServiceExporter" queue-names="forecasts" />
 </rabbit:listener-container>
 <bean id="weatherServiceExporter"
 class="org.springframework.amqp.remoting.service.AmqpInvokerServiceExporter">
 <property name="amqpTemplate" ref="amqpTemplate" />
 <property name="serviceInterface"
 value="com.apress.prospring5.ch12.WeatherService" />
 <property name="service">
 <bean class="com.apress.prospring5.ch12.WeatherServiceImpl"/>
 </property>
 </bean>
</beans>

We configure the RabbitMQ connection along with exchange and queue information. We then create
a bean by using the AmqpProxyFactoryBean class, which the client uses as a proxy to make an RPC request.
For the response, we use the AmqpInvokerServiceExporter class, which gets wired into a listener container.
The listener container is responsible for listening for AMQP messages and handing them off to the weather
service. As you can see, the configuration is similar to JMS in terms of connections, queues, listener
containers, and so on. While similar in configuration, JMS and AMQP are very different transports, and it’s
recommended that you visit the AMQP web site12 for full details on the protocol.

12See the AMQP web site at www.amqp.org.

http://www.amqp.org/

Chapter 12 ■ Using Spring Remoting

608

With the configuration in place, let’s create a sample class to execute RPC calls.

package com.apress.prospring5.ch12;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.support.GenericXmlApplicationContext;

public class AmqpRpcDemo {
 private static Logger logger = LoggerFactory.getLogger(AmqpRpcDemo.class);
 public static void main(String... args) {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/amqp-rpc-app-context.xml");
 ctx.refresh();

 WeatherService weatherService = ctx.getBean(WeatherService.class);
 logger.info("Forecast for FL: " + weatherService.getForecast("FL"));
 logger.info("Forecast for MA: " + weatherService.getForecast("MA"));
 logger.info("Forecast for CA: " + weatherService.getForecast("CA"));

 ctx.close();
 }
}

Now let’s run the sample, and you should get the following output:

INFO c.a.p.c.AmqpRpcDemo - Forecast for FL: Hot
INFO c.a.p.c.AmqpRpcDemo - Forecast for MA: Cold
INFO c.a.p.c.AmqpRpcDemo - Forecast for CA: Not available at this time

Of course, the XML configuration can be easily transformed into Java configuration classes. But a few
changes need to be made to the other involved classes as well. The WeatherServiceImpl doesn’t need to
implement an interface anymore as it will just declare a listener method, which will listen to messages
written on the forecasts queue.

package com.apress.prospring5.ch12;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Service;

@Service
public class WeatherServiceImpl {

 private static Logger logger =
 LoggerFactory.getLogger(WeatherServiceImpl.class);

 @RabbitListener(containerFactory="rabbitListenerContainerFactory",
 queues="forecasts")
 public void getForecast(String stateCode) {

Chapter 12 ■ Using Spring Remoting

609

 if ("FL".equals(stateCode)) {
 logger.info("Hot");
 } else if ("MA".equals(stateCode)) {
 logger.info("Cold");
 } else {
 logger.info("Not available at this time");
 }
 }
}

The rabbitListenerContainerFactory bean is of type RabbitListenerContainerFactory and is used
to create a regular SimpleMessageListenerContainer. But let’s see the full Java configuration.

package com.apress.prospring5.ch12.config;

import com.apress.prospring5.ch12.WeatherService;
import com.apress.prospring5.ch12.WeatherServiceImpl;
import org.springframework.amqp.core.*;
import org.springframework.amqp.rabbit.annotation.EnableRabbit;
import org.springframework.amqp.rabbit.config.SimpleRabbitListenerContainerFactory;
import org.springframework.amqp.rabbit.connection.CachingConnectionFactory;
import org.springframework.amqp.rabbit.core.RabbitAdmin;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.listener.SimpleMessageListenerContainer;
import org.springframework.amqp.remoting.client.AmqpProxyFactoryBean;
import org.springframework.amqp.remoting.service.AmqpInvokerServiceExporter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;

@Configuration
@ComponentScan("com.apress.prospring5.ch12")
@EnableRabbit
public class RabbitMQConfig {

 final static String queueName = "forecasts";
 final static String exchangeName = "weather";

 @Bean CachingConnectionFactory connectionFactory() {
 return new CachingConnectionFactory("127.0.0.1");
 }

 @Bean RabbitTemplate amqpTemplate() {
 RabbitTemplate rabbitTemplate = new RabbitTemplate();
 rabbitTemplate.setConnectionFactory(connectionFactory());
 rabbitTemplate.setReplyTimeout(2000); rabbitTemplate.setRoutingKey(queueName);
 rabbitTemplate.setExchange(exchangeName);
 return rabbitTemplate;
 }

Chapter 12 ■ Using Spring Remoting

610

 @Bean Queue forecasts() {
 return new Queue(queueName, true);
 }

 @Bean Binding dataBinding(DirectExchange directExchange, Queue queue) {
 return BindingBuilder.bind(queue).to(directExchange).with(queueName);
 }

 @Bean RabbitAdmin admin() {
 RabbitAdmin admin = new RabbitAdmin(connectionFactory());
 admin.declareQueue(forecasts());
 admin.declareBinding(dataBinding(weather(), forecasts()));
 return admin;
 }

 @Bean DirectExchange weather() {
 return new DirectExchange(exchangeName, true, false);
 }

 @Bean
 public SimpleRabbitListenerContainerFactory
 rabbitListenerContainerFactory() {
 SimpleRabbitListenerContainerFactory factory =
 new SimpleRabbitListenerContainerFactory();
 factory.setConnectionFactory(connectionFactory());
 factory.setMaxConcurrentConsumers(5);
 return factory;
 }

}

All beans in the previous configuration can be easily matched with their XML counterparts. The new element
is the @EnableRabbit annotation. When used on a class annotated with @Configuration, it enables Rabbit
listener annotated endpoints that are created behind the scenes by the RabbitListenerContainerFactory bean.

To test the new weather service, we also have to modify the test program, and amqpTemplate is used to
send messages to the forecasts queue, where WeatherServiceImpl.getForecast(...) will read them and
print out the forecast output.

package com.apress.prospring5.ch12;

import com.apress.prospring5.ch12.config.RabbitMQConfig;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

public class AmqpRpcDemo {

 public static void main(String... args) throws Exception {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(RabbitMQConfig.class);
 RabbitTemplate rabbitTemplate = ctx.getBean(RabbitTemplate.class);
 rabbitTemplate.convertAndSend("FL");

Chapter 12 ■ Using Spring Remoting

611

 rabbitTemplate.convertAndSend("MA");
 rabbitTemplate.convertAndSend("CA");

 System.in.read();
 ctx.close();
 }
}

If you run the previous program and the RabbitMQ server is up, you will see the following output:

[SimpleAsyncTaskExecutor-1] INFO c.a.p.c.WeatherServiceImpl - Hot
[SimpleAsyncTaskExecutor-1] INFO c.a.p.c.WeatherServiceImpl - Cold
[SimpleAsyncTaskExecutor-1] INFO c.a.p.c.WeatherServiceImpl - Not available at this time

Using AMQP with Spring Boot
Spring Boot helps you develop AMQP applications as well; its starter artifact spring-boot-starter-amqp if
just for that. The configuration is simplified much. You don’t need to define RabbitTemplate, RabbitAdmin,
and SimpleRabbitListenerContainerFactory beans anymore because these beans are automatically
configured and created by Spring Boot. The implementation of WeatherServiceImpl does not change much,
but as the SimpleRabbitListenerContainerFactory bean is handled by Spring Boot, there is no need to add
it as a value for the @RabbitListener annotation anymore.

package com.apress.prospring5.ch12;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Service;

@Service
public class WeatherServiceImpl {

 private static Logger logger =
 LoggerFactory.getLogger(WeatherServiceImpl.class);

 @RabbitListener(queues="forecasts")
 public void getForecast(String stateCode) {
 if ("FL".equals(stateCode)) {
 logger.info("Hot");
 } else if ("MA".equals(stateCode)) {
 logger.info("Cold");
 } else {
 logger.info("Not available at this time");
 }
 }
}

Chapter 12 ■ Using Spring Remoting

612

The Application class, annotated with @SpringBootApplication, is used as a configuration class and
runner class as well.

package com.apress.prospring5.ch12;

import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.connection.CachingConnectionFactory;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.listener.SimpleMessageListenerContainer;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class Application {
 final static String queueName = "forecasts";
 final static String exchangeName = "weather";

 @Bean Queue forecasts() {
 return new Queue(queueName, true);
 }

 @Bean DirectExchange weather() {
 return new DirectExchange(exchangeName, true, false);
 }

 @Bean Binding dataBinding(DirectExchange directExchange, Queue queue) {
 return BindingBuilder.bind(queue).to(directExchange).with(queueName);
 }

 @Bean CachingConnectionFactory connectionFactory() {
 return new CachingConnectionFactory("127.0.0.1");
 }

 @Bean
 SimpleMessageListenerContainer messageListenerContainer() {
 SimpleMessageListenerContainer container =
 new SimpleMessageListenerContainer();
 container.setConnectionFactory(connectionFactory());
 container.setQueueNames(queueName);
 return container;
 }

 public static void main(String... args) throws java.lang.Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);

Chapter 12 ■ Using Spring Remoting

613

 RabbitTemplate rabbitTemplate = ctx.getBean(RabbitTemplate.class);
 rabbitTemplate.convertAndSend(Application.queueName, "FL");
 rabbitTemplate.convertAndSend(Application.queueName, "MA");
 rabbitTemplate.convertAndSend(Application.queueName, "CA");

 System.in.read();
 ctx.close();
 }
}

As you can see, the @EnableRabbit annotation is not needed either, and although the configuration is
not reduced by much, it’s still an improvement. If you run the previous class, you will get a similar result, as
you have seen in the previous examples.

DEBUG c.a.p.c.Application - Running with Spring Boot v2.0.0.M1, Spring v5.0.0.RC1
INFO c.a.p.c.Application - No active profile set, falling back to default profiles: default
INFO c.a.p.c.Application - Started Application in 2.211 seconds JVM running for 2.801
[SimpleAsyncTaskExecutor-1] INFO c.a.p.c.WeatherServiceImpl - Cold
[SimpleAsyncTaskExecutor-1] INFO c.a.p.c.WeatherServiceImpl - Hot
[SimpleAsyncTaskExecutor-1] INFO c.a.p.c.WeatherServiceImpl - Not available at this time

Summary
In this chapter, we covered the most commonly used remoting techniques in Spring-based applications.

If both applications are built with Spring, then using the Spring HTTP invoker is a viable option. If an
asynchronous mode or loosely coupled mode of integration is required, JMS is a commonly used approach.
We discussed how to use RESTful-WS in Spring for exposing services or accessing services with the
RestTemplate class. Finally, we discussed how to use Spring AMQP for RPC-style remoting via RabbitMQ.

Spring Boot for each of the technologies, remote, REST, JMS, etc was covered, as is always something
you should look for.

In the next chapter, we discuss using Spring for testing applications; it’s about time that we elaborated
on some test techniques to make your life easier.

615© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_13

CHAPTER 13

Spring Testing

When developing applications for enterprise use, testing is an important way to ensure that the completed
application performs as expected and fulfills all kinds of requirements (architectural, security, user
requirements, and so on). Every time a change is made, you should ensure that the changes that were
introduced don’t impact the existing logic. Maintaining an ongoing build and test environment is critical
for ensuring high-quality applications. Reproducible tests with high coverage for all your code allow you
to deploy new applications and changes to applications with a high level of confidence. In an enterprise
development environment, there are many kinds of testing that target each layer within an enterprise
application, and each kind of testing has its own characteristics and requirements. In this chapter, we
discuss the basic concepts involved in the testing of various application layers, especially in the testing of
Spring-powered applications. We also cover the ways in which Spring makes implementing the test cases of
various layers easier for developers. Specifically, this chapter covers the following topics:

•	 Enterprise testing framework: We briefly describe an enterprise-testing framework.
We discuss various kinds of testing and their purposes. We focus on unit testing,
targeting various application layers.

•	 Logic unit test: The finest unit test is to test only the logic of the methods within a
class, with all other dependencies being “mocked” with the correct behavior. In this
chapter, we discuss the implementation of logic unit testing for the Spring MVC
controller classes, with the help of a Java mock library to perform the mocking of a
class’s dependencies.

•	 Integration unit test: In an enterprise-testing framework, integration testing refers
to testing the interaction of a group of classes within different application layers for
a specific piece of business logic. Typically, in an integration-testing environment,
the service layer should test with the persistence layer, with the back-end database
available. However, as application architecture evolves and the maturity of
lightweight in-memory databases evolves, it’s now a common practice to “unit test”
the service layer with the persistence layer and back-end database as a whole. For
example, in this chapter, we use JPA 2, with Hibernate and Spring Data JPA as the
persistence provider and with H2 as the database. In this architecture, it’s of less
importance to “mock” Hibernate and Spring Data JPA when testing the service layer.
As a result, in this chapter, we discuss testing of the service layer together with the
persistence layer and the H2 in-memory database. This kind of testing is generally
referred to as integration unit testing, which sits in the middle of unit testing and full-
blown integration testing.

https://doi.org/10.1007/978-1-4842-2808-1_13

Chapter 13 ■ Spring Testing

616

•	 Front-end unit test: Even if you test every layer of the application, after the
application is deployed, you still need to ensure that the entire application works
as expected. More specifically, for a web application, upon deployment to the
continuous build environment, you should run front-end testing to ensure that
the user interface is working properly. For example, for a singer application, you
should ensure that each step of the normal functionality works properly, and you
also should test exceptional cases (for example, how the application functions when
information doesn’t pass the validation phase). In this chapter, we briefly discuss a
front-end testing framework.

Introducing Testing Categories
An enterprise testing framework refers to testing activities in the entire application’s life cycle. In various
phases, different testing activities are performed to verify that the functionalities of the application are
working as expected, according to the defined business and technical requirements.

In each phase, different test cases are executed. Some are automated, while others are performed
manually. In each case, the result is verified by the corresponding personnel (for example, business analysts,
application users, and so on). Table 13-1 describes the characteristics and objectives of each type of testing,
as well as common tools and libraries that are used for implementing the test cases.

Table 13-1.  Different Testing Categories Used in Practice

Test Category Description Common Tools

Logic unit test A logic unit test takes a single object and tests it by
itself, without worrying about the role it plays in the
surrounding system.

Unit test: JUnit, TestNG
Mock objects: Mockito,
EasyMock

Integration unit test An integration unit test focuses on testing the
interaction between components in a “near real”
environment. These tests will exercise the interactions
with the container (embedded database, web container,
and so on).

Embedded database: H2
Database testing: DbUnit
In-memory web
container: Jetty

Front-end unit test A front-end unit test focuses on testing the user
interface. The objective is to ensure that each user
interface reacts to users’ actions and produces output to
users as expected.

Selenium

Continuous build
and code quality test

The application code base should be built on a regular
basis to ensure that the code quality complies with
the standard (for example, comments are all in place,
no empty exception catch block, and so on). Also, test
coverage should be as high as possible to ensure that all
developed lines of codes are tested.

Code quality: PMD,
Check-style, FindBugs,
Sonar
Test coverage: Cobertura,
EclEmma
Build tool: Gradle, Maven
Continuous build:
Hudson, Jenkins

(continued)

Chapter 13 ■ Spring Testing

617

Test Category Description Common Tools

System integration
test

A system integration test verifies the accuracy of
communication among all programs in the new system
and between the new system and all external interfaces.
The integration test must also prove that the new system
performs according to the functional specifications
and functions effectively in the operating environment
without adversely affecting other systems.

IBM Rational Functional
Tester, HP Unified
Functional Testing

System quality test A system quality test is to ensure that the developed
application meets those nonfunctional requirements.
Most of the time, this tests the performance of the
application to ensure that the target requirements for
concurrent users of the system and workload are met.
Other nonfunctional requirements include security,
high-availability features, and so on.

Apache JMeter, HP
LoadRunner

User acceptance test A user acceptance test simulates the actual working
conditions of the new system, including the user
manuals and procedures. Extensive user involvement
in this stage of testing provides the user with invaluable
training in operating the new system. It also benefits the
programmer or designer to see the user experience with
the new programs. This joint involvement encourages
the user and operations personnel to approve the
system conversion.

IBM Rational
TestManager, HP Quality
Center

Table 13-1.  (continued)

In this chapter, we focus on the implementation of the three kinds of unit test (logic unit test, integration
unit test, and front-end unit test) and show how the Spring TestContext framework and other supporting
tools and libraries can help in developing those test cases.

Instead of presenting the full details and list of classes that the Spring Framework provides in the testing
area, we cover the most commonly used patterns and the supporting interfaces and classes within the Spring
TestContext framework as we show how to implement the sample test cases in this chapter.

Using Spring Test Annotations
Before moving on to logic and integration tests, it’s worth noting that Spring provides testing-specific
annotations in addition to the standard annotations (such as @Autowired and @Resource). These
annotations can be used in your logic and unit tests, providing various functionality such as simplified
context file loading, profiles, test execution timing, and much more. Table 13-2 outlines the annotations and
their uses.

Chapter 13 ■ Spring Testing

618

Table 13-2.  Description of Enterprise Testing Framework

Annotation Description

@ContextConfiguration Class-level annotation used to determine how to load and configure an
ApplicationContext for integration tests.

@WebAppConfiguration Class-level annotation used to indicate the ApplicationContext loaded
should be a WebApplicationContext.

@ContextHierarchy Class-level annotation indicating which bean profile should be active.

@DirtiesContext Class and method-level annotation used to indicate that the context has
been modified or corrupted in some way during the execution of the
test and should be closed and rebuilt for subsequent tests.

@TestExecutionListeners Class-level annotation for configuring TestExecutionListeners that
should be registered with the TestContextManager.

@TransactionConfiguration Class-level annotation used to indicate transaction configuration
such as rollback settings and a transaction manager (if your
desired transaction manager does not have a bean name of
transactionManager).

@Rollback Class and method-level annotation used to indicate whether the
transaction should be rolled back for the annotated test method.
Class-level annotations are used for testing class default settings.

@BeforeTransaction Method-level annotation indicating that the annotated method should
be called before a transaction is started for test methods marked with
the @Transactional annotation.

@AfterTransaction Method-level annotation indicating that the annotated method should
be called after a transaction has ended for test methods marked with
the @Transactional annotation.

@IfProfileValue Class-and method-level annotation used to indicate that the test
method should be enabled for a specific set of environmental
conditions.

@ProfileValueSource
Configuration

Class-level annotation used to specify the ProfileValueSource used
by @IfProfileValue. If this annotation is not declared on the test,
SystemProfileValueSource is used as the default.

@Timed Method-level annotation used to indicate that the test must finish in the
specified time period.

@Repeat Method-level annotation used to indicate that the annotated test
method should be repeated the specified number of times.

Implementing Logic Unit Tests
As previously discussed, a logic unit test is the finest level of testing. The objective is to verify the behavior of
an individual class, with all the class’s dependencies being “mocked” with expected behavior. In this section,
we demonstrate a logic unit test by implementing the test cases for the SingerController class, with the
service layer being mocked with expected behavior. To help mock the behavior of the service layer, we will
show how to use Mockito (http://site.mockito.org/), which is a popular mocking framework.

http://site.mockito.org/

Chapter 13 ■ Spring Testing

619

The Spring Framework provides first-class support for integration testing in the spring-test module.
To provide a test context for the integration tests that will be created for this section, you will use the
spring-test.jar library. This library contains valuable classes for integration testing with a Spring container.

Adding Required Dependencies
First we need to add the dependencies into the project, as shown in the following configuration sample.
We will also be building upon classes and interfaces created in prior chapters such as Singer, SingerService,
and so on.

\\pro-spring-15\build.gradle
ext {
 //spring libs
 springVersion = '5.0.0.RC1'
 bootVersion = '2.0.0.M1'

 //testing libs
 mockitoVersion = '2.0.2-beta'
 junitVersion = '4.12'
 hamcrestVersion = '1.3'
 dbunitVersion = '2.5.3'
 poiVersion = '3.16'
 junit5Version = '5.0.0-M4'

 spring = [
 test : "org.springframework:spring-test:$springVersion",
 ...
]

 boot = [
 starterTest :
 "org.springframework.boot:spring-boot-starter-test:$bootVersion",
 ...
]

 testing = [
 junit : "junit:junit:$junitVersion",
 junit5 : "org.junit.jupiter:junit-jupiter-engine:$junit5Version",
 junitJupiter: "org.junit.jupiter:junit-jupiter-api:$junit5Version",
 mockito : "org.mockito:mockito-all:$mockitoVersion",
 easymock : "org.easymock:easymock:3.4",
 jmock : "org.jmock:jmock:2.8.2",
 hamcrestCore: "org.hamcrest:hamcrest-core:$hamcrestVersion",
 hamcrestLib : "org.hamcrest:hamcrest-library:$hamcrestVersion",
 dbunit : "org.dbunit:dbunit:$dbunitVersion"
]
 misc = [
 ...
 poi : "org.apache.poi:poi:$poiVersion"
]
 ...
}

Chapter 13 ■ Spring Testing

620

Unit Testing Spring MVC Controllers
In the presentation layer, controller classes provide the integration between the user interface and the
service layer.

Methods in controller classes will be mapped to the HTTP requests. Within the method, the request
will be processed, will bind to model objects, and will interact with the service layer (which was injected
into the controller classes via Spring’s DI) to process the data. Upon completion, depending on the result,
the controller class will update the model and the view state (for example, user messages, objects for REST
services, and so on) and return the logical view (or the model with the view together) for Spring MVC to
resolve the view to be displayed to the user.

For unit testing controller classes, the main objective is to make sure that the controller methods update
the model and other view states properly and return the correct view. As we want to test only the controller
classes’ behavior, we need to “mock” the service layer with the correct behavior.

For the SingerController class, we would like to develop the test cases for the listData() and
create(Singer) methods. In the following sections, we discuss the steps for this.

Testing the listData() Method
Let’s create the first test case for the singerController.listData() method. In this test case, we want to
make sure that when the method is called, after the list of singers is retrieved from the service layer, the
information is saved correctly into the model, and the correct objects are returned. The following code
snippet shows the test case:

package com.apress.prospring5.ch13;

import static org.junit.Assert.assertEquals;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;

import java.util.ArrayList;
import java.util.List;

import com.apress.prospring5.ch13.entities.Singer;
import com.apress.prospring5.ch13.entities.Singers;
import org.junit.Before;
import org.junit.Test;

import org.mockito.invocation.InvocationOnMock;
import org.mockito.stubbing.Answer;

import org.springframework.test.util.ReflectionTestUtils;
import org.springframework.ui.ExtendedModelMap;

public class SingerControllerTest {
 private final List<Singer> singers = new ArrayList<>();

 @Before
 public void initSingers() {
 Singer singer = new Singer();
 singer.setId(1l);
 singer.setFirstName("John");

Chapter 13 ■ Spring Testing

621

 singer.setLastName("Mayer");
 singers.add(singer);
 }

 @Test
 public void testList() throws Exception {
 SingerService singerService = mock(SingerService.class);
 when(singerService.findAll()).thenReturn(singers);

 SingerController singerController = new SingerController();

 ReflectionTestUtils.setField(singerController,
 "singerService", singerService);

 ExtendedModelMap uiModel = new ExtendedModelMap();
 uiModel.addAttribute("singers", singerController.listData());

 Singers modelSingers = (Singers) uiModel.get("singers");

 assertEquals(1, modelSingers.getSingers().size());
 }
}

First, the test case calls the initSingers() method, which is applied with the @Before annotation,
which indicates to JUnit that the method should be run before running each test case (if you want to run
some logic before the entire test class, use the @BeforeClass annotation). In the method, a list of singers is
initialized with hard-coded information.

Second, the testList() method is applied with the @Test annotation, which indicates to JUnit that
it’s a test case that JUnit should run. Within the test case, the private variable singerService (of type
SingerService) is mocked by using Mockito’s Mockito.mock() method (note the import static statement).
The when() method is also provided by Mockito to mock the SingerService.findAll() method, which will
be used by the SingerController class.

Third, an instance of the SingerController class is created, and then its singerService variable, which
will be injected by Spring in normal situations, is set with the mocked instance by using the Spring-provided
ReflectionTestUtils class’s setField() method. ReflectionTestUtils provides a collection of reflection-
based utility methods for use in unit and integration testing scenarios. In addition, an instance of the
ExtendedModelMap class (which implements the org.springframework.ui.Model interface) is constructed.

Next, the SingerController.listData() method is called. Upon invocation, the result is verified by
calling the various assert methods (provided by JUnit) to ensure that the list of singer information is saved
correctly in the model used by the view.

Now we can run the test case, and it should run successfully. You can verify this via your build system or
IDE. We can now proceed with the create() method.

Testing the create() Method
The following code snippet shows the code snippet for testing the create() method:

package com.apress.prospring5.ch13;

import static org.junit.Assert.assertEquals;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;

Chapter 13 ■ Spring Testing

622

import java.util.ArrayList;
import java.util.List;

import com.apress.prospring5.ch13.entities.Singer;
import com.apress.prospring5.ch13.entities.Singers;
import org.junit.Before;
import org.junit.Test;

import org.mockito.invocation.InvocationOnMock;
import org.mockito.stubbing.Answer;

import org.springframework.test.util.ReflectionTestUtils;
import org.springframework.ui.ExtendedModelMap;

public class SingerControllerTest {
 private final List<Singer> singers = new ArrayList<>();

 @Test
 public void testCreate() {
 final Singer newSinger = new Singer();
 newSinger.setId(999l);
 newSinger.setFirstName("BB");
 newSinger.setLastName("King");

 SingerService singerService = mock(SingerService.class);
 when(singerService.save(newSinger)).thenAnswer(new Answer<Singer>() {
 public Singer answer(InvocationOnMock invocation) throws Throwable {
 singers.add(newSinger);
 return newSinger;
 }
 });

 SingerController singerController = new SingerController();
 ReflectionTestUtils.setField(singerController, "singerService",
 singerService);

 Singer singer = singerController.create(newSinger);
 assertEquals(Long.valueOf(999l), singer.getId());
 assertEquals("BB", singer.getFirstName());
 assertEquals("King", singer.getLastName());

 assertEquals(2, singers.size());
 }
}

The SingerService.save() method is mocked to simulate the addition of a new Singer object in the
list of singers. Note the use of the org.mockito.stubbing.Answer<T> interface, which mocks the method
with the expected logic and returns a value.

Then, the SingerController.create() method is called, and assert operations are invoked to verify the
result. Run the result again, and note the test case results. For the create() method, we should create more
test cases to test various scenarios. For example, we need to test when data access errors are encountered
during the save operation.

Chapter 13 ■ Spring Testing

623

Everything that was covered until now can be done with JMock (www.jmock.org/), and a version of the
SingerControllerTest class using this library is part of the code sample for this section. We won’t cover this
here because the idea of mocking dependencies is the focus, not the library that this can be done with.1

Implementing an Integration Test
In this section, we will implement the integration test for the service layer. In the singer application, the core
service is the class SingerServiceImpl, which is the JPA implementation of the SingerService interface.

When unit testing the service layer, you will use the H2 in-memory database to host the data model and
testing data, with the JPA providers (Hibernate and Spring Data JPA’s repository abstraction) in place. The
objective is to ensure that the SingerServiceImpl class is performing the business functions correctly.

In the following sections, we show how to test some of the finder methods and the save operation of the
SingerServiceImpl class.

Adding Required Dependencies
For implementing test cases with the database in place, we need a library that can help populate the desired
testing data in the database before executing the test case and that can perform the necessary database
operations easily. Moreover, to make it easier to prepare the test data, we will support the preparation of test
data in Microsoft Excel format.

To fulfill these purposes, additional libraries are required. On the database side, DbUnit
(http://dbunit.sourceforge.net) is a common library that can help implement database-related testing.
In addition, the Apache POI (http://poi.apache.org) project’s library will be used to help parse the test
data that was prepared in Microsoft Excel.

Configuring the Profile for Service-Layer Testing
The bean definition profiles feature introduced in Spring 3.1 is useful for implementing a test case with the
appropriate configuration of the testing components. To facilitate the testing of the service layer, we will also
use the profile feature for the ApplicationContext configuration. For the Singer application, we would like
to have two profiles, as follows:

•	 Development profile (dev): Profile with configuration for the development
environment. For example, in the development system, the back-end H2 database
will have both the database creation and the initial data population scripts executed.

•	 Testing profile (test): Profile with configuration for the testing environment. For
example, in the testing environment, the back-end H2 database will have only the
database creation script executed, while the data will be populated by the test case.

Let’s configure the profile environment for the singer application. For the singer application, the back-
end configuration (that is, data source, JPA, transaction, and so on) was defined in the configuration XML file
datasource-tx-jpa.xml. We would like to configure the data source in the file for the dev profile only.

1Another alternative is EasyMock: http://easymock.org/.

http://www.jmock.org/
http://dbunit.sourceforge.net/
http://poi.apache.org/
http://easymock.org/

Chapter 13 ■ Spring Testing

624

To do this, we need to wrap the data source bean with the profile configuration. The following configuration
snippet shows the change required:

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>

 <bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="emf"/>
 </bean>

 <tx:annotation-driven transaction-manager="transactionManager" />

 <bean id="emf"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="jpaVendorAdapter">
 <bean class=
 "org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter" />
 </property>
 <property name="packagesToScan" value="com.apress.prospring5.ch13"/>
 <property name="jpaProperties">
 <props>
 <prop key="hibernate.dialect">org.hibernate.dialect.H2Dialect</prop>
 <prop key="hibernate.max_fetch_depth">3</prop>
 <prop key="hibernate.jdbc.fetch_size">50</prop>
 <prop key="hibernate.jdbc.batch_size">10</prop>
 <prop key="hibernate.show_sql">true</prop>
 </props>
 </property>
 </bean>

 <context:annotation-config/>

 <jpa:repositories base-package="com.apress.prospring5.ch13"
 entity-manager-factory-ref="emf"
 transaction-manager-ref="transactionManager"/>
 <beans profile="dev">
 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:config/schema.sql"/>
 <jdbc:script location="classpath:config/test-data.sql"/>
 </jdbc:embedded-database>
 </beans>
</beans>

As shown in the configuration snippet, the dataSource bean is wrapped with the <beans> tag and
given the profile attribute with the value dev, which indicates that the data source is applicable only for the
development system. Remember, profiles can be activated by, for example, passing -Dspring.profiles.
active=dev to the JVM as a system parameter.

Chapter 13 ■ Spring Testing

625

Java Configuration Version
Starting with the introduction of Java configuration classes, XML is slowly losing ground. Because of
that, the focus of this book is the usage of Java configuration classes; XML configuration is covered just to
show the evolution of Spring configuration over time. The XML configuration shown previously can be
split in two: one to cover the data source configuration, which will be profile specific, and a transaction
configuration, which is common for development and test configuration. The two classes are depicted next.
One improvement added in the Java configuration is the “automagical” generation of the database schema,
which was done by setting the Hibernate property hibernate.hbm2ddl.auto to create-drop.

//DataConfig.java
package com.apress.prospring5.ch13.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Profile;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

import javax.sql.DataSource;

@Profile("dev")
@Configuration
@ComponentScan(basePackages = {"com.apress.prospring5.ch13.init"})
public class DataConfig {

 private static Logger logger = LoggerFactory.getLogger(DataConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2).build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

}

//ServiceConfig.class
package com.apress.prospring5.ch13.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.orm.jpa.JpaTransactionManager;

Chapter 13 ■ Spring Testing

626

import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch13.repos"})
@ComponentScan(basePackages = {"com.apress.prospring5.ch13.entities",
 "com.apress.prospring5.ch13.services"})
public class ServiceConfig {

 @Autowired
 DataSource dataSource;

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect",
 "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch13.entities");
 factoryBean.setDataSource(dataSource);
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }
}

Chapter 13 ■ Spring Testing

627

Implementing the Infrastructure Classes
Before implementing the individual test case, we need to implement some classes to support the population
of test data in the Excel file. Moreover, to ease the development of the test case, we want to introduce a
custom annotation called @DataSets, which accepts the Excel file name as the argument. We will develop
a custom test execution listener (a feature supported by the Spring testing framework) to check for the
existence of the annotation and load the data accordingly.

Implementing Custom TestExecutionListener
In the spring-test module, the org.springframework.test.context.TestExecutionListener interface
defines a listener API that can intercept the events in the various phases of the test case execution (for example,
before and after the class under test, before and after the method under test, and so on). In testing the service
layer, we will implement a custom listener for the newly introduced @DataSets annotation. The objective
is to support the population of test data with a simple annotation on the test case. For example, to test the
SingerService.findAll() method, we would like to have the code look like the following code snippet:

@DataSets(setUpDataSet= "/com/apress/prospring5/ch13/SingerServiceImplTest.xls")
@Test
public void testFindAll() throws Exception {
 List<Singer> result = singerService.findAll();
 ...
}

The application of the @DataSets annotation to the test case indicates that before running the test,
testing data needs to be loaded into the database from the specified Excel file. First we need to define the
custom annotation, which is shown here:

package com.apress.prospring5.ch13;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)

public @interface DataSets {
 String setUpDataSet() default "";
}

The custom annotation @DataSets is a method-level annotation. In addition, implementing the
TestExecutionListener interface, which is shown in the following code snippet, will develop the custom
test listener class:

package com.apress.prospring5.ch13;

import org.dbunit.IDatabaseTester;
import org.dbunit.dataset.IDataSet;
import org.dbunit.util.fileloader.XlsDataFileLoader;

Chapter 13 ■ Spring Testing

628

import org.springframework.test.context.TestContext;
import org.springframework.test.context.TestExecutionListener;

public class ServiceTestExecutionListener implements
 TestExecutionListener {
 private IDatabaseTester databaseTester;

 @Override
 public void afterTestClass(TestContext arg0) throws Exception {
 }

 @Override
 public void afterTestMethod(TestContext arg0) throws Exception {
 if (databaseTester != null) {
 databaseTester.onTearDown();
 }
 }

 @Override
 public void beforeTestClass(TestContext arg0) throws Exception {
 }

 @Override
 public void beforeTestMethod(TestContext testCtx) throws Exception {
 DataSets dataSetAnnotation = testCtx.getTestMethod()
 .getAnnotation(DataSets.class);

 if (dataSetAnnotation == null) {
 return;
 }

 String dataSetName = dataSetAnnotation.setUpDataSet();

 if (!dataSetName.equals("")) {
 databaseTester = (IDatabaseTester)
 testCtx.getApplicationContext().getBean("databaseTester");
 XlsDataFileLoader xlsDataFileLoader = (XlsDataFileLoader)
 testCtx.getApplicationContext().getBean("xlsDataFileLoader");
 IDataSet dataSet = xlsDataFileLoader.load(dataSetName);

 databaseTester.setDataSet(dataSet);
 databaseTester.onSetup();
 }
 }

 @Override
 public void prepareTestInstance(TestContext arg0) throws Exception {
 }
}

Chapter 13 ■ Spring Testing

629

After implementing the TestExecutionListener interface, a number of methods need to be
implemented. However, in this case, we are interested only in the methods beforeTestMethod() and
afterTestMethod(), in which the population and cleanup of the testing data before and after the execution
of each test method will be performed. Note that within each method, Spring will pass in an instance of the
TestContext class so the method can access the underlying testing ApplicationContext bootstrapped by
the Spring Framework.

The method beforeTestMethod() is of particular interest. First, it checks for the existence of the
@DataSets annotation for the test method. If the annotation exists, the test data will be loaded from the
specified Excel file. In this case, the IDatabaseTester interface (with the implementation class
org.dbunit.DataSourceDatabaseTester, which we will discuss later) is obtained from TestContext.
The IDatabaseTester interface is provided by DbUnit and supports database operations based on a given
database connection or data source.

Second, an instance of the XlsDataFileLoader class is obtained from TestContext. The
XlsDataFileLoader class is DbUnit’s support of loading data from the Excel file. It uses the Apache POI
library behind the scenes for reading files in Microsoft Office format. Then, the XlsDataFileLoader.load()
method is called to load the data from the file, which returns an instance of the IDataSet interface,
representing the set of data loaded.

Finally, the IDatabaseTester.setDataSet() method is called to set the testing data, and the
IDatabaseTester.onSetup() method is called to trigger the population of data.

In the afterTestMethod() method, the IDatabaseTester.onTearDown() method is called to clean up
the data.

Implementing the Configuration Class
Let’s proceed to implement the configuration class for the testing environment. The following code snippet
shows the code using Java Config–style configuration:

package com.apress.prospring5.ch13.config;

import javax.sql.DataSource;

import com.apress.prospring5.ch13.init.DBInitializer;
import org.dbunit.DataSourceDatabaseTester;
import org.dbunit.util.fileloader.XlsDataFileLoader;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.*;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

@Configuration
@ComponentScan(basePackages={"com.apress.prospring5.ch13"},
 excludeFilters = {@ComponentScan.Filter(type = FilterType.ASSIGNABLE_TYPE,
 value = DBInitializer.class)
})
@Profile("test")
public class ServiceTestConfig {
 private static Logger logger = LoggerFactory.getLogger(ServiceTestConfig.class);

Chapter 13 ■ Spring Testing

630

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2).build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

 @Bean(name="databaseTester")
 public DataSourceDatabaseTester dataSourceDatabaseTester() {
 DataSourceDatabaseTester databaseTester =
 new DataSourceDatabaseTester(dataSource());
 return databaseTester;
 }

 @Bean(name="xlsDataFileLoader")
 public XlsDataFileLoader xlsDataFileLoader() {
 return new XlsDataFileLoader();
 }
}

The ServiceTestConfig class defines the ApplicationContext implementation for service-layer
testing. The @ComponentScan annotation is applied to instruct Spring to scan the service-layer beans that we
want to test.

The excludeFilters attribute is used to make sure the test database is not being initialized with the
development entries.

The @Profile annotation specifies that the beans defined in this class belong to the test profile.
Second, within the class, another dataSource bean is declared that executes only the schema.sql script

to the H2 database without any data. The custom test execution listener for loading test data from the Excel
file used the databaseTester and xlsDataFileLoader beans. Note that the dataSourceDatabaseTester
bean was constructed using the dataSource bean defined for the testing environment.

Unit Testing the Service Layer
Let’s begin with unit testing the finder methods, including the SingerService.findAll() and
SingerService.findByFirstNameAndLastName() methods. First we need to prepare the testing data in Excel
format. A common practice is to put the file into the same folder as the test case class, with the same name.
So, in this case, the file name is /src/test/java/com/apress/prospring5/ch13/SingerServiceImplTest.
xls.

The testing data is prepared in a worksheet. The worksheet’s name is the table’s name (SINGER), while
the first row is the column names within the table. Starting with the second row, data is entered for the first
and last names along with the birth date. We specify the ID column, but not a value. This is because the ID
will be populated by the database. See the book source code for an example Excel file.

Chapter 13 ■ Spring Testing

631

The following code snippet shows the test class with test cases for the two finder methods:

package com.apress.prospring5.ch13;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertNull;

import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.validation.ConstraintViolationException;

import com.apress.prospring5.ch13.entities.Singer;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ActiveProfiles;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.TestExecutionListeners;
import org.springframework.test.context.junit4.
 AbstractTransactionalJUnit4SpringContextTests;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {ServiceTestConfig.class, ServiceConfig.class,
DataConfig.class})
@TestExecutionListeners({ServiceTestExecutionListener.class})
@ActiveProfiles("test")
public class SingerServiceImplTest extends
 AbstractTransactionalJUnit4SpringContextTests {
 @Autowired
 SingerService singerService;

 @PersistenceContext
 private EntityManager em;

 @DataSets(setUpDataSet= "/com/apress/prospring5/ch13/SingerServiceImplTest.xls")
 @Test
 public void testFindAll() throws Exception {
 List<Singer> result = singerService.findAll();

 assertNotNull(result);
 assertEquals(1, result.size());
 }

 @DataSets(setUpDataSet= "/com/apress/prospring5/ch13/SingerServiceImplTest.xls")
 @Test
 public void testFindByFirstNameAndLastName_1() throws Exception {
 Singer result = singerService.findByFirstNameAndLastName("John", "Mayer");
 assertNotNull(result);
 }

Chapter 13 ■ Spring Testing

632

 @DataSets(setUpDataSet= "/com/apress/prospring5/ch13/SingerServiceImplTest.xls")
 @Test
 public void testFindByFirstNameAndLastName_2() throws Exception {
 Singer result = singerService.findByFirstNameAndLastName("BB", "King");
 assertNull(result);
 }
}

The @RunWith annotation is the same as when testing the controller class. The @ContextConfiguration
annotation specifies that the ApplicationContext configuration should be loaded from the
ServiceTestConfig, ServiceConfig, and DataConfig classes. The DataConfig class should have not been
there, but it was used, just to make it obvious that Spring profiles actually work. The @TestExecutionListeners
annotation indicates that the ServiceTestExecutionListener class should be used for intercepting the test
case execution life cycle. The @ActiveProfiles annotation specifies the profile to use. So, in this case, the
dataSource bean defined in the ServiceTestConfig class will be loaded, instead of the one defined in the
datasource-tx-jpa.xml file, since it belongs to the dev profile.

In addition, the class extends Spring’s AbstractTransactionalJUnit4SpringContextTests class, which
is Spring’s support for JUnit, with Spring’s DI and transaction management mechanism in place. Note that
in Spring’s testing environment, Spring will roll back the transaction upon execution of each test method so
that all database update operations will be rolled back. To control the rollback behavior, you can use the
@Rollback annotation at the method level.

There is one test case for the findAll() method and two test cases for the
testFindByFirstNameAndLastName() method (one retrieves a result and one doesn’t). All the finder
methods are applied with the @DataSets annotation with the Singer test data file in Excel. In addition, the
SingerService is autowired into the test case from ApplicationContext. The rest of the code should be
self-explanatory. Various assert statements are applied in each test case to make sure that the result is as
expected.

Run the test case and ensure that it passes. Next, let’s test the save operation. In this case, we would to
test two scenarios. One is the normal situation in which a valid Singer is saved successfully, and the other is
a Singer error that should cause the correct exception to be thrown. The following code snippet shows the
additional snippet for the two test cases:

package com.apress.prospring5.ch13;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertNull;
import java.util.List;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.validation.ConstraintViolationException;
import com.apress.prospring5.ch13.entities.Singer;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ActiveProfiles;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.TestExecutionListeners;
import org.springframework.test.context.junit4.
 AbstractTransactionalJUnit4SpringContextTests;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

Chapter 13 ■ Spring Testing

633

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {ServiceTestConfig.class, ServiceConfig.class,
 DataConfig.class})
@TestExecutionListeners({ServiceTestExecutionListener.class})
@ActiveProfiles("test")
public class SingerServiceImplTest extends
 AbstractTransactionalJUnit4SpringContextTests {
 @Autowired
 SingerService singerService;

 @PersistenceContext
 private EntityManager em;

 @Test
 public void testAddSinger() throws Exception {
 deleteFromTables("SINGER");

 Singer singer = new Singer();
 singer.setFirstName("Stevie");
 singer.setLastName("Vaughan ");

 singerService.save(singer);
 em.flush();

 List<Singer> singers = singerService.findAll();
 assertEquals(1, singers.size());
 }

 @Test(expected=ConstraintViolationException.class)
 public void testAddSingerWithJSR349Error() throws Exception {
 deleteFromTables("SINGER");

 Singer singer = new Singer();
 singerService.save(singer);
 em.flush();

 List<Singer> singers = singerService.findAll();
 assertEquals(0, singers.size());
 }
}

In the preceding listing, take a look at the testAddSinger()method. Within the method, to ensure that
no data exists in the Singer table, we call the convenient method deleteFromTables() provided by the
AbstractTransactionalJUnit4SpringContextTests class to clean up the table. Note that after calling the
save operation, we need to explicitly call the EntityManager.flush() method to force Hibernate to flush
the persistence context to the database so that the findAll() method can retrieve the information from the
database correctly.

In Spring 4.3 an alias for SpringJUnit4ClassRunner.class was introduced, SpringRunner.class.
In the second test method, the testAddSingerWithJSR349Error() method, we test the save operation

of a Singer with a validation error. Note that in the @Test annotation, an expected attribute is passed, which
specifies that this test case is expected to throw an exception with the specified type, which in this case is the
ConstraintViolationException class.

Chapter 13 ■ Spring Testing

634

Run the test class again and verify that the result is successful.
Note that we covered only the most commonly used classes within Spring’s testing framework.

Spring’s testing framework provides a lot of support classes and annotations that allow us to apply
fine control during the execution of the test case life cycle. For example, the @BeforeTransaction and
@AfterTransaction annotations allow certain logic to be executed before Spring initiates a transaction or
after a transaction is completed for the test case. For a more detailed description of the various aspects of
Spring’s testing framework, kindly refer to Spring’s reference documentation.

Dropping DbUnit
DbUnit can be considered difficult to use because it requires extra dependencies and extra configuration
classes. A Spring approach would be nice, wouldn’t it? Luckily, a lot of useful annotations were introduced
in Spring versions after 4.0. One of them will be used in the following example: @Sql. This annotation is used
to annotate a test class or test method to configure SQL scripts and statements to be executed against a given
database during integration tests. This means that test data can be prepared without using DbUnit. Because
of this, the test configuration gets simplified too, and test classes do not have to extend anything.

Another addition to this section will be the use of JUnit 5 (http://junit.org/junit5/), also called
JUnit Jupiter. Support for it has been provided since Spring 4.3, even before the first stable version was
released. At the time of writing, the current version is 5.0.0-M4. JUnit 5 is the next generation of JUnit. The
goal is to create an up-to-date foundation for developer-side testing on the JVM. This includes focusing on
Java 8 and newer, as well as enabling many different styles of testing.2

Let’s see how the configuration gets modified. The test data source configuration class for the test
profile becomes a lot simpler because all we need now is an empty database.

package com.apress.prospring5.ch13.config;

import com.apress.prospring5.ch13.init.DBInitializer;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.*;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

import javax.sql.DataSource;

@Configuration
@ComponentScan(basePackages={"com.apress.prospring5.ch13"},
 excludeFilters = {@ComponentScan.Filter(type = FilterType.ASSIGNABLE_TYPE,
 value = DBInitializer.class)
 })
@Profile("test")
public class SimpleTestConfig {

 private static Logger logger = LoggerFactory.getLogger(SimpleTestConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();

2This is a quote from the official site.

http://junit.org/junit5/

Chapter 13 ■ Spring Testing

635

 return dbBuilder.setType(EmbeddedDatabaseType.H2).build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

}

The data and queries necessary for the test case will be provided using SQL script files. The data will be
provided by a file called test-data.sql. Its contents are shown here:

insert into singer (first_name, last_name, birth_date,version)
 values ('John', 'Mayer', '1977-10-16', 0);

The cleanup of the test database will be done using the clean-up.sql script. This script is used to
empty the database so that the data necessary for a test method does not pollute the data for another test
method. Its contents are shown here:

delete from singer;

The test class will make use of a few JUnit5 annotations just to show how they can be used. Every
annotation will be explained after the code section.

package com.apress.prospring5.ch13;

import com.apress.prospring5.ch13.config.DataConfig;
import com.apress.prospring5.ch13.config.ServiceConfig;
import com.apress.prospring5.ch13.config.SimpleTestConfig;

import com.apress.prospring5.ch13.entities.Singer;
import com.apress.prospring5.ch13.services.SingerService;
import org.junit.jupiter.api.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ActiveProfiles;
import org.springframework.test.context.jdbc.Sql;
import org.springframework.test.context.jdbc.SqlConfig;
import org.springframework.test.context.jdbc.SqlGroup;
import org.springframework.test.context.junit.jupiter.SpringJUnitConfig;

import java.util.List;

import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertNotNull;

@SpringJUnitConfig(classes = {SimpleTestConfig.class, ServiceConfig.class,
DataConfig.class})
@DisplayName("Integration SingerService Test")
@ActiveProfiles("test")

Chapter 13 ■ Spring Testing

636

public class SingerServiceTest {

 private static Logger logger =
 LoggerFactory.getLogger(SingerServiceTest.class);

 @Autowired
 SingerService singerService;

 @BeforeAll
 static void setUp() {
 logger.info("--> @BeforeAll -
 executes before executing all test methods in this class");
 }

 @AfterAll
 static void tearDown(){
 logger.info("--> @AfterAll -
 executes before executing all test methods in this class");
 }

 @BeforeEach
 void init() {
 logger.info("--> @BeforeEach -
 executes before each test method in this class");
 }

 @AfterEach
 void dispose() {
 logger.info("--> @AfterEach -
 executes before each test method in this class");
 }

 @Test
 @DisplayName("should return all singers")
 @SqlGroup({
 @Sql(value = "classpath:db/test-data.sql",
 config = @SqlConfig(encoding = "utf-8", separator = ";",
 commentPrefix = "--"),
 executionPhase = Sql.ExecutionPhase.BEFORE_TEST_METHOD),
 @Sql(value = "classpath:db/clean-up.sql",
 config = @SqlConfig(encoding = "utf-8", separator = ";",
 commentPrefix = "--"),
 executionPhase = Sql.ExecutionPhase.AFTER_TEST_METHOD),
 })
 public void findAll() {
 List<Singer> result = singerService.findAll();
 assertNotNull(result);
 assertEquals(1, result.size());
 }

Chapter 13 ■ Spring Testing

637

 @Test
 @DisplayName("should return singer 'John Mayer'")
 @SqlGroup({
 @Sql(value = "classpath:db/test-data.sql",
 config = @SqlConfig(encoding = "utf-8", separator = ";",
 commentPrefix = "--"),
 executionPhase = Sql.ExecutionPhase.BEFORE_TEST_METHOD),
 @Sql(value = "classpath:db/clean-up.sql",
 config = @SqlConfig(encoding = "utf-8", separator = ";",
 commentPrefix = "--"),
 executionPhase = Sql.ExecutionPhase.AFTER_TEST_METHOD),
 })
 public void testFindByFirstNameAndLastNameOne() throws Exception {
 Singer result = singerService.findByFirstNameAndLastName("John", "Mayer");
 assertNotNull(result);
 }
}

ApplicationContext is created using the SpringJUnitJupiterConfig annotation. This is a composed
annotation that combines @ExtendWith(SpringExtension.class) from JUnit Jupiter with
@ContextConfiguration from the Spring TestContext Framework.

The @DisplayName annotation is a typical JUnit Jupiter annotation used to declare a custom display
value for the annotated test class or test method. In an editor that supports JUnit 5, this can look very pretty,
as shown in Figure 13-1.

This makes it easier to see that SingerService is working as expected, right?
The annotations @BeforeAll and @AfterAll have names that are self-explanatory, and they replace

JUnit 4’s @BeforeClass and @AfterClass.
The same can be said about @BeforeEach and @AfterEach; they replace JUnit 4 @Before and @After.

The @SqlGroup annotation is used to group multiple @Sql annotations.

Implementing a Front-End Unit Test
Another testing area of particular interest is testing the front-end behavior as a whole, upon the deployment
of the web application to a web container like Apache Tomcat.

The main reason is that even though we test every layer within the application, we still need to make
sure that the views behave correctly with different actions from users. Automating front-end testing is
important in saving time for developers and users when repeating the actions on the front end for a test case.

However, developing a test case for a front end is a challenging task, especially for those web
applications with a lot of interactive, rich, and Ajax-based components.

Figure 13-1.  IntelliJ IDEA Jnit 5 test run view

Chapter 13 ■ Spring Testing

638

Introducing Selenium
Selenium is a powerful and comprehensive tool and framework target for automating web-based front-end
testing. The main feature is that by using Selenium, we can “drive” the browsers, simulating user interactions
with the application, and perform verification of the view status.

Selenium supports common browsers including Firefox, IE, and Chrome. In terms of languages, Java,
C#, PHP, Perl, Ruby, and Python are supported. Selenium is also designed with Ajax and rich Internet
applications (RIAs) in mind, making automated testing of modern web applications possible.

If your application has a lot of front-end user interfaces and needs to run a large number of front-end
tests, the selenium-server module provides built-in grid functionality that supports the execution of
front-end tests among a group of computers.

The Selenium IDE is a Firefox plug-in that can help “record” user interactions with the web application.
It also supports replay and exports the scripts into various formats that can help simplify the development of
test cases.

Starting from version 2.0, Selenium integrates the WebDriver API, which addresses a number of
limitations and provides an alternative, and simpler, programming interface. The result is a comprehensive
object-oriented API that provides additional support for a larger number of browsers along with improved
support for modern advanced web application testing problems.

Front-end web testing is a complex subject and beyond the scope of this book. From this brief overview,
you can see how Selenium can help automate the user interaction with the web application front end with
cross-browser compatibility. For more details, please refer to Selenium’s online documentation
(http://seleniumhq.org/docs).

Summary
In this chapter, we covered how to develop various kinds of unit testing in Spring-based applications with
the help of commonly used frameworks, libraries, and tools including JUnit, DbUnit, and Mockito.

First, we presented a high-level description of an enterprise-testing framework, which shows what tests
should be executed in each phase of the application development life cycle. Second, we developed two types
of tests, including a logic unit test and integration unit test. We then briefly touched on the front-end testing
framework Selenium.

Testing an enterprise application is a huge topic, and if you want to have a more detailed understanding
of the JUnit library, we recommend the book JUnit in Action by Petar Tahchiev (Manning, 2011) that covers
JUnit 4.8.

If you are interested in more Spring testing approaches, you can find more about this in the Pivotal
Certified Professional Spring Developer Exam (www.apress.com/us/book/9781484208120, Apress, 2016),
which has a dedicated chapter covering more testing libraries and working with Spring Boot Test to test
Spring Boot applications.

http://seleniumhq.org/docs
www.apress.com/us/book/9781484208120

639© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_14

CHAPTER 14

Scripting Support in Spring

In previous chapters, you saw how the Spring Framework can help Java developers create JEE applications.
By using the Spring Framework’s DI mechanism and its integration with each layer (via libraries within
the Spring Framework’s own modules or via integration with third-party libraries), you can simplify
implementing and maintaining business logic.

However, all the logic we have developed so far was with the Java language. Although Java is one of the
most successful programming languages in history, it is still criticized for some weaknesses, including its
language structure and its lack of comprehensive support in areas such as massive parallel processing.

For example, one feature of the Java language is that all variables are statically typed. In other words,
in a Java program, each variable declared should have a static type associated with it (String, int, Object,
ArrayList, and so on). However, in some scenarios, dynamic typing may be preferred, which is supported
by dynamic languages such as JavaScript.

To address those requirements, many scripting languages have been developed. Some of the most
popular include JavaScript, Groovy, Scala, Ruby, and Erlang. Almost all of these languages support dynamic
typing and were designed to provide the features that are not available in Java, as well as targeting other
specific purposes. For example, Scala (www.scala-lang.org) combines functional programming patterns
with OO patterns and supports a more comprehensive and scalable concurrent programming model with
concepts of actors and message passing. In addition, Groovy (http://groovy.codehaus.org) provides a
simplified programming model and supports the implementation of domain-specific languages (DSLs) that
make the application code easier to read and maintain.

One other important concept that these scripting languages bring to Java developers is closures (which
we discuss in more detail later in this chapter). Simply speaking, a closure is a piece (or block) of code
wrapped in an object. Like a Java method, it’s executable and can receive parameters and return objects and
values. In addition, it’s a normal object that can be passed with a reference around your application, like any
POJO in Java.

In this chapter, we cover some of the main concepts behind scripting languages, with the primary focus
on Groovy; you’ll see how the Spring Framework can work with scripting languages seamlessly to provide
specific functionality to Spring-based applications. Specifically, this chapter covers the following topics:

•	 Scripting support in Java: In JCP, JSR-223 (Scripting for the Java Platform) enables
the support of scripting languages in Java; it has been available in Java since SE 6. We
provide an overview of scripting support in Java.

•	 Groovy: We present a high-level introduction to the Groovy language, which is one of
the most popular scripting languages being used with Java.

•	 Using Groovy with Spring: The Spring Framework provides comprehensive support
for scripting languages. Since version 3.1, out-of-the-box support for Groovy, JRuby,
and BeanShell is provided.

http://dx.doi.org/https://doi.org/10.1007/978-1-4842-2808-1_14
http://www.scala-lang.org/
http://groovy.codehaus.org/

Chapter 14 ■ Scripting Support in Spring

640

This chapter is not intended to serve as a detailed reference on using scripting languages. Each
language has one or more books of their own that discuss their design and usage in detail. The main
objective of this chapter is to describe how the Spring Framework supports scripting languages, with a sound
example showing the benefits of using a scripting language in addition to Java in a Spring-based application.

Working with Scripting Support in Java
Starting with Java 6, the Scripting for the Java Platform API (JSR-223) is bundled into the JDK. Its objective
is to provide a standard mechanism for running logic written in other scripting languages on the JVM. Out
of the box, JDK 6 comes bundled with the engine called Mozilla Rhino, which is able to evaluate JavaScript
programs. This section introduces you to the JSR-223 support in JDK 6.

In JDK 6, the scripting support classes reside in the javax.script package. First let’s develop a simple
program to retrieve the list of script engines. The following code snippet shows the class content:

package com.apress.prospring5.ch14;

import javax.script.ScriptEngineManager;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class ListScriptEngines {
 private static Logger logger =
 LoggerFactory.getLogger(ListS criptEngines.class);

 public static void main(String... args) {
 ScriptEngineManager mgr = new ScriptEngineManager();

 mgr.getEngineFactories().forEach(factory -> {
 String engineName = factory.getEngineName();
 String languageName = factory.getLanguageName();
 String version = factory.getLanguageVersion();
 logger.info("Engine name: " + engineName + " Language: "
 + languageName + " Version: " + version);
 });
 }
}

An instance of the ScriptEngineManager class is created, which will discover and maintain a list
of engines (in other words, classes implementing the javax.script.ScriptEngine interface) from the
classpath. Then, a list of ScriptEngineFactory interfaces is retrieved by calling the ScriptEngineManager.
getEngineFactories() method. The ScriptEngineFactory interface is used to describe and instantiate
script engines. From each ScriptEngineFactory interface, information about the scripting language
support can be retrieved. Running the program may produce varied output, depending on your setup, and
you should see something similar to the following in your console:

INFO: Engine name: AppleScriptEngine Language: AppleScript Version: 2.5
INFO: Engine name: Oracle Nashorn Language: ECMAScript Version: ECMA - 262 Edition 5.1

Chapter 14 ■ Scripting Support in Spring

641

Let’s write a simple program to evaluate a basic JavaScript expression. The program is shown here:

package com.apress.prospring5.ch14.javascript;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.script.ScriptEngine;
import javax.script.ScriptEngineManager;
import javax.script.ScriptException;

public class JavaScriptTest {

 private static Logger logger =
 LoggerFactory.getLogger(JavaScriptTest.class);

 public static void main(String... args) {
 ScriptEngineManager mgr = new ScriptEngineManager();
 ScriptEngine jsEngine = mgr.getEngineByName("JavaScript");
 try {
 jsEngine.eval("print('Hello JavaScript in Java')");
 } catch (ScriptException ex) {
 logger.error("JavaScript expression cannot be evaluated!", ex);
 }
 }
}

Here an instance of the ScriptEngine interface is retrieved from the ScriptEngineManager class, using
the name JavaScript. Then, the ScriptEngine.eval() method is called, passing in a String argument,
which contains a JavaScript expression. Note that the argument can also be a java.io.Reader class, which
can read JavaScript from a file.

Running the program produces the following result:

Hello JavaScript in Java

This should give you an idea of how to run scripts in Java. However, it’s not of much interest to just
dump some output using another language. In the next section, we introduce Groovy, a powerful and
comprehensive scripting language.

Introducing Groovy
Started by James Strachan in 2003, the main objective of Groovy is to provide an agile and dynamic language
for the JVM, with features inspired from other popular scripting languages including Python, Ruby, and
Smalltalk. Groovy is built on top of Java, extends Java, and addresses some of the shortcomings in Java.

In the following sections, we discuss some main features and concepts behind Groovy and how it
supplements Java to address specific application needs. Note that many features mentioned here also are
available in other scripting languages (for example, Scala, Erlang, Python, and Clojure).

Chapter 14 ■ Scripting Support in Spring

642

Dynamic Typing
One main difference between Groovy (and many other scripting languages) and Java is the support of
dynamic typing of variables. In Java, all properties and variables should be statically typed. In other words,
the type should be provided with the declare statement. However, Groovy supports the dynamic typing of
variables. In Groovy, dynamic typing variables are declared with the keyword def.

Let’s see this in action by developing a simple Groovy script. The file suffix of a Groovy class or script is
groovy. The following code snippet shows a simple Groovy script with dynamic typing in action:

package com.apress.prospring5.ch14

class Singer {
 def firstName
 def lastName
 def birthDate
 String toString() {
 "($firstName,$lastName,$birthDate)"
 }
}

Singer singer = new Singer(firstName: 'John', lastName: 'Mayer',
 birthDate: new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()))

Singer anotherSinger =
 new Singer(firstName: 39, lastName: 'Mayer', birthDate: new Date(
 (new GregorianCalendar(1977, 9, 16)).getTime().getTime()))

println singer
println anotherSinger

println singer.firstName + 39
println anotherSinger.firstName + 39

This Groovy script can be run directly in an IDE, executed without compilation (Groovy provides
a command-line tool called groovy that can execute Groovy scripts directly) or can be compiled to Java
bytecode and then executed just like other Java classes. Groovy scripts don’t require a main() method for
execution. Also, a class declaration that matches the file name is not required.

In this example, a class Singer is defined, with the properties set to dynamic typing with the def keyword.
Three properties are declared. Then, the toString() method is overridden with a closure that returns a string.

Next, two instances of the Singer object are constructed, with shorthand syntax provided by Groovy to
define the properties. For the first Singer object, the firstName attribute is supplied with a String, while an
integer is provided for the second Singer object. Finally, the println statement (the same as calling System.
out.println() method) is used for printing the two singer objects. To show how Groovy handles dynamic
typing, two println statements are defined to print the output for the operation firstName + 39. Note that in
Groovy, when passing an argument to a method, the parentheses are optional.

Running the program produces the following output:

John,Mayer,Sun Oct 16 00:00:00 EET 1977
39,Mayer,Sun Oct 16 00:00:00 EET 1977
John39
78

Chapter 14 ■ Scripting Support in Spring

643

From the output, you can see that since firstName is defined with dynamic typing, the object constructs
successfully when passing in either a String or an Integer as the type. In addition, in the last two println
statements, the add operation was correctly applied to the firstName property of both objects. In the
first scenario, since firstName is a String, the string 39 is appended to it. For the second scenario, since
firstName is an integer, the integer 39 is added to it, resulting in 78.

Dynamic typing support of Groovy provides greater flexibility for manipulating class properties and
variables in application logic.

Simplified Syntax
Groovy also provides simplified syntax so that the same logic in Java can be implemented in Groovy with less
code. Some of the basic syntax is as follows:

•	 A semicolon is not required for ending a statement.

•	 In methods, the return keyword is optional.

•	 All methods and classes are public by default. So, you don’t need to declare the
public keyword for method declaration, unless required.

•	 Within a class, Groovy will automatically generate the getter/setter methods for
the declared properties. So in a Groovy class, you just need to declare the type and
name (for example, String firstName or def firstName), and you can access
the properties in any other Groovy/Java classes by using the getter/setter methods
automatically. In addition, you can simply access the property without the get/set
prefix (for example, singer.firstName = 'John'). Groovy will handle them for you
intelligently.

Groovy also provides simplified syntax and many useful methods to the Java Collection API. The
following code snippet shows some of the commonly used Groovy operations for list manipulation:

def list = ['This', 'is', 'John Mayer']
println list

assert list.size() == 3
assert list.class == ArrayList

assert list.reverse() == ['John Mayer', 'is', 'This']

assert list.sort{ it.size() } == ['is', 'This', 'John Mayer']

assert list[0..1] == ['is', 'This']

The previous code shows only a small portion of the features that Groovy offers. For a more detailed
description, please refer to the Groovy online documentation at http://groovy.codehaus.org/JN1015-
Collections.

Closure
One of the most important features that Groovy adds to Java is the support of closures. A closure allows a
piece of code to be wrapped as an object and to be passed freely within the application. Closure is a powerful
feature that enables smart and dynamic behavior. The addition of closure support to the Java language has

http://groovy.codehaus.org/JN1015-Collections
http://groovy.codehaus.org/JN1015-Collections

Chapter 14 ■ Scripting Support in Spring

644

been requested for a long time. JSR-335 (Lambda Expressions for the Java Programming Language), which
aims to support programming in a multicore environment by adding closures and related features to the Java
language, has been added to Java 8 and supported by the new Spring Framework 4.

The following code snippet shows a simple example of using closures (the file name is Runner.groovy)
in Groovy:

def names = ['John', 'Clayton', 'Mayer']

names.each {println 'Hello: ' + it}

Here a list is declared. Then, the convenient each() method is used for an operation that will iterate
through each item in the list. The argument to the each() method is a closure, which is enclosed in curly
braces in Groovy. As a result, the logic in the closure will be applied to each item within the list. Within the
closure is a special variable used by Groovy to represent the item currently in context. So, the closure will
prefix each item in the list with the string "Hello: " and then print it. Running the script produces the
following output:

Hello: John
Hello: Clayton
Hello: Mayer

As mentioned, a closure can be declared as a variable and used when required. Another example is
shown here:

def map = ['a': 10, 'b': 50]

Closure square = {key, value -> map[key] = value * value}

map.each square

println map

In this example, a map is defined. Then, a variable of type Closure is declared. The closure accepts the
key and value of a map’s entry as its arguments, and the logic calculates the square of the value of the key.
Running the program produces the following output:

[a:100, b:2500]

This is just a simple introduction to closures. In the next section, we will develop a simple rule engine by
using Groovy and Spring; closures are used also. For a more detailed description of using closures in Groovy,
please refer to the online documentation at http://groovy.codehaus.org/JN2515-Closures.

Using Groovy with Spring
The main benefit that Groovy and other scripting languages bring to Java-based applications is the support
of dynamic behavior. By using a closure, business logic can be packaged as an object and passed around the
application like any other variables.

Another main feature of Groovy is the support for developing DSLs by using its simplified syntax and
closures. As the name implies, a DSL is a language targeted for a particular domain with very specific goals
in design and implementation. The objective is to build a language that is understandable not only by the

http://groovy.codehaus.org/JN2515-Closures

Chapter 14 ■ Scripting Support in Spring

645

developers but the business analysts and users as well. Most of the time, the domain is a business area.
For example, DSLs can be defined for customer classification, sales charge calculation, salary calculation,
and so on.

In this section, we demonstrate how to use Groovy to implement a simple rule engine with Groovy’s
DSL support. The implementation is referencing the sample from the excellent article on this topic at
www.pleus.net/articles/grules/grules.pdf, with modifications. In addition, we discuss how Spring’s
support of refreshable beans enables the update of the underlying rules on the fly without the need to
compile, package, and deploy the application.

In this sample, we implement a rule used for classifying a specific singer into different categories based
on their age, which is calculated based on their date-of-birth property.

Developing the Singer Domain
As mentioned, a DSL targets a specific domain, and most of the time the domain is referring to some kind of
business data. For the rule we are going to implement, it was designed to be applied to the domain of singer
information.

So, the first step is to develop the domain object model we want the rule to apply to. This sample is
simple and contains only one Singer entity class, as shown next. Note that it’s a POJO class, like those we
used in previous chapters.

package com.apress.prospring5.ch14;

import org.joda.time.DateTime;

public class Singer {
 private Long id;
 private String firstName;
 private String lastName;
 private DateTime birthDate;
 private String ageCategory;

 ... //getters and setter

 @Override
 public String toString() {
 return "Singer - Id: " + id + ", First name: " + firstName
 + ", Last name: " + lastName + ", Birthday: " + birthDate
 + ", Age category: " + ageCategory;
 }
}

Here the Singer class consists of simple singer information. For the ageCategory property, we want to
develop a dynamic rule that can be used to perform classification. The rule will calculate the age based on
the birthDate property and then assign the ageCategory property (for example, kid, youth, or adult) based
on the rule.

http://www.pleus.net/articles/grules/grules.pdf

Chapter 14 ■ Scripting Support in Spring

646

Implementing the Rule Engine
The next step is to develop a simple rule engine for applying the rules on the domain object. First we need to
define what information a rule needs to contain. The following code snippet shows the Rule class, which is a
Groovy class (the file name is Rule.groovy):

package com.apress.prospring5.ch14

class Rule {
 private boolean singlehit = true
 private conditions = new ArrayList()
 private actions = new ArrayList()
 private parameters = new ArrayList()
}

Each rule has several properties. The conditions property defines the various conditions that the rule
engine should check for with the domain object under processing. The actions property defines the actions
to take when a match on the condition is hit. The parameters property defines the behavior of the rule,
which is the outcome of the action for different conditions. Finally, the singlehit property defines whether
the rule should end its execution immediately whenever a match of condition is found.

The next step is the engine for rule execution. The following code snippet shows the RuleEngine
interface (note it’s a Java interface):

package com.apress.prospring5.ch14;

public interface RuleEngine {
 void run(Rule rule, Object object);
}

The interface defines only a method run(), which is to apply the rule to the domain object argument.
We will provide the implementation of the rule engine in Groovy. The following code snippet shows the

Groovy class RuleEngineImpl (the file name is RuleEngineImpl.groovy):

package com.apress.prospring5.ch14

import org.slf4j.Logger
import org.slf4j.LoggerFactory
import org.springframework.stereotype.Component

@Component("ruleEngine")
class RuleEngineImpl implements RuleEngine {
 Logger logger = LoggerFactory.getLogger(RuleEngineImpl.class);

 void run(Rule rule, Object object) {
 logger.info "Executing rule"

 def exit=false

 rule.parameters.each{ArrayList params ->
 def paramIndex=0
 def success=true

Chapter 14 ■ Scripting Support in Spring

647

 if(!exit){
 rule.conditions.each{
 logger.info "Condition Param index: " + paramIndex
 success = success && it(object,paramsparamIndex)
 logger.info "Condition success: " + success
 paramIndex++
 }

 if(success && !exit){
 rule.actions.each{
 logger.info "Action Param index: " + paramIndex
 it(object,paramsparamIndex)
 paramIndex++
 }

 if (rule.singlehit){
 exit=true
 }
 }
 }
 }
 }
}

First RuleEngineImpl implements the RuleEngine Java interface, and Spring’s annotation is applied
like any other POJO. Within the run() method, the parameters defined in the rule are passed into a closure
for processing one by one. For each parameter (which is a list of values), the conditions (each condition is
a closure) are checked one by one with the corresponding item within the parameter’s list and the domain
object. The success indicator becomes true only when all the conditions result in a positive match. In this
case, the actions (each action is a closure too) defined in the rule will be performed on the object, with the
corresponding value within the parameter’s list. Finally, if a match is found for a specific parameter and the
singlehit variable is true, the rule execution will be stopped and will exit immediately.

To allow the retrieval of a rule in a more flexible way, let’s define a RuleFactory interface, as shown next.
Note that it’s a Java interface.

package com.apress.prospring5.ch14;

public interface RuleFactory {
 Rule getAgeCategoryRule();
}

Since there is only one rule for an age category classification for singers, the interface defines only a
single method for retrieving the rule.

To make the rule engine transparent to the consumer, let’s develop a simple service layer to wrap
it up. The following code snippet shows the SingerService interface and the SingerServiceImpl class,
respectively. Note that they are Java implementations.

//SingerService.java
package com.apress.prospring5.ch14;

public interface SingerService {
 void applyRule(Singer singer);
}

Chapter 14 ■ Scripting Support in Spring

648

//SingerServiceImpl.java
package com.apress.prospring5.ch14;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.ApplicationContext;
import org.springframework.stereotype.Service;

@Service("singerService")
public class SingerServiceImpl implements SingerService {
 @Autowired
 ApplicationContext ctx;

 @Autowired
 private RuleFactory ruleFactory;

 @Autowired
 private RuleEngine ruleEngine;
 public void applyRule(Singer singer) {
 Rule ageCategoryRule = ruleFactory.getAgeCategoryRule();
 ruleEngine.run(ageCategoryRule, singer);
 }
}

As you can see, the required Spring beans are autowired into the service implementation class. In the
applyRule() method, the rule is obtained from the rule factory and then applied to the Singer object. The
result is that the ageCategory property for the Singer will be derived based on the rule’s defined conditions,
actions, and parameters.

Implementing the Rule Factory as a Spring Refreshable Bean
Now we can implement the rule factory and the rule for age category classification. We want to be able
to update the rule on the fly and have Spring check for its changes and pick it up to apply the latest logic.
The Spring Framework provides wonderful support for Spring beans written in scripting languages, called
refreshable beans. We will see how to configure a Groovy script as a Spring bean and instruct Spring to
refresh the bean on a regular interval later. First let’s see the implementation of the rule factory in Groovy.
To allow dynamic refresh, we put the class into an external folder so it can be modified. We will call this
folder rules. The RuleFactoryImpl class (which is a Groovy class, with the name RuleFactoryImpl.groovy)
will be placed into this folder. The following code snippet shows the class content:

package com.apress.prospring5.ch14

import org.joda.time.DateTime
import org.joda.time.Years
import org.springframework.stereotype.Component;

@Component
class RuleFactoryImpl implements RuleFactory {
 Closure age = { birthDate -> return
 Years.yearsBetween(birthDate, new DateTime()).getYears() }

Chapter 14 ■ Scripting Support in Spring

649

 Rule getAgeCategoryRule() {
 Rule rule = new Rule()

 rule.singlehit=true

 rule.conditions=[{object, param -> age(object.birthDate) >= param},
 {object, param -> age(object.birthDate) <= param}]

 rule.actions=[{object, param -> object.ageCategory = param}]

 rule.parameters=[
 [0,10,'Kid'],
 [11,20,'Youth'],
 [21,40,'Adult'],
 [41,60,'Matured'],
 [61,80,'Middle-aged'],
 [81,120,'Old']
]

 return rule
 }
}

The class implements the RuleFactory interface, and the getAgeCategoryRule() method is
implemented to provide the rule. Within the rule, a Closure called age is defined to calculate the age based
on the birthDate property (which is of JodaTime’s DateTime type) of a Singer object.

Within the rule, two conditions are defined. The first one is to check whether the age of a singer is larger
than or equal to the provided parameter value, while the second check is for the smaller-than or equal-to
condition.

Then, one action is defined to assign the value provided in the parameter to the ageCategory property
of the Singer object.

The parameters define the values for both condition checking and action. For example, in the first
parameter, it means that when the age is between 0 and 10, then the value Kid will be assigned to the
ageCategory property of the Singer object, and so on. So, for each parameter, the first two values will
be used by the two conditions to check for age range, while the last value will be used for assigning the
ageCategory property.

The next step is to define the Spring ApplicationContext. The following configuration snippet shows
the configuration file (app-context.xml):

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd">

Chapter 14 ■ Scripting Support in Spring

650

 <context:component-scan base-package="com.apress.prospring5.ch14" />

 <lang:groovy id="ruleFactory" refresh-check-delay="5000"
 script-source="file:rules/RuleFactoryImpl.groovy"/>
</beans>

The configuration is simple. For defining Spring beans in a scripting language, we need to use
lang-namespace. Then, the <lang:groovy> tag is used to declare a Spring bean with a Groovy script.
The script-source attribute defines the location of the Groovy script that Spring will load from. For the
refreshable bean, the attribute refresh-check-delay should be provided. In this case, we supplied the value
of 5000 ms, which instructs Spring to check for file changes if the elapsed time from the last invocation is
greater than five seconds. Note that Spring will not check the file every five seconds. Instead, it will check the
file only when the corresponding bean is invoked.

Testing the Age Category Rule
Now we are ready to test the rule. The testing program is shown next, which is a Java class:

package com.apress.prospring5.ch14;

import org.joda.time.DateTime;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.support.GenericXmlApplicationContext;

public class RuleEngineDemo {
 private static Logger logger =
 LoggerFactory.getLogger(RuleEngineTest.class);

 public static void main(String... args) throws Exception {
 GenericXmlApplicationContext ctx = new GenericXmlApplicationContext();
 ctx.load("classpath:spring/app-context.xml");
 ctx.refresh();

 SingerService singerService =
 ctx.getBean("singerService", SingerService.class);

 Singer singer = new Singer();
 singer.setId(1l);
 singer.setFirstName("John");
 singer.setLastName("Mayer");
 singer.setBirthDate(
 new DateTime(1977, 10, 16, 0, 0, 0, 0));
 singerService.applyRule(singer);
 logger.info("Singer: " + singer);

 System.in.read();

Chapter 14 ■ Scripting Support in Spring

651

 singerService.applyRule(singer);
 logger.info("Singer: " + singer);

 ctx.close();
 }
}

Upon initialization of Spring’s GenericXmlApplicationContext, an instance of the Singer object is
constructed. Then, the instance of the SingerService interface is obtained to apply the rule onto the Singer
object and then output the result to the console. The program will be paused for user input, before the
second application of the rule. During the pause, we can then modify the RuleFactoryImpl.groovy class so
that Spring will refresh the bean and we can see the changed rule in action.

Running the testing program produces the following output:

00:34:24.814 [main] INFO c.a.p.c.RuleEngineImpl - Executing rule
00:34:24.822 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 0
00:34:24.851 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:34:24.858 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 1
00:34:24.858 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: false
00:34:24.858 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 0
00:34:24.858 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:34:24.858 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 1
00:34:24.858 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: false
00:34:24.859 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 0
00:34:24.859 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:34:24.859 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 1
00:34:24.859 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:34:24.860 [main] INFO c.a.p.c.RuleEngineImpl - Action Param index: 2
00:34:24.870 [main] INFO c.a.p.c.RuleEngineDemo - Singer: Singer - Id: 1,
 First name: John, Last name: Mayer, Birthday: 1977-10-16T00:00:00.000+03:00,
 Age category: Adult

From the logging statement in the output, since the age of the singer is 39, you can see that the rule
will find a matching in the third parameter (in other words, [21,40,'Adult']). As a result, ageCategory
is set to Adult.

Now the program is paused, so let’s change the parameters within the RuleFactoryImpl.groovy class.
You can see this modification in the following code snippet:

rule.parameters=[
 [0,10,'Kid'],
 [11,20,'Youth'],
 [21,30,'Adult'],
 [31,60,'Middle-aged'],
 [61,120,'Old']
]

Chapter 14 ■ Scripting Support in Spring

652

Change and save the file as indicated. Now press Enter in the console area to trigger the second
application of the rule to the same object. After the program continues, the following output is produced:

00:48:50.137 [main] INFO c.a.p.c.RuleEngineImpl - Executing rule
00:48:50.137 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 0
00:48:50.137 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:48:50.138 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 1
00:48:50.138 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: false
00:48:50.138 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 0
00:48:50.138 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:48:50.138 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 1
00:48:50.138 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: false
00:48:50.138 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 0
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 1
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: false
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 0
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Condition Param index: 1
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Condition success: true
00:48:50.139 [main] INFO c.a.p.c.RuleEngineImpl - Action Param index: 2
00:48:50.139 [main] INFO c.a.p.c.RuleEngineDemo - Singer: Singer - Id: 1,
 First name: John, Last name: Mayer, Birthday: 1977-10-16T00:00:00.000+03:00,
 Age category: Middle-aged

In the previous output, you can see that the rule execution stops at the fourth parameter (in other
words, [31,60,'Middleaged']), and as a result, the value Middle-aged is assigned to the ageCategory
property.

If you take a look at the article that was referred to when we prepared this sample (http://pleus.net/
articles/grules/grules.pdf), it also shows how the rule parameter can be externalized into a Microsoft
Excel file, so users can prepare and update the parameter file by themselves.

Of course, this rule is a simple one, but it shows how a scripting language such as Groovy can help
supplement Spring-based Java EE applications in specific areas, for example, using a rule engine with DSL.

You may be asking, “Is it possible to go one step further by storing the rule into the database and then
have Spring’s refreshable bean feature detect the change from the database?” This can help further simplify
the maintenance of the rule by providing a front end for users (or administrators) to update the rule into the
database on the fly, instead of uploading the file.

Actually, there is a JIRA issue in the Spring Framework that discusses this (https://jira.
springsource.org/browse/SPR-5106). Stay tuned with this feature. In the meantime, providing a user front
end to upload the rule class is also a workable solution. Of course, extreme care should be taken in this case,
and the rule should be tested thoroughly before you upload it to the production environment.

Inlining Dynamic Language Code
Not only can dynamic language code be executed from external source files, but you can inline this code
directly into your bean configuration. While this practice may be useful in some scenarios such as quick
proof of concepts and so on, from a maintainability standpoint, it would not be good practice to build an
entire application by using this method. Using the previous Rule engine as an example, let’s delete the file

http://pleus.net/
articles/grules/grules.pdf
http://pleus.net/
articles/grules/grules.pdf
https://jira.springsource.org/browse/SPR-5106
https://jira.springsource.org/browse/SPR-5106

Chapter 14 ■ Scripting Support in Spring

653

RuleEngineImpl.groovy and move that code into an inline bean definition (in file app-context.xml), as
shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang.xsd">

 <context:component-scan base-package="com.apress.prospring5.ch14"/>

 <lang:groovy id="ruleFactory" refresh-check-delay="5000">
 <lang:inline-script>
 <![CDATA[

 package com.apress.prospring5.ch14

 import org.joda.time.DateTime
 import org.joda.time.Years
 import org.springframework.stereotype.Component;

 @Component
 class RuleFactoryImpl implements RuleFactory {
 Closure age = { birthDate -> return
 Years.yearsBetween(birthDate, new DateTime()).getYears() }

 Rule getAgeCategoryRule() {

 Rule rule = new Rule()

 rule.singlehit = true

 rule.conditions = [{ object, param -> age(object.birthDate) >= param },
 { object, param -> age(object.birthDate) <= param }]

 rule.actions = [{ object, param -> object.ageCategory = param }]

 rule.parameters = [
 [0, 10, 'Kid'],
 [11, 20, 'Youth'],
 [21, 40, 'Adult'],
 [41, 60, 'Matured'],
 [61, 80, 'Middle-aged'],
 [81, 120, 'Old']
]

Chapter 14 ■ Scripting Support in Spring

654

 return rule
 }
 }
]]>
 </lang:inline-script>
 </lang:groovy>
</beans>

As you can see, we added the lang:groovy tag with an ID of ruleFactory representing the bean name.
We then used the lang:inline-script tag to encapsulate the Groovy code from RuleFactoryImpl.groovy.
Surrounding the Groovy code is a CDATA tag to avoid the code being parsed by the XML parser. Now with that
in place, go ahead and run the rule engine sample again. As you can see, it works the same way, except we
inlined the Groovy code directly into the bean definition rather than having it reside in an external file. Using
the code from RuleFactoryImpl.groovy was also done intentionally to show how unwieldy an application
can become when inlining large amounts of code.

Summary
In this chapter, we covered how to use scripting languages in Java applications and demonstrated how the
Spring Framework’s support of scripting languages can help provide dynamic behavior to the application.

First we discussed JSR-223 (Scripting for the Java Platform), which was built into Java 6 and supports
the execution of JavaScript out of the box. Then, we introduced Groovy, a popular scripting language within
the Java developer communities. We also demonstrated some of its main features when compared to the
traditional Java language.

Finally, we discussed the support of scripting languages in the Spring Framework. We saw it in action
by designing and implementing a simple rule engine using Groovy’s DSL support. We also discussed how
the rule can be modified and have the Spring Framework pick up the changes automatically by using its
refreshable bean feature, without the need to compile, package, and deploy the application. Additionally, we
showed how to inline Groovy code directly into a configuration file to define a bean’s implementation code.

655© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_15

CHAPTER 15

Application Monitoring

A typical JEE application contains a number of layers and components, such as the presentation layer,
service layer, persistence layer, and back-end data source. During the development stage, or after the
application had been deployed to the quality assurance (QA) or production environment, we will want to
ensure that the application is in a healthy state without any potential problems or bottlenecks.

In a Java application, various areas may cause performance problems or overload server resources
(such as CPU, memory, or I/O). Examples are inefficient Java code, memory leaks (for example, Java
code that keeps allocating new objects without releasing the reference and prevents the underlying JVM
from freeing up the memory during the garbage collection process), miscalculated JVM parameters,
miscalculated thread pool parameters, too generous data source configurations (for example, too many
concurrent database connections allowed), improper database setup, and long-running SQL queries.

Consequently, we need to understand an application’s runtime behavior and identify whether any
potential bottlenecks or problems exist. In the Java world, a lot of tools can help monitor the detailed
runtime behavior of JEE applications. Most of them are built on top of the Java Management Extensions
(JMX) technology.

In this chapter, we present common techniques for monitoring Spring-based JEE applications.
Specifically, this chapter covers the following topics:

•	 Spring support of JMX: We discuss Spring’s comprehensive support of JMX and
demonstrate how to expose Spring beans for monitoring with JMX tools. In this
chapter, we show how to use the jvisualvm Java executable (https: //visualvm.
github.io/?Java_VisualVM) as the application-monitoring tool.

•	 Monitoring Hibernate statistics: Hibernate and many other packages provide support
classes and infrastructure for exposing the operational status and performance
metrics using JMX. We show how to enable the JMX monitoring of those commonly
used components in Spring-powered JEE applications.

•	 Spring Boot JMX support: Spring Boot provides a starter library for JMX support that
comes with full default configuration out of the box.

Remember that this chapter is not intended to be an introduction to JMX, and a basic understanding of
JMX is assumed. For detailed information, please refer to Oracle’s online resource at http://oracle.com/
technetwork/java/javase/tech/javamanagement-140525.html.

JMX Support in Spring
In JMX, the classes that are exposed for JMX monitoring and management are called managed beans
(generally referred to as MBeans). The Spring Framework supports several mechanisms for exposing
MBeans. This chapter focuses on exposing Spring beans (which were developed as simple POJOs) as
MBeans for JMX monitoring.

https://doi.org/10.1007/978-1-4842-2808-1_15
https://visualvm.github.io/?Java_VisualVM
https://visualvm.github.io/?Java_VisualVM
https://visualvm.github.io/?Java_VisualVM
http://oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Chapter 15 ■ Application Monitoring

656

In the following sections, we discuss the procedure for exposing a bean containing application-related
statistics as an MBean for JMX monitoring. Topics include implementing the Spring bean, exposing the
Spring bean as an MBean in Spring ApplicationContext, and using VisualVM to monitor the MBean.

Exporting a Spring Bean to JMX
As an example, we will use the REST sample from Chapter 12. Review that chapter for the sample application
code or jump directly to the book’s source companion, which provides the source code we will use to
build upon. With the JMX additions, you want to expose the count of the singers in the database for JMX
monitoring purposes. So, let’s implement the interface and the class, as shown here:

//AppStatistics.java
package com.apress.prospring5.ch15;

public interface AppStatistics {
 int getTotalSingerCount();
}

//AppStatisticsImpl.java
package com.apress.prospring5.ch15;

import com.apress.prospring5.ch12.services.SingerService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

public class AppStatisticsImpl implements AppStatistics {
 @Autowired
 private SingerService singerService;

 @Override
 public int getTotalSingerCount() {
 return singerService.findAll().size();
 }
}

In this example, a method is defined to retrieve the total count of singer records in the database. To expose
the Spring bean as JMX, we need to add configuration in Spring’s ApplicationContext. The configuration
of this Spring-secured web application was covered in Chapter 12. Now we must add to it two infrastructure
beans of types MBeanServer and MBeanExporter to enable support for the JMX management beans.

package com.apress.prospring5.ch15.init;
...
import javax.management.MBeanServer;
import org.springframework.jmx.export.MBeanExporter;
import org.springframework.jmx.support.MBeanServerFactoryBean;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch15"})
public class WebConfig implements WebMvcConfigurer {
 //other Web infrastructure specific beans
 ...

http://dx.doi.org/10.1007/978-1-4842-2808-1_12
http://dx.doi.org/10.1007/978-1-4842-2808-1_12

Chapter 15 ■ Application Monitoring

657

 @Bean AppStatistics appStatisticsBean() {
 return new AppStatisticsImpl();
 }

 @Bean
 MBeanExporter jmxExporter() {
 MBeanExporter exporter = new MBeanExporter();
 Map<String, Object> beans = new HashMap<>();
 beans.put("bean:name=ProSpring5SingerApp", appStatisticsBean());
 exporter.setBeans(beans);
 return exporter;
 }
}

First, you declare the bean for the POJO with statistics, AppStatisticsImpl, that we want to expose.
Second, you declare the jmxExporter bean with the implementation class MBeanExporter.

The MBeanExporter class is the core class within the Spring Framework’s support for JMX. It’s
responsible for registering Spring beans with a JMX MBean server (a server that implements JDK’s javax.
management.MBeanServer interface, which exists in most commonly used web and JEE containers, such as
Tomcat and WebSphere). When exposing a Spring bean as an MBean, Spring will attempt to locate a running
MBeanServer instance within the server and register the MBean with it. For example, with Tomcat, an
MBeanServer instance will be created automatically, so no additional configuration is required.

Within the jmxExporter bean, the property beans defines the Spring beans we want to expose. It’s a Map,
and any number of MBeans can be specified here. In this case, we would like to expose the appStatisticsBean
bean, which contains information about the singer application we want to show to administrators. For the MBean
definition, the key will be used as the ObjectName value (the javax.management.ObjectName class in JDK) for the
Spring bean referenced by the corresponding entry value. In the previous configuration, appStatisticsBean will
be exposed under ObjectName bean:name=Prospring5SingerApp. By default, all public properties of the bean are
exposed as attributes, and all public methods are exposed as operations.

Now the MBean is available for monitoring via JMX. Let’s proceed to set up VisualVM and use its JMX
client for monitoring purposes.

Using Java VisualVM for JMX Monitoring
VisualVM is a useful tool that can help in monitoring Java applications in various aspects. It’s a free tool and
resides under the bin folder in the JDK installation folder. You can also download a stand-alone version from
the project web site.1 We will use the JDK installation version in this chapter.

VisualVM uses a plug-in system to support various monitoring functions. To support monitoring
MBeans of Java applications, we need to install the MBeans plug-in. To install the plug-in, follow these steps:

	 1.	 From VisualVM’s menu, choose Tools ➤ Plug-ins.

	 2.	 Click the Available Plug-ins tab.

	 3.	 Click the Check for Newest button.

	 4.	 Select the plug-in VisualVM-MBeans and then click the Install button.

1At the time of this writing, the current version of Java VisualVM is 1.3.9. You can find it here: http://visualvm.
java.net/download.html.

http://visualvm.java.net/download.html
http://visualvm.java.net/download.html

Chapter 15 ■ Application Monitoring

658

Figure 15-1 depicts the Plugins dialog. After completing the installation, verify that Tomcat is up and
that the sample application is running. Then in VisualVM’s left Applications view, you should be able to see
that the Tomcat process is running.

Figure 15-1.  Overview of global transactions with JTA

By default, VisualVM scans for the Java applications that are running on the JDK platform. Double-
clicking the desired node brings up the monitoring screen.

After the installation of the VisualVM-MBeans plug-in, you will able to see the MBeans tab. Clicking this
tab shows the available MBeans. You should see the node called bean. When you expand it, it will show the
Prospring5SingerApp MBean that was exposed.

On the right side, you will see the method that we implemented in the bean, with the attribute
TotalSingerCount (which was automatically derived by the getTotalSingerCount() method within the
bean). The value is 3, corresponding to the number of records we added in the database at application
startup. In a regular application, this number would change based on the number of singers added during
the application runtime.

Chapter 15 ■ Application Monitoring

659

Monitoring Hibernate Statistics
Hibernate also supports the maintenance and exposure of persistence-related metrics to JMX. To enable
this, in the JPA configuration, add three more Hibernate properties, as shown here:

package com.apress.prospring5.ch12.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;

Figure 15-2.  The Prospring5SingerApp MBean exposed in VisualVM

Figure 15-2 depicts the MBeans window with the Prospring5SingerApp MBean exposed.

Chapter 15 ■ Application Monitoring

660

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
//using components that were introduced in Chapter 12 project
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch12.repos"})
@ComponentScan(basePackages = {"com.apress.prospring5.ch12"})
public class DataServiceConfig {
 ...

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);

 hibernateProp.put("hibernate.jmx.enabled", true);
 hibernateProp.put("hibernate.generate_statistics", true);
 hibernateProp.put("hibernate.session_factory_name", "sessionFactory");
 return hibernateProp;
 }
 ...
}

The property hibernate.jmx.enabled is used to enable Hibernate JMX behavior.
The property hibernate.generate_statistics instructs Hibernate to generate statistics for its JPA

persistence provider, while the property hibernate.session_factory_name defines the name of the session
factory required by the Hibernate statistics MBean.

Finally, we need to add the MBean into Spring’s MBeanExporter configuration. The following
configuration snippet shows the updated MBean configuration that we created earlier in the WebConfig class.
The CustomStatistics class is a replacement of org.hibernate.jmx.StatisticsService that is no longer
part of Hibernate 5.2

package com.apress.prospring5.ch15.init;

...

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch15"})
public class WebConfig implements WebMvcConfigurer {
 ...
 // JMX beans

2The code is still available on GitHub at https://github.com/manuelbernhardt/hibernate-core/blob/master/
hibernate-core/src/main/java/org/hibernate/jmx/StatisticsService.java if you want to enrich the provided
implementation.

https://github.com/manuelbernhardt/hibernate-core/blob/master/hibernate-core/src/main/java/org/hibernate/jmx/StatisticsService.java
https://github.com/manuelbernhardt/hibernate-core/blob/master/hibernate-core/src/main/java/org/hibernate/jmx/StatisticsService.java

Chapter 15 ■ Application Monitoring

661

 @Bean AppStatistics appStatisticsBean() {
 return new AppStatisticsImpl();
 }

 @Bean CustomStatistics statisticsBean(){
 return new CustomStatistics();
 }

 @Autowired
 private EntityManagerFactory entityManagerFactory;

 @Bean SessionFactory sessionFactory(){
 return entityManagerFactory.unwrap(SessionFactory.class);
 }

 @Bean
 MBeanExporter jmxExporter() {
 MBeanExporter exporter = new MBeanExporter();
 Map<String, Object> beans = new HashMap<>();
 beans.put("bean:name=ProSpring5SingerApp", appStatisticsBean());
 beans.put("bean:name=Prospring5SingerApp-hibernate", statisticsBean());
 exporter.setBeans(beans);
 return exporter;
 }
}

The statisticsBean() method is declared, with Hibernate’s org.hibernate.stat.Statistics
implementation as the core component. This is how Hibernate supports exposing statistics to JMX.

Now the Hibernate statistics are enabled and available via JMX. Reload the application and refresh
VisualVM; you will be able to see the Hibernate statistics MBean. Clicking the node displays the detail
statistics on the right side. Note that for the information that is not of a Java primitive type (for example, a
List), you can click in the field to expand it and show the content.

In VisualVM, you can see many other metrics, such as EntityNames, SessionOpenCount,
SecondCloseCount, and QueryExecutionMaxTime. Those figures are useful for you to understand the
persistence behavior within your application and can assist you in troubleshooting and performance-tuning
exercises.

JMX with Spring Boot
Migrating the previous application to Spring Boot is easy, and the dependencies are provided and
automatically configured. For JMX, there is no starter dependency needed, but you can add spring-boot-
starter-actuator.jar as a dependency; it might help to monitor a Spring application in a smart editor and
display the beans, health, and mappings in the application if you use the Spring-specific plug-in.

This application will be a web application without an interface (because that is a subject for the
following chapter, Chapter 16), with an in-memory database and a full-blown JTA configuration using
Atomikos. As this implementation was introduced in previous chapters, the focus will be here on the
MBeans.

Let’s upgrade the AppStatisticsImpl class by using @ManagedResource to register instances of this
class with a JMX server. This is practical because Spring Boot by default will create an MBeanServer with a
bean ID of mbeanServer and expose any of the beans that are annotated with Spring JMX annotations

http://dx.doi.org/10.1007/978-1-4842-2808-1_16

Chapter 15 ■ Application Monitoring

662

(@ManagedResource, @ManagedAttribute, @ManagedOperation). The upgraded version of
AppStatisticsImpl using all the previously mentioned annotations is shown here:

package com.apress.prospring5.ch15;

import com.apress.prospring5.ch15.entities.Singer;
import com.apress.prospring5.ch15.services.SingerService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jmx.export.annotation.ManagedAttribute;
import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
@ManagedResource(description = "JMX managed resource",
 objectName = "jmxDemo:name=ProSpring5SingerApp")
public class AppStatisticsImpl implements AppStatistics {

 @Autowired
 private SingerService singerService;

 @ManagedAttribute(description = "Number of singers in the application")
 @Override
 public int getTotalSingerCount() {
 return singerService.findAll().size();
 }

 @ManagedOperation
 public String findJohn() {
 List<Singer> singers = singerService.
 findByFirstNameAndLastName("John", "Mayer");
 if (!singers.isEmpty()) {
 return singers.get(0).getFirstName() + " "
 + singers.get(0).getLastName();
 }
 return "not found";
 }
}

By default Spring Boot will expose management endpoints as JMX MBeans under the
org.springframework.boot domain. In the previously depicted code snippet, the @ManagedResource
annotation has an attribute called objectName, and its value represents the domain and name of the MBean.
Because we wanted to easily find in VisualVM the managed beans that were created explicitly (Spring Boot
provides its own autoconfigured MBeans for internal monitoring), we used the domain jmxDemo.

The @ManagedAttribute annotation is used to expose the given bean property as a JMX attribute.
@ManagedOperation is used to expose a given method as a JMX operation. Because the two methods shown
earlier are annotated differently, they will be shown in different tabs in VisualVM. The result of calling
getTotalSingerCount will be visible on the Attributes tab. On the Operations tab, both methods will be
depicted as clickable buttons to be called on the spot. The string provided as descriptions in each of the
annotations can be viewed on the Metadata tab.

Chapter 15 ■ Application Monitoring

663

Figure 15-3 depicts the MBeans window with the Prospring5SingerApp MBean exposed under the
jmxDemo domain. Under it, you can see the org.springframework.boot domain.

Figure 15-3.  The Prospring5SingerApp MBean exposed in VisualVM

No, that’s not it, though! Support of JMX must be enabled. This is done by annotating a configuration
class with @EnableMBeanExport. This annotation enables the default exporting of all standard MBeans from
the Spring context, as well as all @ManagedResource annotated beans. Basically, this annotation is what tells
Spring Boot to create an MBeanExporter bean with the name of mbeanExporter. The configuration class for
this Spring Boot application is shown here:

package com.apress.prospring5.ch15;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.EnableMBeanExport;

import java.io.IOException;

@EnableMBeanExport
@SpringBootApplication(scanBasePackages = {"com.apress.prospring5.ch15"})
public class JMXBootApplication {

 private static Logger logger = LoggerFactory.
 getLogger(JMXBootApplication.class);

Chapter 15 ■ Application Monitoring

664

 public static void main(String args) throws IOException {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(JMXBootApplication.class, args);
 assert (ctx != null);
 logger.info("Started ...");
 System.in.read();
 ctx.close();
 }
}

Now, we can say that’s it, because this is all there is to say when using JMX in a Spring Boot application!

Summary
In this chapter, we covered the high-level topics of monitoring a Spring-powered JEE application. First,
we discussed Spring’s support of JMX, the standard in monitoring Java applications. We discussed
implementing custom MBeans for exposing application-related information, as well as exposing statistics
of common components such as Hibernate. Second, we showed how JMX can be used in a Spring Boot
application and how special Spring is.

665© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_16

CHAPTER 16

Web Applications

In an enterprise application, the presentation layer critically affects the level of acceptance that users give
the application. The presentation layer is the front door into your application. It lets users perform business
functions provided by the application, as well as presents a view of the information that is being maintained
by the application. How the user interface performs greatly contributes to the success of the application.

Because of the explosive growth of the Internet (especially these days), as well as the rise of different
kinds of devices that people are using, developing an application’s presentation layer is a challenging task.
The following are some of the major considerations when developing web applications:

•	 Performance: Performance is always the top requirement of a web application. If
users choose a function or click a link and it takes a long time to execute (in the
world of the Internet, three seconds is like a century!), users will definitely not be
happy with the application.

•	 User-friendliness: The application should be easy to use and easy to navigate, with
clear instructions that don’t confuse the user.

•	 Interactivity and richness: The user interface should be highly interactive and
responsive. In addition, the presentation should be rich in terms of visual
presentation, such as charting, a dashboard type of interface, and so on.

•	 Accessibility: Nowadays, users require that the application is accessible from
anywhere via any device. In the office, they will use their desktop for accessing the
application. On the road, users will use various mobile devices (including laptops,
tablets, and smartphones) to access the application.

Developing a web application to fulfill the previous requirements is not easy, but they are considered
mandatory for business users. Fortunately, many new technologies and frameworks have been developed
to address those needs. Many web application frameworks and libraries—such as Spring MVC (Spring Web
Flow), Struts, Tapestry, Java Server Faces (JSF), Google Web Toolkit (GWT), jQuery, and Dojo, to name a
few—provide tools and rich component libraries that can help you develop highly interactive web front
ends. In addition, many frameworks provide tools or corresponding widget libraries targeting mobile devices
including smartphones and tablets. The rise of the HTML5 and CSS3 standards and the support of these
latest standards by most web browsers and mobile device manufacturers also help ease the development of
web applications that need to be available anywhere, from any device.

In terms of web application development, Spring provides comprehensive and intensive support. The
Spring MVC module provides a solid infrastructure and Model View Controller (MVC) framework for web
application development. When using Spring MVC, you can use various view technologies (for example,
JSP or Velocity). In addition, Spring MVC integrates with many common web frameworks and toolkits (for
example, Struts and GWT). Other Spring projects help address specific needs for web applications. For
example, Spring MVC, when combined with the Spring Web Flow project and its Spring Faces module,

https://doi.org/10.1007/978-1-4842-2808-1_16

Chapter 16 ■ Web Applications

666

provides comprehensive support for developing web applications with complex flows and for using JSF
as the view technology. Simply speaking, there are many choices out there in terms of presentation layer
development. This chapter focuses on Spring MVC and discusses how we can use the powerful features
provided by Spring MVC to develop highly performing web applications. Specifically, this chapter covers the
following topics:

•	 Spring MVC: We discuss the main concepts of the MVC pattern and introduce Spring
MVC. We present Spring MVC’s core concepts, including its WebApplicationContext
hierarchy and the request-handling life cycle.

•	 i18n, locale, and theming: Spring MVC provides comprehensive support for common
web application requirements including i18n (internationalization), locale, and
theming. We discuss how to use Spring MVC to develop web applications that
support those requirements.

•	 View and Ajax support: Spring MVC supports many view technologies. In this
chapter, we focus on using JavaServer Pages (JSP) and Tiles as the view part of the
web application. On top of JSP, JavaScript will be used to provide the richness part.
There are many outstanding and popular JavaScript libraries, such as jQuery and
Dojo. In this chapter, we focus on using jQuery, with its subproject jQuery UI library
that supports the development of highly interactive web applications.

•	 Pagination and file upload support: When showing how to develop the samples
in this chapter, we discuss how you can use Spring Data JPA and the front-end
jQuery component to provide pagination support when browsing grid-based data.
In addition, we cover how to implement file uploading in Spring MVC. Instead of
integration with Apache Commons File Upload, we discuss how we can use Spring
MVC with the Servlet 3.1 container’s built-in multipart support for file upload.

•	 Security: Security is a big topic in web applications. We discuss how we can use
Spring Security to help protect the application and handle logins and logouts.

Implementing the Service Layer for Samples
In the service layer for this chapter, we will still use the singer application as the sample. In this section, we
discuss the data model and the implementation of the service layer that will be used throughout this chapter.

Using a Data Model for the Samples
You will use a simple data model for the samples in this chapter; it contains only a single SINGER table for
storing singer information. The following SQL snippet shows the script for schema creation (schema.sql):

DROP TABLE IF EXISTS SINGER;

CREATE TABLE SINGER (
 ID INT NOT NULL AUTO_INCREMENT
 , FIRST_NAME VARCHAR(60) NOT NULL
 , LAST_NAME VARCHAR(40) NOT NULL
 , BIRTH_DATE DATE
 , DESCRIPTION VARCHAR(2000)
 , PHOTO BLOB

Chapter 16 ■ Web Applications

667

 , VERSION INT NOT NULL DEFAULT 0
 , UNIQUE UQ_SINGER_1 (FIRST_NAME, LAST_NAME)
 , PRIMARY KEY (ID)
);

As you can see, the SINGER table stores only a few basic fields of a singer’s information. One thing worth
mentioning is the PHOTO column, of the binary large object (BLOB) data type, which will be used to store
the photo of a singer using file upload. To create the table you won’t use this SQL script; instead, Hibernate
will generate the SQL necessary to create the table based on the configuration of the Singer entity that is
depicted by the following code snippet:

package com.apress.prospring5.ch16.entities;

import javax.persistence.*;
import javax.validation.constraints.NotEmpty;
import javax.validation.constraints.Size; import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.Date;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer")
public class Singer implements Serializable {
 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @NotEmpty(message="{validation.firstname.NotEmpty.message}")
 @Size(min=3, max=60, message="{validation.firstname.Size.message}")
 @Column(name = "FIRST_NAME")
 private String firstName;

 @NotEmpty(message="{validation.lastname.NotEmpty.message}")
 @Size(min=1, max=40, message="{validation.lastname.Size.message}")
 @Column(name = "LAST_NAME")
 private String lastName;

 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

 @Column(name = "DESCRIPTION")
 private String description;

Chapter 16 ■ Web Applications

668

 @Basic(fetch= FetchType.LAZY)
 @Lob
 @Column(name = "PHOTO")
 private byte photo;

 public Long getId() {
 return id;
 }

 public int getVersion() {
 return version;
 }

 public String getFirstName() {
 return firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public void setVersion(int version) {
 this.version = version;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public void setBirthDate(Date birthDate) {
 this.birthDate = birthDate;
 }

 public Date getBirthDate() {
 return birthDate;
 }

 public String getDescription() {
 return description;
 }

 public void setDescription(String description) {
 this.description = description;
 }

Chapter 16 ■ Web Applications

669

 public byte getPhoto() {
 return photo;
 }

 public void setPhoto(byte photo) {
 this.photo = photo;
 }
 @Transient
 public String getBirthDateString() {
 String birthDateString = "";
 if (birthDate != null) {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
 birthDateString = sdf.format(birthDate);
 }
 return birthDateString;
 }

 @Override
 public String toString() {
 return "Singer - Id: " + id + ", First name: " + firstName
 + ", Last name: " + lastName + ", Birthday: " + birthDate
 + ", Description: " + description;
 }
}

If a population script was used to populate the SINGER table, the script would look like this:

insert into singer first_name, last_name, birth_date values 'John', 'Mayer', '1977-10-16';
insert into singer first_name, last_name, birth_date values 'Eric', 'Clapton', '1945-03-30';
insert into singer first_name, last_name, birth_date values 'John', 'Butler', '1975-04-01';
insert into singer first_name, last_name, birth_date values 'B.B.', 'King', '1925-09-16';
insert into singer first_name, last_name, birth_date values 'Jimi', 'Hendrix', '1942-11-27';
insert into singer first_name, last_name, birth_date values 'Jimmy', 'Page', '1944-01-09';
insert into singer first_name, last_name, birth_date values 'Eddie', 'Van Halen',
'1955-01-26';
insert into singer first_name, last_name, birth_date values 'Saul Slash', 'Hudson',
'1965-07-23';
insert into singer first_name, last_name, birth_date values 'Stevie', 'Ray Vaughan',
'1954-10-03';
insert into singer first_name, last_name, birth_date values 'David', 'Gilmour',
'1946-03-06';
insert into singer first_name, last_name, birth_date values 'Kirk', 'Hammett', '1992-11-18';
insert into singer first_name, last_name, birth_date values 'Angus', 'Young', '1955-03-31';
insert into singer first_name, last_name, birth_date values 'Dimebag', 'Darrell',
'1966-08-20';
insert into singer first_name, last_name, birth_date values 'Carlos', 'Santana',
'1947-07-20';

But in the official code samples you will find all the previous data being inserted via the DBInitializer
class. This time, we need more testing data so we can show you the pagination support later.

Chapter 16 ■ Web Applications

670

Implementing the DAO Layer
The entity class, the repo, and the database configuration make up the application layer called dao, which is
in charge of database objects.

The entity class was introduced previously, and in it you might have noticed the typical JPA annotations.
However, there are two new ones.

•	 A new transient property (by applying the @Transient annotation to the getter
method) called birthDateString is added, which will be used for front-end
presentation in later samples.

•	 For the photo attribute, we use a byte array as the Java data type, which corresponds
to the BLOB data type in the RDBMS. In addition, the getter method is annotated
with @Lob and @Basic(fetch=FetchType.LAZY). The former annotation indicates
to the JPA provider that it’s a large object column, while the latter indicates that the
attribute should be fetched lazily to avoid a performance impact when loading a
class that does not require photo information.

There are also some validation annotations that will be explained later in the chapter.
Because we will use Spring Data JPA’s repository support, we will implement the SingerRepository

interface, as shown here:

package com.apress.prospring5.ch16.repo;

import org.springframework.data.repository.PagingAndSortingRepository;

public interface SingerRepository extends
 PagingAndSortingRepository<Singer, Long> {
}

Instead of extending the CrudRepository interface, this example uses PagingAndSortingRepository,
which is an advanced extension of CrudRepository that provides methods to retrieve entities using the
pagination and sorting abstraction. This is quite useful as the queries return already sorted data that only
needs to be shown in the interface, with no additional changes.

Implementing the Service Layer
In this section, we first discuss the implementation of SingerService by using JPA 2, Spring Data JPA, and
Hibernate as the persistence service provider. Then we cover the configuration of the service layer in the
Spring project. The following code snippet shows the SingerService interface with the services we would
like to expose:

package com.apress.prospring5.ch16.services;

import java.util.List;

import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;

public interface SingerService {
 List<Singer> findAll();
 Singer findById(Long id);

Chapter 16 ■ Web Applications

671

 Singer save(Singer singer);
 Page<Singer> findAllByPage(Pageable pageable);
}

The methods should be self-explanatory. The implementation of this interface is simple as
well. Because the application is simple, no other changes need to be made to the data, so the role of
SingerServiceImpl is to just forward the calls to the analogous repository methods.

package com.apress.prospring5.ch16.services;

import java.util.List;

import com.apress.prospring5.ch16.repos.SingerRepository;
import com.apress.prospring5.ch16.entitites.Singer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import com.google.common.collect.Lists;

@Transactional
@Service("singerService")
public class SingerServiceImpl implements SingerService {
 private SingerRepository singerRepository;

 @Override
 @Transactional(readOnly=true)
 public List<Singer> findAll() {
 return Lists.newArrayList(singerRepository.findAll());
 }

 @Override
 @Transactional(readOnly=true)
 public Singer findById(Long id) {
 return singerRepository.findById(id).get();
 }

 @Override
 public Singer save(Singer singer) {
 return singerRepository.save(singer);
 }

 @Autowired
 public void setSingerRepository(SingerRepository singerRepository) {
 this.singerRepository = singerRepository;
 }

Chapter 16 ■ Web Applications

672

 @Override
 @Transactional(readOnly=true)
 public Page<Singer> findAllByPage(Pageable pageable) {
 return singerRepository.findAll(pageable);
 }
}

The implementation is basically completed, and the next step is to configure the service in Spring’s
ApplicationContext within the web project, which is discussed in the next section.

Configuring SingerService
Obviously, there are two ways of doing this: XML and Java configurations. You can find a version of this project
configured with XML in the source code for this chapter. If you are curious, you can analyze it, but in this section
the focus will be on the Java configuration classes. To configure SingerService, the database access, and the
transactions, you can use the following class (which you should be familiar with already from Chapter 9):

package com.apress.prospring5.ch16.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;
import org.springframework.orm.jpa.JpaTransactionManager;
import org.springframework.orm.jpa.JpaVendorAdapter;
import org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean;
import org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter;
import org.springframework.transaction.PlatformTransactionManager;

import javax.persistence.EntityManagerFactory;
import javax.sql.DataSource;
import java.util.Properties;

@Configuration
@EnableJpaRepositories(basePackages = {"com.apress.prospring5.ch16.repos"})
@ComponentScan(basePackages = {"com.apress.prospring5.ch16"})
public class DataServiceConfig {

 private static Logger logger = LoggerFactory.getLogger(DataServiceConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2).build();
 } catch (Exception e) {

http://dx.doi.org/10.1007/978-1-4842-2808-1_9

Chapter 16 ■ Web Applications

673

 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
}

 @Bean
 public Properties hibernateProperties() {
 Properties hibernateProp = new Properties();
 hibernateProp.put("hibernate.dialect", "org.hibernate.dialect.H2Dialect");
 hibernateProp.put("hibernate.hbm2ddl.auto", "create-drop");
 hibernateProp.put("hibernate.show_sql", true);
 hibernateProp.put("hibernate.max_fetch_depth", 3);
 hibernateProp.put("hibernate.jdbc.batch_size", 10);
 hibernateProp.put("hibernate.jdbc.fetch_size", 50);
 return hibernateProp;
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 return new JpaTransactionManager(entityManagerFactory());
 }

 @Bean
 public JpaVendorAdapter jpaVendorAdapter() {
 return new HibernateJpaVendorAdapter();
 }

 @Bean
 public EntityManagerFactory entityManagerFactory() {
 LocalContainerEntityManagerFactoryBean factoryBean =
 new LocalContainerEntityManagerFactoryBean();
 factoryBean.setPackagesToScan("com.apress.prospring5.ch16.entities");
 factoryBean.setDataSource(dataSource());
 factoryBean.setJpaVendorAdapter(new HibernateJpaVendorAdapter());
 factoryBean.setJpaProperties(hibernateProperties());
 factoryBean.setJpaVendorAdapter(jpaVendorAdapter());
 factoryBean.afterPropertiesSet();
 return factoryBean.getNativeEntityManagerFactory();
 }
}

Now the service layer is completed and ready to be exposed and used by remote clients.

Introducing MVC and Spring MVC
Before moving on to implement the presentation layer, let’s go through some major concepts of MVC as a
pattern in web applications and how Spring MVC provides comprehensive support in this area.

In the following sections, we present these high-level concepts one by one. First, we give a brief
introduction to MVC. Second, we present a high-level view of Spring MVC and its WebApplicationContext
hierarchy. Finally, we discuss the request life cycle within Spring MVC.

Chapter 16 ■ Web Applications

674

Introducing MVC
MVC is a commonly used pattern in implementing the presentation layer of an application. The main
principle of the MVC pattern is to define an architecture with clear responsibilities for different components.
As its name implies, there are three participants within the MVC pattern.

•	 Model: A model represents the business data as well as the “state” of the application
within the context of the user. For example, in an e-commerce web site, the model
will include the user profile information, shopping cart data, and order data if users
purchase goods on the site.

•	 View: This presents the data to the user in the desired format, supports interaction
with users, and supports client-side validation, i18n, styles, and so on.

•	 Controller: The controller handles requests for actions performed by users in the
front end, interacting with the service layer, updating the model, and directing users
to the appropriate view based on the result of execution.

Because of the rise of Ajax-based web applications, the MVC pattern has been enhanced to provide
a more responsive and rich user experience. For example, when using JavaScript, the view can “listen” to
events or actions performed by the user and then submit an XMLHttpRequest to the server. On the controller
side, instead of returning the view, the raw data (for example, in XML or JSON format) is returned, and the
JavaScript application performs “partial” updates of the view with the received data. Figure 16-1 illustrates
a commonly used web application pattern, which can be treated as an enhancement to the traditional MVC
pattern. A normal view request is handled as follows:

	 1.	 Request: A request is submitted to the server. On the server side, most
frameworks (for example, Spring MVC or Struts) have a dispatcher (in the form of
a servlet) to handle the request.

	 2.	 Invokes: The dispatcher dispatches the request to the appropriate controller
based on the HTTP request information and the web application configuration.

	 3.	 Service call: The controller interacts with the service layer.

	 4.	 Model is populated: The information obtained from the service layer is used by
the controller to populate a model.

Figure 16-1.  The MVC pattern in a typical web application

Chapter 16 ■ Web Applications

675

	 5.	 View is created: Based on the model, a view is created.

	 6.	 Response: The controller returns the corresponding view to the user.

In addition, within a view, Ajax calls will happen. For example, say the user is browsing data within a
grid. When the user clicks the next page, instead of a full-page refresh, the following flow will happen:

	 a.	 Request: An XMLHttpRequest is prepared and submitted to the server. The
dispatcher will dispatch the request to the corresponding controller.

	 b.	 Response: The controller interacts with the service layer, and the response data
will be formatted and sent to the browser. No view is involved in this case. The
browser receives the data and performs a partial update of the existing view.

Introducing Spring MVC
In the Spring Framework, the Spring MVC module provides comprehensive support for the MVC pattern,
with support for other features (for example, theming, i18n, validation, and type conversion and formatting)
that ease the implementation of the presentation layer.

In the following sections, we discuss the main concepts of Spring MVC. Topics include Spring MVC’s
WebApplicationContext hierarchy, a typical request-handling life cycle, and configuration.

Spring MVC WebApplicationContext Hierarchy
In Spring MVC, DispatcherServlet is the central servlet that receives requests and dispatches them to
the appropriate controllers. In a Spring MVC application, there can be any number of DispatcherServlet
instances for various purposes (for example, handling user interface requests and RESTful-WS requests),
and each DispatcherServlet has its own WebApplicationContext configuration, which defines the servlet-
level characteristics, such as controllers supporting the servlet, handler mapping, view resolving, i18n,
theming, validation, and type conversion and formatting.

Underneath the servlet-level WebApplicationContext configurations, Spring MVC maintains a root
WebApplicationContext, which includes the application-level configurations such as the back-end data
source, security, and service and persistence layer configuration. The root WebApplicationContext will be
available to all servlet-level WebApplicationContexts.

Let’s look at an example. Say we have two DispatcherServlet instances in an application. One
servlet supports the user interface (called the application servlet), and the other provides services in the
form of RESTful-WS to other applications (called the RESTful servlet). In Spring MVC, we will define the
configurations for both the root WebApplicationContext instance and the WebApplicationContext instance
for the two DispatcherServlet instances. Figure 16-2 shows the WebApplicationContext hierarchy that will
be maintained by Spring MVC for this scenario.

Dusan
Highlight

Dusan
Highlight

Chapter 16 ■ Web Applications

676

Figure 16-2.  Spring MVC WebApplicationContext hierarchy

Spring MVC Request Life Cycle
Let’s see how Spring MVC handles a request. Figure 16-3 shows the main components involved in handling
a request in Spring MVC. The main components and their purposes are as follows:

•	 Filter: The filter applies to every request. Several commonly used filters and their
purposes are described in the next section.

•	 Dispatcher servlet: The servlet analyzes the requests and dispatches them to the
appropriate controller for processing.1

•	 Common services: The common services will apply to every request to provide
supports including i18n, theme, and file upload. Their configuration is defined in the
DispatcherServlet’s WebApplicationContext.

1If you are familiar with design patterns, you will recognize that DispatcherServlet is an expression of the Front
Controller design pattern.

Chapter 16 ■ Web Applications

677

•	 Handler mapping: This maps incoming requests to handlers (a method within a
Spring MVC controller class). Since Spring 2.5, in most situations the configuration
is not required because Spring MVC will automatically register a HandlerMapping
implementation out of the box that maps handlers based on HTTP paths expressed
through the @RequestMapping annotation at the type or method level within
controller classes.2

•	 Handler interceptor: In Spring MVC, you can register interceptors for the handlers
for implementing common checking or logic. For example, a handler interceptor can
check to ensure that only the handlers can be invoked during office hours.

Figure 16-3.  Spring MVC request life cycle

2In Spring 2.5, DefaultAnnotationHandlerMapping was the default implementation. Starting with Spring 3.1,
RequestMappingHandlerMapping has become the default implementation, which supports request mapping to handlers
defined without annotations also, as long as the Spring conventions of naming controllers and methods are respected.

Chapter 16 ■ Web Applications

678

•	 Handler exception resolver: In Spring MVC, the HandlerExceptionResolver interface
(defined in package org.springframework.web.servlet) is designed to deal with
unexpected exceptions thrown during request processing by handlers. By default,
DispatcherServlet registers the DefaultHandlerExceptionResolver class (from
package org.springframework.web.servlet.mvc.support). This resolver handles
certain standard Spring MVC exceptions by setting a specific response status code.
You can also implement your own exception handler by annotating a controller
method with the @ExceptionHandler annotation and passing in the exception type
as the attribute.

•	 View Resolver: Spring MVC’s ViewResolver interface (from package org.
springframework.web.servlet) supports view resolution based on a
logical name returned by the controller. There are many implementation
classes to support various view-resolving mechanisms. For example, the
UrlBasedViewResolver class supports direct resolution of logical names to URLs.
The ContentNegotiatingViewResolver class supports dynamic resolving of views
depending on the media type supported by the client (such as XML, PDF, and
JSON). There also exists a number of implementations to integrate with different
view technologies, such as FreeMarker (FreeMarkerViewResolver), Velocity
(VelocityViewResolver), and JasperReports (JasperReportsViewResolver).

These descriptions cover only a few commonly used handlers and resolvers. For a full description,
please refer to the Spring Framework reference documentation and its Javadoc.

Spring MVC Configuration
To enable Spring MVC within a web application, some initial configuration is required, especially for the web
deployment descriptor web.xml. Since Spring 3.1, support has been available for code-based configuration
within a Servlet 3.0 web container. This provides an alternative to the XML configuration required in the web
deployment descriptor file (web.xml).

To configure Spring MVC support for web applications, we need to perform the following configurations
in the web deployment descriptor:

•	 Configuring the root WebApplicationContext

•	 Configuring the servlet filters required by Spring MVC

•	 Configuring the dispatcher servlets within the application

The following configuration class does all three configurations in only a few lines of code:

package com.apress.prospring5.ch16.init;

import com.apress.prospring5.ch16.config.DataServiceConfig;
import com.apress.prospring5.ch16.config.SecurityConfig;
import com.apress.prospring5.ch16.config.WebConfig;
import org.springframework.web.filter.CharacterEncodingFilter;
import org.springframework.web.filter.HiddenHttpMethodFilter;
import org.springframework.web.servlet.support.
 AbstractAnnotationConfigDispatcherServletInitializer;

Chapter 16 ■ Web Applications

679

import javax.servlet.Filter;

public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{
 SecurityConfig.class, DataServiceConfig.class
 };
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{
 WebConfig.class
 };
 }

@Override
 protected String[] getServletMappings() {
 return new String[]{"/"};
 }

 @Override
 protected Filter[] getServletFilters() {
 CharacterEncodingFilter cef = new CharacterEncodingFilter();
 cef.setEncoding("UTF-8");
 cef.setForceEncoding(true);
 return new Filter[]{new HiddenHttpMethodFilter(), cef};
 }
}

To use code-based configuration, a class that implements the org.springframework.web.
WebApplicationInitializer interface must be developed. To make things more practical, in the previous
example the Spring class AbstractAnnotationConfigDispatcherServletInitializer, an implementation
of WebApplicationInitializer, was extended because it contains concrete implementations of methods
needed for the configuration of Spring web applications that use Java-based Spring configuration.

All classes implementing the WebApplicationInitializer interface will be automatically detected by
the org.springframework.web.SpringServletContainerInitializer class (which implements Servlet 3.0’s
javax.servlet.ServletContainerInitializer interface), which bootstraps automatically in any Servlet 3.0
containers. As seen in the previous example, the following methods were overridden to plug in customized
configurations:

•	 getRootConfigClasses(): A root application context of type
AnnotationConfigWebApplicationContext will be created using the configuration
classes returned by this method.

•	 getServletConfigClasses(): A web application context of type
AnnotationConfigWebApplicationContext will be created using the configuration
classes returned by this method.

Chapter 16 ■ Web Applications

680

•	 getServletMappings(): The DispatcherServelt’s mappings (context) are specified
by the array of strings returned by this method.

•	 getServletFilters(): As the name of the methods says, this one will return an array
of implementations of javax.servlet.Filter that will be applied to every request.

But wait, if you look at the example mentioned earlier, there is no mention of the security filter
anywhere! How is this possible? This was covered in Chapter 12, but in case you skipped that one, here’s the
simple answer: there’s a specialized Spring class for that.

package com.apress.prospring5.ch16.init;

import org.springframework.security.web.context.
 AbstractSecurityWebApplicationInitializer;
public class SecurityWebApplicationInitializer
 extends AbstractSecurityWebApplicationInitializer {
}

By providing an empty class that extends AbstractSecurityWebApplicationInitializer, you are
basically telling Spring that you want DelegatingFilterProxy enabled, so springSecurityFilterChain will
be used before any other registered javax.servlet.Filter.

Using this approach, when combined with the Java code-based configuration of Spring, it’s possible
to implement a pure Java code-based configuration of a Spring-based web application, without the need
to declare any Spring configuration in web.xml or other Spring XML configuration files. And yes, it is that
simple.

Returning to the filters, Table 16-1 describes each of the filters in the array returned by
getServletFilters().

Table 16-1.  Commonly Used Spring MVC Servlet Filters

Filter Class Full Name Description

org.springframework.web.filter.
CharacterEncodingFilter

This filter is used to specify the character encoding for the
request.

org.springframework.web.filter.
HiddenHttpMethodFilter

This filter provides support for HTTP methods other than
GET and POST (for example, PUT).

 A lthough not needed here (and thus not used in the configuration), there is a filter implementation
that should be mentioned: org.springframework.orm.jpa.support.OpenEntityManagerInViewFilter.
This implementation binds a JPA EntityManager to the thread for the entire processing of the request. It is
intended for the Open EntityManager in View pattern, allowing for lazy loading in web views despite the original
transactions already being completed. Although practical, it is quite dangerous, as multiple requests might end
up consuming all database-allowed open connections. Also, if the data set to load is big, the application might
freeze. That is why developers prefer not to use it, instead having specific handlers called via Ajax requests to
load the data in web-specific view objects (instead of entities).

http://dx.doi.org/10.1007/978-1-4842-2808-1_12

Chapter 16 ■ Web Applications

681

Creating the First View in Spring MVC
Having the service layer and Spring MVC configuration in place, we can start to implement our first view.
In this section, we will implement a simple view to display all singers who were initially populated by the
DBInitializer bean.

As mentioned earlier, we will use JSPX to implement the view. JSPX is JSP in a well-formed XML format.
The main advantages of JSPX over JSP are as follows:

•	 JSPX forces the separation of code from the view layer more strictly. For example,
you can’t place Java “scriptlets” in a JSPX document.

•	 Tools might perform instant validation (on the XML syntax) so that mistakes can be
caught earlier. We need to configure our project with the dependencies listed.

We need to configure our project with the dependencies listed in the following configuration snippet:

\\pro-spring-15\build.gradle
ext {
 //spring libs
 springVersion = '5.0.0.RC2'
 springSecurityVersion = '5.0.0.M2'
 h2Version = '1.4.194'
 tilesVersion = '3.0.7'

 //persistency libraries
 hibernateVersion = '5.2.10.Final'
 hibernateJpaVersion = '1.0.0.Final'
 hibernateValidatorVersion = '5.4.1.Final'
 ...

 spring = [
 webmvc : "org.springframework:spring-webmvc:$springVersion",
 data : "org.springframework.data:spring-data-jpa:$springDataVersion",
 securityWeb :
 "org.springframework.security:spring-security-web:$springSecurityVersion",
 securityConfig:
 "org.springframework.security:spring-security-config:$springSecurityVersion",
 securityTaglibs:
 "org.springframework.security:spring-security-taglibs:$springSecurityVersion",
 ...
]

 hibernate = [
 validator : "org.hibernate:hibernate-validator:$hibernateValidatorVersion",
 em : "org.hibernate:hibernate-entitymanager:$hibernateVersion",
 jpaApi :
 "org.hibernate.javax.persistence:hibernate-jpa-2.1-api:$hibernateJpaVersion",
 ...
]

 misc = [
 validation : "javax.validation:validation-api:$javaxValidationVersion",
 castor : "org.codehaus.castor:castor-xml:$castorVersion",

Chapter 16 ■ Web Applications

682

 io : "commons-io:commons-io:2.5",
 tiles : "org.apache.tiles:tiles-jsp:$tilesVersion",
 jstl : "jstl:jstl:1.2",
 ...
]

 db = [
 h2 : "com.h2database:h2:$h2Version"
]
}
...
\\chapter-16\build.gradle
dependencies {
 // we exclude common transitive dependencies
 compile spring.contextSupport {
 exclude module: 'spring-context'
 exclude module: 'spring-beans'
 exclude module: 'spring-core'
 }
 compile spring.securityTaglibs {
 exclude module: 'spring-web'
 exclude module: 'spring-context'
 exclude module: 'spring-beans'
 exclude module: 'spring-core'
 }
 compile spring.securityConfig {
 exclude module: 'spring-security-core'
 exclude module: 'spring-context'
 exclude module: 'spring-beans'
 exclude module: 'spring-core'
 }
 Compile misc.slf4jJcl, misc.logback, misc.lang3, hibernate.em,
 hibernate.validator, misc.guava, db.h2, spring.data,
 spring.webmvc, misc.castor, misc.validation, misc.tiles,
 misc.jacksonDatabind, misc.servlet, misc.io,misc.jstl,
 spring.securityTaglibs
}

Most of the libraries listed in the previous configuration should be known to you by now. The ones that
are used in this book for the first time are explained here:

•	 spring-webmvc is the Spring MVC module for MVC support.

•	 spring-security-web is the Spring web module for adding support for Spring
Security. It is a direct dependency of spring-security-web that contains definitions
of the security tags, to be used in JSP pages. spring-security-web contains the
AbstractSecurityWebApplicationInitializer class and other related Spring
components for securing web applications.

Chapter 16 ■ Web Applications

683

•	 spring-security-config is the Spring Security module, containing classes that are
used to configure security in a Spring application.

•	 tiles-jsp is the Apache Tiles module, containing Java classes and tag definitions to
create Java templates for web applications.3

Configuring DispatcherServlet
The next step is to configure DispatcherServlet. This is done by creating a configuration class that defines
all infrastructure beans needed for a Spring web application. A snippet of the Java Config–based class is
depicted next, containing minimal information:

package com.apress.prospring5.ch16.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.*;
import org.springframework.web.servlet.view.InternalResourceViewResolver;
...

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch16"})
public class WebConfig implements WebMvcConfigurer {

 //Declare the static resources.
 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/resources/**").addResourceLocations("/")
 .setCachePeriod(31556926);
 }

 @Bean
 InternalResourceViewResolver viewResolver(){
 InternalResourceViewResolver resolver = new InternalResourceViewResolver();
 resolver.setPrefix("/WEB-INF/views"); resolver.setSuffix(".jspx");
 resolver.setRequestContextAttribute("requestContext"); return resolver;
 }

 // <=> <mvc:view-controller .../>
 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("singers/list");
 }

3You can find more details at https://tiles.apache.org/.

https://tiles.apache.org/

Chapter 16 ■ Web Applications

684

 // <=> <mvc:default-servlet-handler/>
 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }
}

The interface WebMvcConfigurer defines callback methods to customize the Java-based configuration
for Spring MVC enabled by using @EnableWebMvc. Although there can be more than one Java-based
configuration class in a Spring application, only one is allowed to be annotated with @EnableWebMvc. In the
previous configuration, you can observe that several methods are overridden to customize the configuration:

•	 The addResourceHandlers() method adds handlers that are used to serve static
resources such as images, JavaScript, and CSS files from specific locations under the
web application root, the classpath, and others. In this customized implementation,
any request with the URL containing resources will be treated by a special handler
that bypasses all filters.

•	 The configureDefaultServletHandling(..) method enables a handler for
handling static resources.

•	 The addViewControllers(..) method defines simple automated controllers
preconfigured with the response status code and/or a view to render the response
body. These views have no controller logic and are used to render a welcome page,
perform simple site URL redirects, return a 404 status, and more. In the configuration
depicted previously, you are using this method to perform a redirection to the
singers/list view.

•	 The viewResolver(..) method declares a view resolver of type
InternalResourceViewResolver that matches symbolic view names to *.jspx
templates under /WEB-INF/views.

Implementing SingerController
Having DispatcherServlet’s WebApplicationContext configured, the next step is to implement the
controller class.

package com.apress.prospring5.ch16.web;
...

@RequestMapping("/singers")
@Controller
public class SingerController {
 private final Logger logger = LoggerFactory.getLogger(SingerController.class);

 private SingerService singerService;
 private MessageSource messageSource;

 @RequestMapping(method = RequestMethod.GET)
 public String list(Model uiModel) {
 logger.info("Listing singers");

Chapter 16 ■ Web Applications

685

 List<Singer> singers = singerService.findAll();
 uiModel.addAttribute("singers", singers);

 logger.info("No. of singers: " + singers.size());

 return "singers/list";
 }

 @Autowired
 public void setSingerService(SingerService singerService) {
 this.singerService = singerService;
 }
}

The annotation @Controller is applied to the class, indicating that it’s a Spring MVC controller.
The @RequestMapping annotation at the class level indicates the root URL that will be handled by the
controller. In this case, all URLs with the prefix /singers will be dispatched to this controller. On the list()
method, the @RequestMapping annotation is also applied, and at this time the method is mapped to the
HTTP GET method. This means that the URL /singers with the HTTP GET method will be handled by
this method. Within the list() method, the list of singers is retrieved and saved into the Model interface
passed in to the method by Spring MVC. Finally, the logical view named singers/list is returned. In the
DispatcherServlet configuration, InternalResourceViewResolver is configured as the view resolver, and
the file has the prefix /WEB-INF/views/ and the suffix .jspx. As a result, Spring MVC will pick up the file
/WEB-INF/views/singers/list.jspx as the view.

Implementing the Singer List View
The next step is to implement the view page for displaying the singer information, which is the file
//src/main/webapp/WEB- INF/views/singers/list.jspx.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:fmt="http://java.sun.com/jsp/jstl/fmt" version="2.0">

 <h1>Singer Listing</h1>

 <c:if test="${not empty singers}">
 <table>
 <thead>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Birth Date</th>
 </tr>
 </thead>
 <tbody>

Chapter 16 ■ Web Applications

686

 <c:forEach items="${singers}" var="singer">
 <tr>
 <td>${singer.firstName}</td>
 <td>${singer.lastName}</td>
 <td><fmt:formatDate value="${singer.birthDate}"/></td>
 </tr>
 </c:forEach>
 </tbody>
 </table>
 </c:if>
</div>

If you have developed with JSP before, the previous snippet should be familiar to you. But since this is
a JSPX page, the page content is embedded under the <div> tag. In addition, the tag libraries being used are
declared as XML namespaces.

First, the <jsp:directive.page> tag defines the attributes that apply to the entire JSPX page, while the
<jsp:output> tag controls the properties of the output of the JSPX document.

Second, the tag <c:if> detects whether the model attribute singers is empty. Because we already
populated some singer information in the database, the singers attribute should contain data. As a result,
the <c:forEach> tag will render the singer information in the table within the page. Note the use of the
<fmt:formatDate> tag to format the birthDate attribute, which is of the type java.utilDate.

Testing the Singer List View
Now we are ready to test the singer list view. First build and deploy the application; then, to test the singer
list view, open a web browser and visit the URL http://localhost:8080/singers. You should be able to
see the singer listing page.

Now we have our first view working. In the upcoming sections, we will enrich the application with more
views and enable support of i18n, themes, and so on.

Understanding the Spring MVC Project Structure
Before diving into the implementation of the various aspects of a web application, let’s take a look at what
the project structure in the sample web application developed in this chapter looks like.

Typically, in a web application, a lot of files are required to support various features. For example, there
are a lot of static resource files, such as style sheets, JavaScript files, images, and component libraries. Then
there are files that support presenting the interface in various languages. And of course, there are the view
pages that will be parsed and rendered by the web container, as well as the layout and definition files that
will be used by the templating framework (for example, Apache Tiles) for providing a consistent look and
feel of the application.

It’s always good practice to store files that serve different purposes in a well-structured folder hierarchy
to give you a clear picture of the various resources being used by the application and ease ongoing
maintenance work.

Table 16-2 describes the folder structure of the web application that will be developed in this chapter.
Note that the structure presented here is not mandatory but is commonly used in the developer community
for web application development.

Chapter 16 ■ Web Applications

687

In the upcoming sections, we will need various files (for example, CSS files, JavaScript files, and images)
to support the implementation. The source code of the CSS and JavaScript will not be shown here. Given
that, we recommend you download a copy of the source code for this chapter and extract it to a temporary
folder so that you can copy the files required into the project directly.

Enabling Internationalization (i18n)
When developing web applications, it’s always good practice to enable i18n in the early stages. The main
work is to externalize the user interface text and messages into properties files.

Even though you may not have i18n requirements on day one, it’s good to externalize the language-
related settings so that it will be easier later when you need to support more languages.

With Spring MVC, enabling i18n is simple. First, externalize the language-related user interface settings
into various properties files within the /WEB-INF/i18n folder, as described in Table 16-2. Because we will
support both English (US) and Chinese (HK), you will need four files. The application.properties and
message.properties files store the settings for the default locale, which in this case is English (US). The
application_zh_HK.properties and message_zh_HK.properties files store the settings in the Chinese
(HK) language.

Table 16-2.  Sample Web Project Folder Structure Description

Folder Name Purpose

ckeditor CKEditor (http://ckeditor.com) is a JavaScript component library that provides a
rich-text editor in input form. We will use it to enable rich-text editing of a singer’s
description.

jqgrid jqGrid (http://trirand.com) is a component built on top of jQuery that provides
various grid-based components for data presentation. We will use this library for
implementing the grid in order to display singers, as well as to support Ajax-style
pagination.

scripts This is the folder for all generic JavaScript files. For the samples in this chapter, the
jQuery (http://jquery.org) and jQuery UI (http://jqueryui.com) JavaScript
libraries will be used to implement a rich user interface. The scripts will be placed in
this folder. In-house JavaScript libraries should be put here too.

styles This folder stores the style sheet files and related images in supporting the styles.

WEB-INF/i18n This folder stores files for supporting i18n. The file application*.properties stores
the layout-related text (for example, page titles, field labels, and menu titles).
The message*.properties file stores various messages (for example, success and
error messages and validation messages). The sample will support both English (US)
and Chinese (HK).

WEB-INF/layouts This folder stores the layout view and definitions. Those files will be used by the
Apache Tiles (http://tiles.apache.org) templating framework.

WEB-INF/views This folder stores the views (in this case, JSPX files) that will be used by the
application.

http://ckeditor.com/
http://trirand.com/
http://jquery.org/
http://jqueryui.com/
http://tiles.apache.org/

Chapter 16 ■ Web Applications

688

Configuring i18n in the DispatcherServlet Configuration
Having the language settings in place, the next step is to configure the DispatcherServlet instance’s
WebApplicationContext for i18n support. The following configuration snippet depicts the beans and
methods for the WebConfig Java-based configuration class that are declared to enable and customize
internationalization support.

package com.apress.prospring5.ch16.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.ReloadableResourceBundleMessageSource;
import org.springframework.web.servlet.config.annotation.*;
import org.springframework.web.servlet.i18n.CookieLocaleResolver;
import org.springframework.web.servlet.i18n.LocaleChangeInterceptor;
import org.springframework.web.servlet.mvc.WebContentInterceptor;
import java.util.Locale;
...

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch16"})
public class WebConfig implements WebMvcConfigurer {

 //Declare our static resources.
 @Override
 public void addResourceHandlers(ResourceHandlerRegistry registry) {
 registry.addResourceHandler("/resources/**").addResourceLocations("/")
 .setCachePeriod(31556926);
 }

 // <=> <mvc:default-servlet-handler/>
 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

 @Bean
 ReloadableResourceBundleMessageSource messageSource() {
 ReloadableResourceBundleMessageSource messageSource =
 new ReloadableResourceBundleMessageSource();
 messageSource.setBasenames(
 "WEB-INF/i18n/messages",
 "WEB-INF/i18n/application");
 messageSource.setDefaultEncoding("UTF-8");
 messageSource.setFallbackToSystemLocale(false);
 return messageSource;
 }

Chapter 16 ■ Web Applications

689

 @Override
 public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(localeChangeInterceptor());
 ...
 }

 @Bean
 LocaleChangeInterceptor localeChangeInterceptor() {
 return new LocaleChangeInterceptor();
 }

 @Bean
 CookieLocaleResolver localeResolver() {
 CookieLocaleResolver cookieLocaleResolver = new CookieLocaleResolver();
 cookieLocaleResolver.setDefaultLocale(Locale.ENGLISH);
 cookieLocaleResolver.setCookieMaxAge(3600);
 cookieLocaleResolver.setCookieName("locale");
 return cookieLocaleResolver;
 }
 ...
}

In the previous configuration snippet, the resource definition is revised to reflect the new folder
structure as presented in Table 16-2. The addResourceHandlers(..) method defines the locations of the
static resource files, which enable Spring MVC to handle the files within those folders efficiently. Within the
tag, the location attribute defines the folders for the static resources. The resource location, /, indicates the
root folder for the web application, which is /src/main/webapp. The resource handler path, /resources/**,
defines the URL for mapping to static resources; as an example, for the URL http://localhost:8080/
resources/styles/standard.css, Spring MVC will retrieve the file standard.css from the folder /src/
main/webapp/styles.

The configureDefaultServletHandling(..) method enables the mapping of DispatcherServlet to
the web application’s root context URL, while still allowing static resource requests to be handled by the
container’s default servlet.

Second, a Spring MVC interceptor with class LocaleChangeInterceptor is defined, which intercepts all
the requests to DispatcherServlet. The interceptor supports locale switching with a configurable request
parameter. From the interceptor configuration, the URL param with the name lang is defined for changing
the locale for the application.

Then, a bean with class ReloadableResourceBundleMessageSource is defined. The
ReloadableResourceBundleMessageSource class implements the MessageSource interface, which loads the
messages from the defined files (in this case, it’s the messages*.properties and application*.properties
files in the /WEB-INF/i18n folder), to support i18n. Note the property fallbackToSystemLocale. This
property instructs Spring MVC whether to fall back to the locale of the system that the application is running
on when a special resource bundle for the client locale isn’t found.

Finally, a bean with the CookieLocaleResolver class is defined. This class supports the storage and
retrieval of locale settings from the user browser’s cookie.

Chapter 16 ■ Web Applications

690

Modifying the Singer List View for i18n Support
Now we can change the JSPX page to display i18n messages. The following JSPX snippet shows the revised
singer list view:4

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:fmt="http://java.sun.com/jsp/jstl/fmt"
 xmlns:spring="http://www.springframework.org/tags"
 version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <jsp:output omit-xml-declaration="yes"/>

 <spring:message code="label_singer_list" var="label SingerList"/>
 <spring:message code="label_singer_first_name" var="labelSingerFirstName"/>
 <spring:message code="label_singer_last_name" var="labelSingerLastName"/>
 <spring:message code="label_singer_birth_date" var="labelSingerBirthDate"/>

 <h1>${label SingerList}</h1>

 <c:if test="${not empty singers}">
 <table>
 <thead>
 <tr>
 <th>${labelSingerFirstName}</th>
 <th>${labelSingerLastName}</th>
 <th>${labelSingerBirthDate}</th>
 </tr>
 </thead>
 <tbody>
 <c:forEach items="${singers}" var="singer">
 <tr>
 <td>${singer.firstName}</td>
 <td>${singer.lastName}</td>
 <td><fmt:formatDate value="${singer.birthDate}"/></td>
 </tr>
 </c:forEach>
 </tbody>
 </table>
 </c:if>
</div>

As shown in the previous snippet, first the Spring namespace is added into the page. Then, the
<spring:message> tag is used to load the messages required by the view in the corresponding variables.
Finally, the page title and the labels are changed to use the i18n messages.

Now build and redeploy the project, open your browser, and point to the URL http://localhost:8080/
singers?lang=zh_HK. You will see the page in the Chinese (HK) locale.

4Keep in mind that we have not introduced Tiles or JavaScript in it yet.

Chapter 16 ■ Web Applications

691

Because we defined localeResolver in DispatcherServlet’s WebApplicationContext, Spring MVC
will store the locale setting in your browser’s cookie (with the name locale), and by default, the cookie
will be kept for the user session. If you want to persist the cookie for a longer time, in the localeResolver
bean definition you can override the property cookieMaxAge, which is inherited from the class org.
springframework.web.util.CookieGenerator, by calling setCookieMaxAge(...).

To switch to English (US), you can change the URL in your browser to reflect ?lang=en_US, and the
page will switch back to English (US). Although we don’t provide the properties file named application_
en_US.properties, Spring MVC will fall back to use the file application.properties, which stores the
properties in the default language of English.

Using Theming and Templating
Besides i18n, a web application requires an appropriate look and feel (for example, a business web site
needs a professional look and feel, while a social web site needs a more vivid style), as well as a consistent
layout so that users will not get confused while using the web application.

In addition, to provide a consistent layout, a templating framework is required. In this section, we will
use Apache Tiles (http://tiles.apache.org), a popular page templating framework, for view templating
support. Spring MVC tightly integrates with Apache Tiles in this aspect. Spring also supports Velocity and
FreeMarker out of the box, which are more general templating systems and useful outside a web application
as well for e-mail templates and so on.

In the following sections, we discuss how to enable theming support in Spring MVC, as well as how to
use Apache Tiles to define the page layout.

Theming Support
Spring MVC provides comprehensive support for theming, and enabling it in web applications is easy. For
example, in the sample singer application in this chapter, we want to create a theme and name it standard.
First, in the folder /src/main/resources, create a file named standard.properties with the content
shown here:

styleSheet=resources/styles/standard.css

This properties file contains a property named styleSheet, which points to the style sheet to use for the
standard theme. This properties file is ResourceBundle for the theme, and you can add as many components
for your theme as you want (for example, the logo image location and background image location).

The next step is to configure DispatcherServlet’s WebApplicationContext for theming support by
modifying the configuration class. First, in the addInterceptors(..) method, we need to add one more
interceptor bean, as shown here:

@Override
public void addInterceptors(InterceptorRegistry registry) {
 registry.addInterceptor(localeChangeInterceptor());
 registry.addInterceptor(themeChangeInterceptor());
}

@Bean
ThemeChangeInterceptor themeChangeInterceptor() {
 return new ThemeChangeInterceptor();
}

http://tiles.apache.org/

Chapter 16 ■ Web Applications

692

The new interceptor of type ThemeChangeInterceptor is added, and this class intercepts every request
for changing the theme.

Second, the bean definitions are needed:

@Bean
ResourceBundleThemeSource themeSource() {
 return new ResourceBundleThemeSource();
}

@Bean
CookieThemeResolver themeResolver() {
 CookieThemeResolver cookieThemeResolver = new CookieThemeResolver();
 cookieThemeResolver.setDefaultThemeName("standard");
 cookieThemeResolver.setCookieMaxAge(3600);
 cookieThemeResolver.setCookieName("theme");
 return cookieThemeResolver;
}

Here, two beans are defined. The first bean, of type ResourceBundleThemeSource, is responsible for
loading the ResourceBundle bean of the active theme. For example, if the active theme is called standard,
the bean will look for the file standard.properties as the ResourceBundle bean of the theme. The
second bean, of type CookieThemeResolver, is used to resolve the active theme for users. The property
defaultThemeName defines the default theme to use, which is the standard theme. Note that as its name
implies, the CookieThemeResolver class uses cookies to store the theme for the user. There also exists the
SessionThemeResolver class that stores the theme attribute in a user’s session.

Now the standard theme is configured and ready for use in our views. The following JSPX snippet shows
the revised singer list view (/WEB-INF/views/singers/list.jspx) with theme support:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:fmt="http://java.sun.com/jsp/jstl/fmt"
 xmlns:spring="http://www.springframework.org/tags"
 version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <jsp:output omit-xml-declaration="yes"/>

 <spring:message code="label_singer_list" var="labelSingerList"/>
 <spring:message code="label_singer_first_name" var="labelSingerFirstName"/>
 <spring:message code="label_singer_last_name" var="labelSingerLastName"/>
 <spring:message code="label_singer_birth_date" var="labelSingerBirthDate"/>

 <head>
 <spring:theme code="styleSheet" var="app_css" />
 <spring:url value="/${app_css}" var="app_css_url" />
 <link rel="stylesheet" type="text/css" media="screen" href="${app_css_url}" />
 </head>

Chapter 16 ■ Web Applications

693

 <h1>${labelSingerList}</h1>

 <c:if test="${not empty singers}">
 <table>
 <thead>
 <tr>
 <th>${labelSingerFirstName}</th>
 <th>${labelSingerLastName}</th>
 <th>${labelSingerBirthDate}</th>
 </tr>
 </thead>
 <tbody>
 <c:forEach items="${singers}" var="singer">
 <tr>
 <td>${singer.firstName}</td>
 <td>${singer.lastName}</td>
 <td><fmt:formatDate value="${singer.birthDate}"/></td>
 </tr>
 </c:forEach>
 </tbody>
 </table>
 </c:if>
</div>

A <head> section is added in the view, and the <spring:theme> tag is used to retrieve the styleSheet
property from the theme’s ResourceBundle, which is the style sheet file standard.css. Finally, the link to the
style sheet is added into the view.

After rebuilding and redeploying the application to the server, open the browser and point to the singer
list view’s URL again (http://localhost:8080/singers), and you will see that the style defined in the
standard.css file was applied.

Using Spring MVC’s theme support, you can easily add new themes or change the existing theme within
your application.

View Templating with Apache Tiles
For view templating using JSP technology, Apache Tiles (http://tiles.apache.org) is the most popular
framework in use. Spring MVC tightly integrates with Tiles. To use Tiles and validation on data, the tiles-
jsp, validation-api, and hibernate-validator libraries were added as dependencies.

In the following sections, we discuss how to implement page templates, including page layout design,
definition, and implementation of the components within the layout.

Designing the Template Layout
First we need to define the number of templates required in our application and the layout for each template.

http://tiles.apache.org/

Chapter 16 ■ Web Applications

694

In the singer sample in this chapter, we require only one template. The layout is rather trivial, as shown
in Figure 16-4. As you can see, the template requires the following page components:

Figure 16-4.  Page template with layout components

•	 /WEB-INF/views/header.jspx: This page provides the header area.

•	 /WEB-INF/views/menu.jspx: This page provides the left menu area, as well as the
login form that will be implemented later in this chapter.

•	 /WEB-INF/views/footer.jspx: This page provides the footer area.

We will use Apache Tiles to define the template, and we need to develop the page template file as well
as the layout definitions file, as listed here:

•	 /WEB-INF/layouts/default.jspx: This page provides the overall page layout for a
specific template.

•	 /WEB-INF/layouts/layouts.xml: This file stores the page layout definitions required
by Apache Tiles.

Implementing Page Layout Components
Having the layout defined, we can implement the page components. First we will develop the page template
file and the layout definition files required by Apache Tiles.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE tiles-definitions PUBLIC
 "-//Apache Software Foundation//DTD Tiles Configuration 2.1//EN"
 "http://tiles.apache.org/dtds/tiles-config_3_0.dtd">

Chapter 16 ■ Web Applications

695

<tiles-definitions>
 <definition name="default" template="/WEB-INF/layouts/default.jspx">
 <put-attribute name="header" value="/WEB-INF/views/header.jspx" />
 <put-attribute name="menu" value="/WEB-INF/views/menu.jspx" />
 <put-attribute name="footer" value="/WEB-INF/views/footer.jspx" />
 </definition>
</tiles-definitions>

The file should be easy to understand. There is one page template definition, with the name default.
The template code is in the file default.jspx. Within the page, three components are defined, named
header, menu, and footer. The content of the components will be loaded from the file provided by the value
attribute. For a detailed description of the Tiles definition, please refer to the project documentation page
(http://tiles.apache.org/).

The following JSPX snippet shows the content of the default.jspx template file:

<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:fn="http://java.sun.com/jsp/jstl/functions"
 xmlns:tiles="http://tiles.apache.org/tags-tiles"
 xmlns:spring="http://www.springframework.org/tags">

<jsp:output doctype-root-element="HTML"
 doctype-system="about:legacy-compat" />

<jsp:directive.page contentType="text/html;charset=UTF-8" />
<jsp:directive.page pageEncoding="UTF-8" />
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=8" />

 <spring:theme code="styleSheet" var="app_css" />
 <spring:url value="/${app_css}" var="app_css_url" />
 <link rel="stylesheet" type="text/css" media="screen" href="${app_css_url}" />

 <!-- Get the user locale from the page context
 (it was set by Spring MVC's locale resolver) -->
 <c:set var="userLocale">
 <c:set var="plocale">${pageContext.response.locale}</c:set>
 <c:out value="${fn:replace(plocale, '_', '-')}" default="en" />
 </c:set>

 <spring:message code="application_name" var="app_name" htmlEscape="false"/>
 <title><spring:message code="welcome_h3" arguments="${app_name}" /></title>
</head>

<body class="tundra spring">
<div id="headerWrapper">
 <tiles:insertAttribute name="header" ignore="true" />
</div>
<div id="wrapper">
 <tiles:insertAttribute name="menu" ignore="true" />
 <div id="main">

http://tiles.apache.org/

Chapter 16 ■ Web Applications

696

 <tiles:insertAttribute name="body"/>
 <tiles:insertAttribute name="footer" ignore="true"/>
 </div>
</div>
</body>
</html>

The page is basically a JSP page. The highlights are as follows:

•	 The <spring:theme> tag is placed in the template, which supports theming at the
template level.

•	 The <tiles:insertAttribute> tag is used to indicate the page components that
need to be loaded from other files, as indicated in the layouts.xml file.

Now let’s implement the header, menu, and footer components. The contents are shown here.
The header.jspx file is quite simple and contains just this text:

<div id="header" xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:spring="http://www.springframework.org/tags"
 version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8" />
 <jsp:output omit-xml-declaration="yes" />

 <spring:message code="header_text" var="headerText"/>

 <div id="appname">
 <h1>${headerText}</h1>
 </div>
</div>

The menu.jspx file is simple as well, as this application was designed with a minimal interface because
the main focus is, after all, on Spring.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div id="menu" xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:spring="http://www.springframework.org/tags"
 version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8" />
 <jsp:output omit-xml-declaration="yes" />

 <spring:message code="menu_header_text" var="menuHeaderText"/>
 <spring:message code="menu_add_singer" var="menuAddsinger"/>
 <spring:url value="/singers?form" var="addsingerUrl"/>

 <h3>${menuHeaderText}</h3>
 <h3>${menuAddsinger}</h3>
</div>

Chapter 16 ■ Web Applications

697

The footer.jspx file contains the URLs to change the language in which the interface is displayed.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div id="footer" xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:spring="http://www.springframework.org/tags" version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8" />
 <jsp:output omit-xml-declaration="yes" />

 <spring:message code="home_text" var="homeText"/>
 <spring:message code="label_en_US" var="labelEnUs"/>
 <spring:message code="label_zh_HK" var="labelZhHk"/>
 <spring:url value="/singers" var="homeUrl"/>

 ${homeText} |
 ${labelEnUs} |
 ${labelZhHk}
</div>

Now for the singer list view, we can modify it to fit into the template. Basically, we just need to remove
the <head> section, because it’s now in the template page, default.jspx. The revised and improved version
is shown here:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:fmt="http://java.sun.com/jsp/jstl/fmt" version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <jsp:output omit-xml-declaration="yes"/>

 <spring:message code="label_singer_list" var="labelSingerList"/>
 <spring:message code="label_singer_first_name" var="labelSingerFirstName"/>
 <spring:message code="label_singer_last_name" var="labelSingerLastName"/>
 <spring:message code="label_singer_birth_date" var="labelSingerBirthDate"/>

 <h1>${labelSingerList}</h1>

 <c:if test="${not empty singers}">
 <table>
 <thead>
 <tr>
 <th>${labelSingerFirstName}</th>
 <th>${labelSingerLastName}</th>
 <th>${labelSingerBirthDate}</th>
 </tr>
 </thead>
 <tbody>
 <c:forEach items="${singers}" var="singer">
 <tr>
 <td>${singer.firstName}</td>
 <td>${singer.lastName}</td>
 <td><fmt:formatDate value="${singer.birthDate}"/></td>
 </tr>

Chapter 16 ■ Web Applications

698

 </c:forEach>
 </tbody>
 </table>
 </c:if>
</div>

Now the template, definition, and components are ready; the next step is to configure Spring MVC to
integrate with Apache Tiles.

Configuring Tiles in Spring MVC
Configuring Tiles support in Spring MVC is simple. In the DispatcherServlet configuration (class WebConfig),
we need to make a modification to replace InternalResourceViewResolver with the UrlBasedViewResolver
class. The following code snippet contains only beans that are needed to configure Tiles support:

package com.apress.prospring5.ch16.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.view.UrlBasedViewResolver;
import org.springframework.web.servlet.view.tiles3.TilesConfigurer;
import org.springframework.web.servlet.view.tiles3.TilesView;
...
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch16"})
public class WebConfig implements WebMvcConfigurer {

 @Bean
 UrlBasedViewResolver tilesViewResolver() {
 UrlBasedViewResolver tilesViewResolver = new UrlBasedViewResolver();
 tilesViewResolver.setViewClass(TilesView.class);
 return tilesViewResolver;
 }

 @Bean
 TilesConfigurer tilesConfigurer() {
 TilesConfigurer tilesConfigurer = new TilesConfigurer();
 tilesConfigurer.setDefinitions("/WEB-INF/layouts/layouts.xml",
 "/WEB-INF/views/**/views.xml"
);
 tilesConfigurer.setCheckRefresh(true);
 return tilesConfigurer;
 }
 ...
}

In the configuration snippet depicted previously, a ViewResolver bean with the class UrlBasedViewResolver
is defined, with the property viewClass set to the TilesView class, which is Spring MVC’s support for Tiles.
Finally, a tilesConfigurer bean is defined that provides the layout configurations required by Tiles.

Chapter 16 ■ Web Applications

699

One final configuration file we need to prepare is the /WEB-INF/views/singers/views.xml file, which
defines the views for the singer application in the sample. The file content is depicted here:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE tiles-definitions PUBLIC "-//Apache Software
 Foundation//DTD Tiles Configuration 3.0//EN"
 "http://tiles.apache.org/dtds/tiles-config_3_0.dtd">
<tiles-definitions>
 <definition extends="default" name="singers/list">
 <put-attribute name="body" value="/WEB-INF/views/singers/list.jspx" />
 </definition>
</tiles-definitions>

As shown previously, the logical view name is mapped to the corresponding body attribute of the view to
display. As in the SingerController class, the list() method returns the logical view name singers/list,
so Tiles will be able to map the view name to the correct template and the view body to display.

We can now test the page. Make sure that the project was rebuilt and deployed to the server. Load the singer
list view again (http://localhost:8080/singers), and the view based on the template will be displayed.

Implementing the Views for Singer Information
Now we can proceed to implement the views that allow users to view the details of a singer, create new
singers, or update existing singer information.

In the following sections, we discuss the mapping of URLs to the various views, as well as how the views
are implemented. We also discuss how to enable JSR-349 validation support in Spring MVC for the edit view.

Mapping URLs to the Views
First we need to design how the various URLs are to be mapped to the corresponding views. In Spring MVC,
one of the best practices is to follow the RESTful-style URL for mapping views. Table 16-3 shows the URLs-to-
views mapping, as well as the controller method name that will handle the action.

Table 16-3.  Mapping of URLs to Views

URL HTTP Method Controller Method Description

/singers GET list() Lists the singer’s information.

/singers/id GET show() Displays a single singer’s information.

/singers/id?form GET updateForm() Displays the edit form for updating an
existing singer.

/singers/id?form POST update() Users update the singer information and
submit the form. Data will be processed
here.

/singers?form GET createForm() Displays the edit form for creating a new
singer.

/singers?form POST create() Users enter singer information and submit
the form. Data will be processed here.

/singers/photo/id GET downloadPhoto() Downloads the photo of a singer.

Chapter 16 ■ Web Applications

700

Implementing the Show Singer View
Now we implement the view for showing a singer’s information. Implementing the show view is a three-step
process:

	 1.	 Implement the controller method.

	 2.	 Implement the show singer view (/views/singers/show.jspx).

	 3.	 Modify the view definition file for the view (/views/singers/views.xml).

The following code snippet shows the show() method implementation of the singerController class
for displaying a singer’s information:

package com.apress.prospring5.ch16.web;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.validation.BindingResult;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestMethod;
...

@RequestMapping("/singers")
@Controller
public class SingerController {
 private final Logger logger = LoggerFactory.getLogger(SingerController.class);

 private SingerService singerService;
 private MessageSource messageSource;

 @RequestMapping(value = "/{id}", method = RequestMethod.GET)
 public String show(@PathVariable("id") Long id, Model uiModel) {
 Singer singer = singerService.findById(id);
 uiModel.addAttribute("singer", singer);

 return "singers/show";
 }

 @Autowired
 public void setSingerService(SingerService singerService) {
 this.singerService = singerService;
 }
...
}

On the show() method, the @RequestMapping annotation applied to it indicates that the method is to
handle the URL /singers/{id} with the HTTP GET method. In the method, the @PathVariable annotation
is applied to the argument id, which instructs Spring MVC to extract the ID from the URL into the argument.

Chapter 16 ■ Web Applications

701

Then the singer is retrieved and added to the model, and the logical view name singers/show is returned.
The next step is to implement the show singer view, /views/singers/show.jspx, which is shown here:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:fmt="http://java.sun.com/jsp/jstl/fmt" version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <jsp:output omit-xml-declaration="yes"/>

 <spring:message code="label_singer_info" var="labelSingerInfo"/>
 <spring:message code="label_singer_first_name" var="labelSingerFirstName"/>
 <spring:message code="label_singer_last_name" var="labelSingerLastName"/>
 <spring:message code="label_singer_birth_date" var="labelSingerBirthDate"/>
 <spring:message code="label_singer_description" var="labelSingerDescription"/>
 <spring:message code="label_singer_update" var="labelSingerUpdate"/>
 <spring:message code="date_format_pattern" var="dateFormatPattern"/>
 <spring:message code="label_singer_photo" var="labelSingerPhoto"/>

 <spring:url value="/singers/photo" var="singerPhotoUrl"/>
 <spring:url value="/singers" var="editSingerUrl"/>

 <h1>${labelSingerInfo}</h1>

 <div id="singerInfo">

 <c:if test="${not empty message}">
 <div id="message" class="${message.type}">${message.message}</div>
 </c:if>

 <table>
 <tr>
 <td>${labelSingerFirstName}</td>
 <td>${singer.firstName}</td>
 </tr>
 <tr>
 <td>${labelSingerLastName}</td>
 <td>${singer.lastName}</td>
 </tr>
 <tr>
 <td>${labelSingerBirthDate}</td>
 <td><fmt:formatDate value="${singer.birthDate}"/></td>
 </tr>
 <tr>
 <td>${labelSingerDescription}</td>
 <td>${singer.description}</td>
 </tr>

Chapter 16 ■ Web Applications

702

 <tr>
 <td>${labelSingerPhoto}</td>
 <td></td>
 </tr>
 </table>

 ${labelSingerUpdate}
 </div>
</div>

The page is simple; it displays the model attribute singer within the page.
The final step is to modify the view definition file /views/singers/views.xml for mapping the logical

view name singers/show.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE tiles-definitions PUBLIC "-//Apache Software
 Foundation//DTD Tiles Configuration 3.0//EN"
 "http://tiles.apache.org/dtds/tiles-config_3_0.dtd">
 <tiles-definitions>
 <definition extends="default" name="singers/list">
 <put-attribute name="body" value="/WEB-INF/views/singers/list.jspx" />
 </definition>
 <definition extends="default" name="singers/show">
 <put-attribute name="body" value="/WEB-INF/views/singers/show.jspx" />
 </definition>
</tiles-definitions>

The show singer view is complete. Now we need to add an anchor link into the singer list view, /views/
singers/list.jspx, for each singer to the show singer view. The revised file contents are shown here:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:fmt="http://java.sun.com/jsp/jstl/fmt" version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <jsp:output omit-xml-declaration="yes"/>

 <spring:message code="label_singer_list" var="labelSingerList"/>
 <spring:message code="label_singer_first_name" var="labelSingerFirstName"/>
 <spring:message code="label_singer_last_name" var="labelSingerLastName"/>
 <spring:message code="label_singer_birth_date" var="labelSingerBirthDate"/>

 <h1>${labelSingerList}</h1>

 <spring:url value="/singers" var="showSingerUrl"/>

 <c:if test="${not empty singers}">
 <table>
 <thead>

Chapter 16 ■ Web Applications

703

 <tr>
 <th>${labelSingerFirstName}</th>
 <th>${labelSingerLastName}</th>
 <th>${labelSingerBirthDate}</th>
 </tr>
 </thead>
 <tbody>
 <c:forEach items="${singers}" var="singer">
 <tr>
 <td>
 ${singer.firstName}
 </td>
 <td>${singer.lastName}</td>
 <td><fmt:formatDate value="${singer.birthDate}"/></td>
 </tr>
 </c:forEach>
 </tbody>
 </table>
 </c:if>
</div>

As shown previously, we declare a URL variable by using the <spring:url> tag and add an anchor link
for the firstName attribute. To test the show singer view, upon rebuild and deploy, open the singer list view
again. The list should now include the hyperlink to the show singer view. Clicking any link will bring you to
the show singer information view.

Implementing the Edit Singer View
Let’s implement the view for editing a singer. It’s the same as the show view; first we add the methods
updateForm() and update() to the SingerController class. The following code snippet shows the revised
controller for the two methods:

package com.apress.prospring5.ch16.web;
...

@RequestMapping("/singers")
@Controller
public class SingerController {
 private final Logger logger = LoggerFactory.getLogger(SingerController.class);

 private SingerService singerService;
 private MessageSource messageSource;

 @RequestMapping(value = "/{id}", params = "form", method = RequestMethod.POST)
 public String update(@Valid Singer singer, BindingResult bindingResult,
 Model uiModel, HttpServletRequest httpServletRequest,
 RedirectAttributes redirectAttributes, Locale locale) {
 logger.info("Updating singer");
 if (bindingResult.hasErrors()) {
 uiModel.addAttribute("message", new Message("error",

Chapter 16 ■ Web Applications

704

 messageSource.getMessage("singer_save_fail", new Object[]{}, locale)));
 uiModel.addAttribute("singer", singer);
 return "singers/update";
 }
 uiModel.asMap().clear();
 redirectAttributes.addFlashAttribute("message", new Message("success",
 messageSource.getMessage("singer_save_success", new Object[]{}, locale)));
 singerService.save(singer);
 return "redirect:/singers/" + UrlUtil.encodeUrlPathSegment(
 singer.getId().toString(), httpServletRequest);
 }

 @RequestMapping(value = "/{id}", params = "form", method = RequestMethod.GET)
 public String updateForm(@PathVariable("id") Long id, Model uiModel) {
 uiModel.addAttribute("singer", singerService.findById(id));
 return "singers/update";
 }

 @Autowired
 public void setSingerService(SingerService singerService) {
 this.singerService = singerService;
 }

 @Autowired
 public void setMessageSource(MessageSource messageSource) {
 this.messageSource = messageSource;
 }
...
}

In the previous configuration, the highlights are as follows:

•	 The MessageSource interface is autowired into the controller for retrieving messages
with i18n support.

•	 For the updateForm() method, the singer is retrieved and saved into the model, and then
the logical view singers/update is returned, which will display the edit singer view.

•	 The update() method will be triggered when the user updates singer information
and clicks the Save button. This method needs a bit of explanation. First, Spring
MVC will try to bind the submitted data to the Singer domain object and perform
the type conversion and formatting automatically. If binding errors are found (for
example, the birth date was entered in the wrong format), the errors will be saved into
the BindingResultinterface (in the package org.springframework.validation),
and an error message will be saved into the model, redisplaying the edit view. If the
binding is successful, the data will be saved, and the logical view name will be returned
for the display singer view by using redirect: as the prefix. Note that we want to
display the message after the redirect, so we need to use the RedirectAttributes.
addFlashAttribute() method (an interface in the package org.springframework.
web.servlet.mvc.support) for displaying the success message in the show singer
view. In Spring MVC, flash attributes are saved temporarily before the redirect (typically
in the session) to be made available to the request after the redirect and removed
immediately.

Chapter 16 ■ Web Applications

705

•	 The Message class is a custom class that stores the message retrieved from
MessageSource and the type of message (that is, success or error) for the view to
display in the message area. Here is the content of the Message class:

package com.apress.prospring5.ch16.util;

public class Message {
 private String type;
 private String message;

 public Message(String type, String message) {
 this.type = type;
 this.message = message;
 }

 public String getType() {
 return type;
 }

 public String getMessage() {
 return message;
 }
}

•	 UrlUtil is a utility class for encoding the URL for redirect. Its content is shown here:

package com.apress.prospring5.ch16.util;

import java.io.UnsupportedEncodingException;

import javax.servlet.http.HttpServletRequest;

import org.springframework.web.util.UriUtils;
import org.springframework.web.util.WebUtils;

public class UrlUtil {
 public static String encodeUrlPathSegment(String pathSegment,
 HttpServletRequest httpServletRequest) {
 String enc = httpServletRequest.getCharacterEncoding();

 if (enc == null) {
 enc = WebUtils.DEFAULT_CHARACTER_ENCODING;
 }

 try {
 pathSegment = UriUtils.encodePathSegment(pathSegment, enc);
 } catch (UnsupportedEncodingException uee) {
 //
 }

 return pathSegment;
 }
}

Chapter 16 ■ Web Applications

706

Next is the edit singer view, /views/singers/edit.jspx, and we will use it for both updating and
creating a new singer.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:form="http://www.springframework.org/tags/form"
 version="2.0">

 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <jsp:output omit-xml-declaration="yes"/>

 <spring:message code="label_singer_new" var="labelSingerNew"/>
 <spring:message code="label_singer_update" var="labelSingerUpdate"/>
 <spring:message code="label_singer_first_name" var="labelSingerFirstName"/>
 <spring:message code="label_singer_last_name" var="labelSingerLastName"/>
 <spring:message code="label_singer_birth_date" var="labelSingerBirthDate"/>
 <spring:message code="label_singer_description" var="labelSingerDescription"/>
 <spring:message code="label_singer_photo" var="labelSingerPhoto"/>

 <spring:eval expression="singer.id == null ? labelSingerNew:labelSingerUpdate"
 var="formTitle"/>

 <h1>${formTitle}</h1>
 <div id="singerUpdate">
 <form:form modelAttribute="singer" id="singerUpdateForm" method="post">

 <c:if test="${not empty message}">
 <div id="message" class="${message.type}">${message.message}</div>
 </c:if>

 <form:label path="firstName">
 ${labelSingerFirstName}*
 </form:label>
 <form:input path="firstName" />
 <div>
 <form:errors path="firstName" cssClass="error" />
 </div>
 <p/>

 <form:label path="lastName">
 ${labelSingerLastName}*
 </form:label>
 <form:input path="lastName" />
 <div>
 <form:errors path="lastName" cssClass="error" />
 </div>
 <p/>

Chapter 16 ■ Web Applications

707

 <form:label path="birthDate">
 ${labelSingerBirthDate}
 </form:label>
 <form:input path="birthDate" id="birthDate"/>
 <div>
 <form:errors path="birthDate" cssClass="error" />
 </div>
 <p/>

 <form:label path="description">
 ${labelSingerDescription}
 </form:label>
 <form:textarea cols="60" rows="8" path="description"
 id="singerDescription"/>
 <div>
 <form:errors path="description" cssClass="error" />
 </div>
 <p/>

 <label for="file">
 ${labelSingerPhoto}
 </label>
 <input name="file" type="file"/>
 <p/>

 <form:hidden path="version" />
 <button type="submit">Save</button>
 <button type="reset">Reset</button>
 </form:form>
 </div>
</div>

The highlights for the previous template are as follows:

•	 The <spring:eval> tag is used, which uses the Spring Expression Language to test
whether the singer ID is null. If yes, then it’s a new singer; otherwise, it’s an update.
The corresponding form title will be displayed.

•	 Various Spring MVC <form> tags are used within the form for displaying the label,
the input field, and errors in case binding was not successful on form submission.

Next, add the view mapping to the view definition file /views/singers/views.xml.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE tiles-definitions PUBLIC "-//Apache Software
 Foundation//DTD Tiles Configuration 3.0//EN"
 "http://tiles.apache.org/dtds/tiles-config_3_0.dtd">
<tiles-definitions>
 <definition extends="default" name="singers/update">
 <put-attribute name="body" value="/WEB-INF/views/singers/edit.jspx" />
 </definition>
 ...
</tiles-definitions>

Chapter 16 ■ Web Applications

708

The edit view is now completed. Let’s rebuild and deploy the project. Upon clicking the edit link, the
edit view will be displayed. Update the information and click the Save button. If binding was successful, then
you will see the success message, and the show singer view will be displayed.

Implementing the Add Singer View
Implementing the add singer view is much like the edit view. Because we will reuse the edit.jspx page, we
only need to add the methods in the SingerController class and the view definition. The following snippet
of the SingerController class depicts the methods needed to implement the save operation for a new
singer:

package com.apress.prospring5.ch16.web;
...

@RequestMapping("/singers")
@Controller
public class SingerController {
 private final Logger logger = LoggerFactory.getLogger(SingerController.class);

 private SingerService singerService;
 private MessageSource messageSource;

 @RequestMapping(method = RequestMethod.POST)
 public String create(@Valid Singer singer, BindingResult bindingResult,
 Model uiModel, HttpServletRequest httpServletRequest,
 RedirectAttributes redirectAttributes,Locale locale) {
 logger.info("Creating singer");
 if (bindingResult.hasErrors()) {
 uiModel.addAttribute("message", new Message("error",
 messageSource.getMessage("singer_save_fail", new Object{}, locale)));
 uiModel.addAttribute("singer", singer);
 return "singers/create";
 }
 uiModel.asMap().clear();

 redirectAttributes.addFlashAttribute("message", new Message("success",
 messageSource.getMessage("singer_save_success", new Object[]{}, locale)));

 logger.info("Singer id: " + singer.getId());
 singerService.save(singer);
 return "redirect:/singers/";
 }

 @RequestMapping(params = "form", method = RequestMethod.GET)
 public String createForm(Model uiModel) {
 Singer singer = new Singer();
 uiModel.addAttribute("singer", singer);

 return "singers/create";
 }

Chapter 16 ■ Web Applications

709

 @Autowired
 public void setSingerService(SingerService singerService) {
 this.singerService = singerService;
 }
...
}

Next, add the view mapping to the view definition file, /views/singers/views.xml.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE tiles-definitions PUBLIC "-//Apache Software
 Foundation//DTD Tiles Configuration 3.0//EN"
 "http://tiles.apache.org/dtds/tiles-config_3_0.dtd">
<tiles-definitions>
 <definition extends="default" name="singers/create">
 <put-attribute name="body" value="/WEB-INF/views/singers/edit.jspx" />
 </definition>
 ...
</tiles-definitions>

The add view is now complete. After you rebuild and deploy the project, click the New Singer link in the
menu area. The add singer view will be displayed, allowing you to enter new singer details.

Enabling JSR-349 (Bean Validation)
Let’s configure JSR-349 (Bean Validation) support for creating and updating singer actions. First, apply
the validation constraints to the Singer domain object. In this sample, we define constraints only for the
firstName and lastName attributes. The Singer class was already shown at the beginning of this chapter
with the validation annotations in place, but in this section we explain them. Here we can see a snippet of
this class with the annotated fields we are interested in:

package com.apress.prospring5.ch16.entities;

import org.hibernate.validator.constraints.NotBlank;

import javax.persistence.*;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
...
@Entity
@Table(name = "singer")
public class Singer implements Serializable {
...
 @NotBlank(message="{validation.firstname.NotBlank.message}")
 @Size(min=2, max=60, message="{validation.firstname.Size.message}")
 @Column(name = "FIRST_NAME")
 private String firstName;

 @NotBlank(message="{validation.lastname.NotBlank.message}")
 @Size(min=1, max=40, message="{validation.lastname.Size.message}")

Chapter 16 ■ Web Applications

710

 @Column(name = "LAST_NAME")
 private String lastName;

 ...
}

The constraints are applied to their respective fields. Note that for the validation message, you specify
a message key by using the curly braces. This will cause the validation messages to be retrieved from
ResourceBundle and hence support i18n.

To enable JSR-349 validation during the web data binding process, we just need to apply the @Valid
annotation to the argument of the create() and update() methods in the SingerController class. The
following code snippet shows the signatures for both methods:

package com.apress.prospring5.ch16.web;
@RequestMapping("/singers")
@Controller
public class SingerController {
...
 @RequestMapping(value = "/{id}", params = "form", method = RequestMethod.POST)
 public String update(@Valid Singer singer, BindingResult bindingResult, ...

 @RequestMapping(method = RequestMethod.POST)
 public String create(@Valid Singer singer, BindingResult bindingResult, ...
...
}

We also want the JSR-349 validation message to use the same ResourceBundle instance as for the views. To
do this, we need to configure the validator in the DispatcherServlet configuration, in the WebConfig class.

package com.apress.prospring5.ch16.config;

import com.apress.prospring5.ch16.util.DateFormatter;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.support.ReloadableResourceBundleMessageSource;
import org.springframework.validation.Validator;
import org.springframework.validation.beanvalidation.LocalValidatorFactoryBean;
import org.springframework.web.servlet.config.annotation.*;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch16"})
public class WebConfig implements WebMvcConfigurer {
 @Bean
 public Validator validator() {
 final LocalValidatorFactoryBean validator =
 new LocalValidatorFactoryBean();
 validator.setValidationMessageSource(messageSource());
 return validator;
 }

Chapter 16 ■ Web Applications

711

 // <=> <mvc:annotation-driven validator="validator"/>
 @Override
 public Validator getValidator() {
 return validator();
 }

 @Bean
 ReloadableResourceBundleMessageSource messageSource() {
 ReloadableResourceBundleMessageSource messageSource =
 new ReloadableResourceBundleMessageSource();
 messageSource.setBasenames(
 "WEB-INF/i18n/messages",
 "WEB-INF/i18n/application");
 messageSource.setDefaultEncoding("UTF-8");
 messageSource.setFallbackToSystemLocale(false); return messageSource;
 }
 ...
}

First, a validator bean is defined, with the class LocalValidatorFactoryBean, for JSR-349 support. Note
that we set the validationMessageSource property to reference the messageSource bean defined, which
instructs the JSR-349 validator to look up the messages by the code from the messageSource bean. Then the
getValidator() method is implemented to return the validator bean we defined.

That’s all; we can test the validation now. Bring up the add singer view and just click the Save button.
The returned page will now show us a validation error.

Switch to the Chinese (HK) language, and do the same thing. This time, the messages will be displayed
in Chinese.

The views are basically complete, except the delete action. We leave that one to you as an exercise. Next,
we will start to give our interface more richness.

Using jQuery and jQuery UI
Although the views for our singer application work well, the user interface is quite raw. For example, for the
birth date field, it would be much better if we could add a date picker for entering the birth date of the singer,
instead of having the user input the date string manually.

To provide a richer interface to the users of a web application, unless you are using rich Internet
application (RIA) technologies that require special runtimes on the web browser client (for example, Adobe
Flex requires Flash, JavaFX requires JRE, and Microsoft Silverlight requires Silverlight), you need to use
JavaScript to implement the features.

However, developing web front ends with raw JavaScript is not easy. The syntax is very different from
Java, and you also need to deal with cross-browser compatibility issues. As a result, a lot of open source
JavaScript libraries are available that can make the process easier, such as jQuery and Dojo Toolkit.

In the following sections, we discuss how to use jQuery and jQuery UI to develop more responsive and
interactive user interfaces. We also discuss some commonly used jQuery plug-ins for specific purposes, such
as rich-text editing support, and discuss some grid-based components for browsing data.

Introducing jQuery and jQuery UI
jQuery (http://jquery.org) is one of the most popular JavaScript libraries being used for web front-end
development. jQuery provides comprehensive support for main features including a robust “selector” syntax
for selecting DOM elements within the document, a sophisticated event model, and powerful Ajax support.

http://jquery.org/

Chapter 16 ■ Web Applications

712

Built on top of jQuery, the jQuery UI library (http://jqueryui.com) provides a rich set of widgets
and effects. Main features include widgets for commonly used user interface components (a date picker,
autocomplete, accordion, and so on), drag and drop, effects and animation, theming, and more.

There are a wealth of jQuery plug-ins developed by the jQuery community for specific purposes, and we
discuss two of them in this chapter.

What we cover here only scratches the surface of jQuery. For more details on using jQuery, we
recommend the books jQuery Recipes: A Problem-Solution Approach by B. M. Harwani (Apress, 2010) and
jQuery in Action by Bear Bibeault and Yehuda Katz (Manning, 2010).

Enabling jQuery and jQuery UI in a View
To be able to use jQuery and jQuery UI components in our view, we need to include the required style sheets
and JavaScript files. If we read the section “Understanding the Spring MVC Project Structure” earlier in this
chapter, the required files should have been already copied into the project. These are the main files that we
need to include in our view:

•	 /src/main/webapp/scripts/jquery-1.12.4.js: This is the core jQuery JavaScript
library. The version we use in this chapter is 1.12.4. Note that it’s the full source
version. In production, you should use the minified version (that is, jquery-
1.12.4.min.js), which is optimized and compressed to improve download and
execution performance.

•	 /src/main/webapp/scripts/jquery-ui.min.js: This is the jQuery UI library
bundled with a theme style sheet that can be customized and downloaded from the
jQuery UI Themeroller page (http://jqueryui.com/themeroller). The jQuery UI
version we are using is 1.12.1. Note that it’s the minified version of JavaScript.

•	 /src/main/webapp/styles/custom-theme/jquery-ui.theme.min.css: This is the
style sheet for the custom theme that will be used by jQuery UI for theming support.

To include the previous files, we only need to include them in the template page (that is, /layouts/
default.jspx). The following code snippet needs to be added to the page:

<html xmlns:jsp="http://java.sun.com/JSP/Page" ..>
...
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=8" />

 <spring:theme code="styleSheet" var="app_css" />
 <spring:url value="/${app_css}" var="app_css_url" />
 <link rel="stylesheet" type="text/css" media="screen" href="${app_css_url}" />
 <spring:url value="/resources/scripts/jquery-1.12.4.js" var="jquery_url" />
 <spring:url value="/resources/scripts/jquery-ui.min.js" var="jquery_ui_url" />
 <spring:url value="/resources/styles/custom-theme/jquery-ui.theme.min.css"
 var="jquery_ui_theme_css" />
 <link rel="stylesheet" type="text/css" media="screen"
 href="${jquery_ui_theme_css}" />
 <script src="${jquery_url}" type="text/javascript"><jsp:text/></script>
 <script src="${jquery_ui_url}" type="text/javascript"><jsp:text/></script>
 ...
</head>
...
</html>

http://jqueryui.com/
http://jqueryui.com/themeroller

Chapter 16 ■ Web Applications

713

First, the <spring:url> tag is used to define the URLs for the files and store them in variables. Then, in
the <head> section, the reference to the CSS and JavaScript files is added. Note the use of the <jsp:text/>
tag within the <script> tag. This is because JSPX will autocollapse tags without a body. So, the tag
<script ..></script> in the file will end up as <script .. /> in the browser, which will cause
undetermined behavior in the page. The addition of <jsp:text/> ensures that the <script> tag will not
render in the page because it avoids unexpected issues.

With these scripts included, we can add some fancier stuff into our view. For the edit singer view,
let’s make the buttons look a bit better and enable the date picker component for the birth date field. The
following code snippet shows the change that we need to add to /views/singers/edit.jspx for the button
and date field:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:form="http://www.springframework.org/tags/form"
 version="2.0">

 <script type="text/javascript">
 $(function(){
 $('#birthDate').datepicker({
 dateFormat: 'yy-mm-dd',
 changeYear: true
 });
 });
 </script>
 ...
 <form:form modelAttribute="singer" id="singerUpdateForm" method="post">
 ...
 <button type="submit" class="ui-button ui-widget
 ui-state-default ui-corner-all ui-button-text-only">
 Save
 </button>
 <button type="reset" class="ui-button ui-widget
 ui-state-default ui-corner-all ui-button-text-only">
 Reset
 </button>
 </form:form>
 </div>
</div>

The $(function(){} syntax instructs jQuery to execute the script when the document is ready. Within
the function, the birth date input field (with ID birthDate) is decorated using jQuery UI’s datepicker()
function. Second, various style classes are added to the buttons.

Now redeploy the application, and you will see the new button style, and when you click the birth date
field, the date picker component will be displayed.

Chapter 16 ■ Web Applications

714

Rich-Text Editing with CKEditor
For the description field of the singer information, we use the Spring MVC <form:textarea> tag to support
multiline input. Suppose we want to enable rich-text editing, which is a common requirement for long text
inputs such as user comments.

To support this feature, we will use the rich-text component library CKEditor (http://ckeditor.com),
which is a common rich-text JavaScript component with integration with jQuery UI. The files are in the
folder /src/main/we- bapp/ckeditor of the sample source code.

First we need to include the required JavaScript files into the template page, default.jspx. The
following code snippet shows you what you need to add to the page:

<html xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:fn="http://java.sun.com/jsp/jstl/functions"
 xmlns:tiles="http://tiles.apache.org/tags-tiles"
 xmlns:spring="http://www.springframework.org/tags">

 <head>
 <!-- CKEditor -->
 <spring:url value="/resources/ckeditor/ckeditor.js" var="ckeditor_url" />
 <spring:url value="/resources/ckeditor/adapters/jquery.js"
 var="ckeditor_jquery_url" />
 <script type="text/javascript" src="${ckeditor_url}"><jsp:text/></script>
 <script type="text/javascript" src="${ckeditor_jquery_url}"><jsp:text/></script>
 ...
 </head>
 ...
</html>

The previous JSPX snippet includes two scripts: the core CKEditor script and the adapter with jQuery.
The next step is to enable CKEditor in the edit singer view. The next JSPX snippet shows the change

required for the page edit.jspx:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:form="http://www.springframework.org/tags/form" version="2.0">

 <script type="text/javascript">
 $(function(){
 $("#singerDescription").ckeditor(
 {
 toolbar : 'Basic',
 uiColor : '#CCCCCC'
 }
);
});
 </script>
 ...
</div>

http://ckeditor.com/

Chapter 16 ■ Web Applications

715

The singer description field is decorated with CKEditor when the document is ready. Redeploy the
application and go to the add singer page, and the description field will be enabled with rich-text editing
support.

For complete documentation on using and configuring CKEditor, please refer to the project
documentation site (http://docs.cksource.com/).

Using jqGrid for a Data Grid with Pagination
The current singer list view is fine if only a few singers exist in the system. However, as the data grows to
thousands and even more records, performance will become a problem.

A common solution is to implement a data grid component, with pagination support, for data browsing
so that the user browses only a certain number of records, which avoids a large amount of data transfer
between the browser and the web container. This section demonstrates the implementation of a data grid
with jqGrid (http://trirand.com/blog), a popular JavaScript-based data grid component. The version we
are using here is 4.6.0.

For the pagination support, we will use jqGrid’s built-in Ajax pagination support, which fires an
XMLHttpRequest for each page and accepts the JSON data format for page data. To generate JSON data, you
will use the jackson-databind library.

In the following sections, we discuss how to implement the pagination support on both the server
and client sides. First, we cover implementing the jqGrid component in the singer list view. Then, we
discuss how to implement pagination on the server side by using the Spring Data Commons module’s
comprehensive pagination support.

Enabling jqGrid in the Singer List View
To enable jqGrid in our views, first we need to include the required JavaScript and style sheet files in the
template page default.jspx.

<html xmlns:jsp="http://java.sun.com/JSP/Page"
...
 <head>
 ...
 <!-- jqGrid -->
 <spring:url value="/resources/jqgrid/css/ui.jqgrid.css" var="jqgrid_css" />
 <spring:url value="/resources/jqgrid/js/i18n/grid.locale-en.js"
 var="jqgrid_locale_url" />
 <spring:url value="/resources/jqgrid/js/jquery.jqGrid.min.js" var="jqgrid_url" />
 <link rel="stylesheet" type="text/css" media="screen" href="${jqgrid_css}" />
 <script type="text/javascript" src="${jqgrid_locale_url}"><jsp:text/></script>
 <script type="text/javascript" src="${jqgrid_url}"><jsp:text/></script>
 ...
 </head>
 ...
</html>

First, the grid-specific CSS file is loaded. Then, two JavaScript files are required. The first one is the
locale script (in this case, we use English), and the second one is the jqGrid core library file jquery.jqGrid.
min.js.

The next step is to modify the singer list view, textitlist.jspx, to use jqGrid. Here you can see the
revised page:

http://docs.cksource.com/
http://trirand.com/blog

Chapter 16 ■ Web Applications

716

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8"/>
 <jsp:output omit-xml-declaration="yes"/>

 <spring:message code="label_singer_list" var="labelSingerList"/>
 <spring:message code="label_singer_first_name" var="labelSingerFirstName"/>
 <spring:message code="label_singer_last_name" var="labelSingerLastName"/>
 <spring:message code="label_singer_birth_date" var="labelSingerBirthDate"/>
 <spring:url value="/singers/" var="showSingerUrl"/>

 <script type="text/javascript">
 $(function(){
 $("#list").jqGrid({
 url:'${showSingerUrl}/listgrid',
 datatype: 'json',
 mtype: 'GET',

 colNames:['${labelSingerFirstName}', '${labelSingerLastName}',
 '${labelSingerBirthDate}'],
 colModel :[
 {name:'firstName', index:'firstName', width:150},
 {name:'lastName', index:'lastName', width:100},
 {name:'birthDateString', index:'birthDate', width:100}
],
 jsonReader : {
 root:"singerData",
 page: "currentPage",
 total: "totalPages",
 records: "totalRecords",
 repeatitems: false,
 id: "id"
 },
 pager: '#pager',
 rowNum:10, rowList:[10,20,30],
 sortname: 'firstName',
 sortorder: 'asc',
 viewrecords: true,
 gridview: true,
 height: 250,
 width: 500,
 caption: '${labelSingerList}',
 onSelectRow: function(id){
 document.location.href ="${showSingerUrl}/" + id;
 }
 });
 });

 </script>

Chapter 16 ■ Web Applications

717

 <c:if test="${not empty message}">
 <div id="message" class="${message.type}">
 ${message.message}
 </div>
 </c:if>

 <h2>${labelSingerList}</h2>

 <div>
 <table id="list"><tr><td/></tr></table>
 </div>
 <div id="pager"></div>
</div>

We declare a <table> tag with an ID of list for displaying the grid data. Under the table, a <div>
section with an ID of pager is defined, which is the pagination part for jqGrid. Within the JavaScript, when
the document is ready, we instruct jqGrid to decorate the table with an ID of list into a grid and provide
detail configuration information. Some main highlights of the scripts are as follows:

•	 The url attribute specifies the link for sending XMLHttpRequest, which gets the data
for the current page.

•	 The datatype attribute specifies the data format, in this case JSON. jqGrid also
supports the XML format.

•	 The mtype attribute defines the HTTP method to use, which is GET.

•	 The colNames attribute defines the column header for the data to be displayed in the
grid, while the colModel attribute defines the detail for each data column.

•	 The jsonReader attribute defines the JSON data format that the server will be
returning.

•	 The pager attribute enables pagination support.

•	 The onSelectRow attribute defines the action to take when a row was selected. In this
case, we will direct the user to the show singer view with the singer ID.

For a detailed description on the configuration and usage of jqGrid, please refer to the project’s
documentation site (http://trirand.com/jqgridwiki/doku.php?id=wiki:jqgriddocs).

Enabling Pagination on the Server Side
On the server side, there are several steps to take to implement pagination. First we will use the Spring Data
Commons module’s pagination support. To enable this, we need only to modify the SingerRepository
interface to extend the PagingAndSortingRepository<T,ID extends Serializable> interface instead of
the CrudRepository<T,ID extends Serializable> interface. You can see the revised interface here:

package com.apress.prospring5.ch16.repos;

import com.apress.prospring5.ch16.entities.Singer;
import org.springframework.data.repository.PagingAndSortingRepository;

public interface SingerRepository extends
 PagingAndSortingRepository<Singer, Long> {
}

http://trirand.com/jqgridwiki/doku.php?id=wiki:jqgriddocs

Chapter 16 ■ Web Applications

718

The next step is to add a new method in the SingerService interface to support retrieving the data by
page. The revised interface is depicted here:

package com.apress.prospring5.ch16.services;

import java.util.List;

import com.apress.prospring5.ch16.entities.Singer;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;

public interface SingerService {
 List<Singer> findAll();
 Singer findById(Long id);
 Singer save(Singer singer);
 Page<Singer> findAllByPage(Pageable pageable);
}

As shown previously, a new method called findAllByPage() is added, taking an instance of the
Pageable interface as an argument. The following code snippet shows the implementation of the
findAllByPage() method in the SingerServiceImpl class. The method returns an instance of the Page<T>
interface (belonging to Spring Data Commons and in the package org.springframework.data.domain). As
expected for this simple scenario, the service method just calls the repository method findAll(..), which is
provided by the PagingAndSortingRepository<T,ID extends Serializable> interface.

package com.apress.prospring5.ch16.services;

import java.util.List;

import com.apress.prospring5.ch16.repos.SingerRepository;
import com.apress.prospring5.ch16.entities.Singer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page; import org.springframework.data.domain.
Pageable;
import org.springframework.stereotype.Repository;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import com.google.common.collect.Lists;

@Repository
@Transactional
@Service("singerService")
public class SingerServiceImpl implements SingerService {
 private SingerRepository singerRepository;
 ...

 @Autowired
 public void setSingerRepository(SingerRepository singerRepository) {
 this.singerRepository = singerRepository;
 }

Chapter 16 ■ Web Applications

719

 @Override
 @Transactional(readOnly=true)
 public Page<Singer> findAllByPage(Pageable pageable) {
 return singerRepository.findAll(pageable);
 }
}

The next step is the most complex, which is to implement the method in the SingerController class to
take the Ajax request from jqGrid for page data. The following code snippet shows the implementation:

package com.apress.prospring5.ch16.web;
....

@RequestMapping("/singers")
@Controller
public class SingerController {
 private final Logger logger = LoggerFactory.getLogger(SingerController.class);

 private SingerService singerService;

 @ResponseBody
 @RequestMapping(value = "/listgrid", method = RequestMethod.GET,
 produces="application/json")
 public SingerGrid listGrid(@RequestParam(value = "page",
 required = false) Integer page,
 @RequestParam(value = "rows", required = false) Integer rows,
 @RequestParam(value = "sidx", required = false) String sortBy,
 @RequestParam(value = "sord", required = false) String order) {

 logger.info("Listing singers for grid with page: {}, rows: {}",
 page, rows);
 logger.info("Listing singers for grid with sort: {}, order: {}",
 sortBy, order);

 // Process order by
 Sort sort = null;
 String orderBy = sortBy;
 if (orderBy != null && orderBy.equals("birthDateString"))
 orderBy = "birthDate";

 if (orderBy != null && order != null) {
 if (order.equals("desc")) {
 sort = new Sort(Sort.Direction.DESC, orderBy);
 } else
 sort = new Sort(Sort.Direction.ASC, orderBy);
 }

 // Constructs page request for current page
 // Note: page number for Spring Data JPA starts with 0,
 // while jqGrid starts with 1
 PageRequest pageRequest = null;

Chapter 16 ■ Web Applications

720

 if (sort != null) {
 pageRequest = PageRequest.of(page - 1, rows, sort);
 } else {
 pageRequest = PageRequest.of(page - 1, rows);
 }

 Page<Singer> singerPage = singerService.findAllByPage(pageRequest);

 // Construct the grid data that will return as JSON data
 SingerGrid singerGrid = new SingerGrid();

 singerGrid.setCurrentPage(singerPage.getNumber() + 1);
 singerGrid.setTotalPages(singerPage.getTotalPages());
 singerGrid.setTotalRecords(singerPage.getTotalElements());

 singerGrid.setSingerData(Lists.newArrayList(singerPage.iterator()));

 return singerGrid;
 }

 @Autowired
 public void setSingerService(SingerService singerService) {
 this.singerService = singerService;
 }
 ...
}

The method handles the Ajax request, reads the parameters (page number, records per page, sort by,
and sort order) from the request (the parameter names in the code sample are jqGrid’s defaults), constructs
an instance of the PageRequest class that implements the Pageable interface, and then invokes the
SingerService.findAllByPage() method to get the page data. Then, an instance of the SingerGrid class is
constructed and returned to jqGrid in JSON format. The following code snippet shows the SingerGrid class:

package com.apress.prospring5.ch16.util;

import com.apress.prospring5.ch16.entities.Singer;

import java.util.List;

public class SingerGrid {
 private int totalPages;
 private int currentPage;
 private long totalRecords;
 private List<Singer> singerData;

 public int getTotalPages() {
 return totalPages;
 }

 public void setTotalPages(int totalPages) {
 this.totalPages = totalPages;
 }

Chapter 16 ■ Web Applications

721

 // other getters and setters
 ...
}

Now we are ready to test the new singer list view. Make sure the project is rebuilt and deployed and then
invoke the singer list view. You should now see an enhanced grid view of the singer listing.

You can play around with the grid, browse the pages, change the number of records per page, change
the sort order by clicking the column headers, and so on. i18n is also supported, and you can try to see the
grid with Chinese labels.

jqGrid also supports data filtering. For example, we can filter data by first names containing John or
when the birth date is between date ranges.

Handling File Upload
The singer information has a field of BLOB type to store a photo, which can be uploaded from the client. This
section shows how to implement file uploading in Spring MVC.

For a long time, the standard servlet specification didn’t support file upload. As a result, Spring MVC
worked with other libraries (the most common one being the Apache Commons FileUpload library, http://
commons.apache.org/fileupload) to serve this purpose. Spring MVC has built-in support for Commons
FileUpload. However, starting from Servlet 3.0, file upload has become a built-in feature of the web container.
Tomcat 7 supports Servlet 3.0, and Spring has also supported Servlet 3.0 file upload since version 3.1.

In the following sections, we discuss how to implement the file upload functionality using Spring MVC
and Servlet 3.0.

Configuring File Upload Support
In a Servlet 3.0–compatible web container with Spring MVC, configuring file upload support is a two-step
process.

First, in the Java-based configuration class that defines everything needed to create the
DispatcherServlet definition, we need to add a bean of type StandardServletMultipartResolver. This is
a standard implementation of the MultipartResolver interface, based on the Servlet 3.0 javax.servlet.
http.Part API. The following code snippet depicts the declaration of this bean that needs to be added to the
WebConfig class:

package com.apress.prospring5.ch16.config;
...
@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch16"})
public class WebConfig implements WebMvcConfigurer {
...
 @Bean StandardServletMultipartResolver multipartResolver() {
 return new StandardServletMultipartResolver();
 }
...
}

http://commons.apache.org/fileupload
http://commons.apache.org/fileupload

Chapter 16 ■ Web Applications

722

The second step is to enable MultiParsing in Servlet 3.0 environments; this means
that the WebInitializer implementation needs some changes. There is a method called
customizeRegistration(..) that is defined in the AbstractDispatcherServletInitializer abstract class,
which is the class extended by AbstractAnnotationConfigDispatcherServletInitializer. This method
must be implemented to register an instance of javax.servlet.MultipartConfigElement. The enriched
version of the WebInitializer class is shown here:

package com.apress.prospring5.ch16.init;

import com.apress.prospring5.ch16.config.DataServiceConfig;
import com.apress.prospring5.ch16.config.SecurityConfig;
import com.apress.prospring5.ch16.config.WebConfig;
import org.springframework.web.filter.CharacterEncodingFilter;
import org.springframework.web.filter.HiddenHttpMethodFilter;
import org.springframework.web.servlet.support.
 AbstractAnnotationConfigDispatcherServletInitializer;

import javax.servlet.Filter;
import javax.servlet.MultipartConfigElement;
import javax.servlet.ServletRegistration;

public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{
 SecurityConfig.class, DataServiceConfig.class
 };
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{
 WebConfig.class
 };
 }

 @Override
 protected String[] getServletMappings() {
 return new String[]{"/"};
 }

 @Override
 protected Filter[] getServletFilters() {
 CharacterEncodingFilter cef = new CharacterEncodingFilter();
 cef.setEncoding("UTF-8");
 cef.setForceEncoding(true);
 return new Filter[]{new HiddenHttpMethodFilter(), cef};
 }

Chapter 16 ■ Web Applications

723

 // <=> <multipart-config>

 protected void customizeRegistration(ServletRegistration.Dynamic registration) {
 registration.setMultipartConfig(getMultipartConfigElement());
 }

 @Bean
 private MultipartConfigElement getMultipartConfigElement() {
 return new MultipartConfigElement(null, 5000000, 5000000, 0);
 }
}

The first parameter of MultipartConfigElement is a temporary location where files should be stored.
The second is the maximum file size allowed for upload, which is 5MB in this case. The third represents the
size of the request, which is also 5MB here. The last one represents the threshold after which files will be
written to disk.

Modifying Views for File Upload Support
We need to modify two views for file upload support. The first one is the edit view (edit.jspx) to support
photo upload for a singer, and the second one is the show view (show.jspx) for displaying the photo.

The following JSPX snippet depicts the changes required in the edit.jspx view:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
...
 <form:form modelAttribute="singer" id="singerUpdateForm" method="post"
 enctype="multipart/form-data">
 ...
 <form:label path="description">
 ${labelSingerDescription}
 </form:label>
 <form:textarea cols="60" rows="8" path="description" id="singerDescription"/>
 <div>
 <form:errors path="description" cssClass="error" />
 </div>
 <p/>
 <label for="file">
 ${labelSingerPhoto}
 </label>
 <input name="file" type="file"/>
 <p/>
 ...
 </form:form>
</div>

In the previous snippet within the <form:form> tag, we need to enable the multipart file upload support
by specifying the attribute enctype. Next, the file upload field is added to the form.

Chapter 16 ■ Web Applications

724

We also need to modify the show view to display the photo for a singer. The following JSPX snippet
shows the changes required to the view show.jspx:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div xmlns:jsp="http://java.sun.com/JSP/Page"
...
 <spring:message code="label_singer_photo" var="labelSingerPhoto"/>
 <spring:url value="/singers/photo" var="singerPhotoUrl"/>
 ...
 <tr>
 <td>${labelSingerDescription}</td>
 <td>${singer.description}</td>
 </tr>
 <tr>
 <td>${labelSingerPhoto}</td>
 <td></td>
 </tr>
 ...
</div>

In the previous view template, a new row is added to the table for displaying the photo by pointing to
the URL for photo download.

Modifying Controllers for File Upload Support
The final step is to modify the controller. We need to make two changes. The first change is to the create()
method to accept the upload file as a request parameter. The second change is to implement a new method
for photo download based on the supplied singer ID. The following code snippet shows the revised
SingerController class:

package com.apress.prospring5.ch16.web;
...

@RequestMapping("/singers")
@Controller
public class SingerController {
 private final Logger logger = LoggerFactory.getLogger(SingerController.class);

 private SingerService singerService;
 @RequestMapping(method = RequestMethod.POST)
 public String create(@Valid Singer singer, BindingResult bindingResult,
 Model uiModel, HttpServletRequest httpServletRequest,
 RedirectAttributes redirectAttributes,
 Locale locale, @RequestParam(value="file", required=false) Part file) {
 logger.info("Creating singer");
 if (bindingResult.hasErrors()) {
 uiModel.addAttribute("message", new Message("error",

 messageSource.getMessage("singer_save_fail",
 new Object[]{}, locale)));
 uiModel.addAttribute("singer", singer);

Chapter 16 ■ Web Applications

725

 return "singers/create";
 }
 uiModel.asMap().clear();

 redirectAttributes.addFlashAttribute("message", new Message("success",
 messageSource.getMessage("singer_save_success",
 new Object[]{}, locale)));

 logger.info("Singer id: " + singer.getId());

 // Process upload file if (file != null) {
 logger.info("File name: " + file.getName());
 logger.info("File size: " + file.getSize());
 logger.info("File content type: " + file.getContentType()); byte[] fileContent = null;
 try {
 InputStream inputStream = file.getInputStream();
 if (inputStream == null) logger.info("File inputstream is null");
 fileContent = IOUtils.toByteArray(inputStream);
 singer.setPhoto(fileContent);
 } catch (IOException ex) {
 logger.error("Error saving uploaded file");
 }
 singer.setPhoto(fileContent);
 }

 singerService.save(singer);
 return "redirect:/singers/";
 }

 @RequestMapping(value = "/photo/{id}", method = RequestMethod.GET)
 @ResponseBody
 public byte[] downloadPhoto(@PathVariable("id") Long id) {
 Singer singer = singerService.findById(id);

 if (singer.getPhoto() != null) {
 logger.info("Downloading photo for id: {} with size: {}", singer.getId(),
 singer.getPhoto().length);
 }

 return singer.getPhoto();
 }
 ...
}

First, in the create() method, a new request parameter of interface type javax.servlet.http.Part is
added as an argument, which Spring MVC will provide based on the uploaded content in the request. Then
the method will get the content saved into the photo property of the Singer object.

Next, a new method called downloadPhoto() is added to handle the file download. The method
just retrieves the photo field from the Singer object and directly writes into the response stream, which
corresponds to the tag in the show view.

Chapter 16 ■ Web Applications

726

To test the file upload function, redeploy the application and add a new singer with a photo. Upon
completion, you will be able to see the photo in the show view.

We also need to modify the edit function for changing the photo, but we will skip that here and leave it
as an exercise for you.

Securing a Web Application with Spring Security
Suppose now we want to secure our singer application. Only those users who logged into the application
with a valid user ID can add a new singer or update existing singers. Other users, known as anonymous users,
can only view singer information.

Spring Security is the best choice for securing Spring-based applications. Although mostly used in the
presentation layer, Spring Security can help secure all layers within the application, including the service
layer. In the following sections, we demonstrate how to use Spring Security to secure the singer application.

Spring Security was introduced in Chapter 12, when you secured a REST service. For web applications,
the possibilities are diverse, as there is also a tag library that can be used to secure only certain elements of a
page. The Spring security tag library is part of the spring-security-web module.

Configuring Spring Security
In a previous section, we mentioned that for this chapter we are using a full annotations configuration,
using Java-based configuration classes. Until Spring 3.x, enabling security in a Spring web application
was done by configuring a filter in the web deployment descriptor (web.xml). This filter was
named springSecurityFilterChain, and it was applied to any requests, except the one for static
components. In Spring 4.0, a class has been introduced that can be extended to enable Spring Security:
AbstractSecurityWebApplicationInitializer.

package com.apress.prospring5.ch16.init;

import org.springframework.security.web.context.
 AbstractSecurityWebApplicationInitializer;
public class SecurityWebApplicationInitializer
 extends AbstractSecurityWebApplicationInitializer {
}

By providing an empty class that extends AbstractSecurityWebApplicationInitializer, you are
basically telling Spring that you want DelegatingFilterProxy enabled so that springSecurityFilterChain
will be used before any other registered javax.servlet.Filter.

Besides this, the Spring Security context must be configured using a Java-based configuration
class, obviously, and this class must be added to the root WebApplicationContext configuration.
The SecurityConfig configuration class is depicted here:

package com.apress.prospring5.ch16.config;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.
 authentication.builders.AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.
 method.configuration.EnableGlobalMethodSecurity;
import org.springframework.security.config.annotation.web.

http://dx.doi.org/10.1007/978-1-4842-2808-1_12

Chapter 16 ■ Web Applications

727

 builders.HttpSecurity;
import org.springframework.security.config.annotation.web.
 configuration.EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.
 WebSecurityConfigurerAdapter;
import org.springframework.security.web.csrf.CsrfTokenRepository;
import org.springframework.security.web.csrf.HttpSessionCsrfTokenRepository;

@Configuration
@EnableWebSecurity
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) {
 try {
 auth.inMemoryAuthentication().withUser("user")
 .password("user").roles("USER");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/*").permitAll()
 .and()
 .formLogin()
 .usernameParameter("username")
 .passwordParameter("password")
 .loginProcessingUrl("/login")
 .loginPage("/singers")
 .failureUrl("/security/loginfail")
 .defaultSuccessUrl("/singers")
 .permitAll()
 .and()
 .logout()
 .logoutUrl("/logout")
 .logoutSuccessUrl("/singers")
 .and()
 .csrf().disable();
 }
}

The method configure(HttpSecurity http) defines the security configuration for HTTP requests. The
.antMatchers("/*").permitAll() chained calls specify that all users are allowed to enter the application.
We will see how we can protect the function by hiding the editing options in the view using Spring Security’s
tag library and controller method security. Then .formLogin() defines the support for form login. All calls
after that until the .and() call are methods that configure the login form details. As we discussed in the layout,
the login form will be displayed on the left. We provide a logout link as well through the .logout() call.

Chapter 16 ■ Web Applications

728

In Spring Security 4, the possibility of using CSFR tokens in Spring forms to prevent cross-site request
forgery was introduced.5 In this example, because we wanted to keep things simple, the usage of CSFR
tokens was disabled by calling .csrf().disable(). By default a configuration without a CSFR element
configuration is invalid, and any login request will direct you to a 403 error page stating the following:

Invalid CSRF Token 'null' was found on the request parameter
'_csrf' or header 'X-CSRF-TOKEN'.

The method configureGlobal(AuthenticationManagerBuilder auth) defines the authentication
mechanism. In the configuration, we hard-code a single user with the role USER assigned. In a production
environment, the user should be authenticated against the database, LDAP, or an SSO mechanism.

 A lso, until Spring 3, the default login URL value is /j_spring_security_check, and the default names
for the authentication keys are j_username and j_password. Starting with Spring 4, the default login URL
value is /login, and the default names for the authentication keys are username and password.

 I n the previous configuration, the username, password, and login URL are explicitly set, but if in the view
the default names are used, the following part of the configuration can be skipped.

.usernameParameter("username")

.passwordParameter("password")

.loginProcessingUrl("/login")|

Although the contents of the WebInitializer class were depicted earlier, the configuration will be
covered here again to underline where the SecurityConfig class is used.

package com.apress.prospring5.ch16.init;
...
public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{

 SecurityConfig.class, DataServiceConfig.class
 };

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{
 WebConfig.class
 };
 }
 ...
}

5This is a type of attack that consists of hacking an existing session in order to execute unauthorized commands in a web
application. You can read more about it at https://en.wikipedia.org/wiki/Cross-site_request_forgery.

https://en.wikipedia.org/wiki/Cross-site_request_forgery

Chapter 16 ■ Web Applications

729

Adding Login Functions to the Application
To add the login form to the application, two views must be changed. Here is the view header.jspx file to
display the user information if the user is logged in:

<div id="header" xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:sec="http://www.springframework.org/security/tags"
 version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8" />
 <jsp:output omit-xml-declaration="yes" />

 <spring:message code="header_text" var="headerText"/>
 <spring:message code="label_logout" var="labelLogout"/>
 <spring:message code="label_welcome" var="labelWelcome"/>
 <spring:url var="logoutUrl" value="/logout" />

 <div id="appname">
 <h1>${headerText}</h1>
 </div>

 <div id="userinfo">
 <sec:authorize access="isAuthenticated()">${labelWelcome}
 <sec:authentication property="principal.username" />

 ${labelLogout}
 </sec:authorize>
 </div>
</div>

First, the tag library with the prefix sec is added for the Spring Security tag library. Then, a <div>
section with the <sec:authorize> tag is added to detect whether the user is logged in. If yes (that is, the
isAuthenticated() expression returns true), the username and a logout link will be displayed.

The second view to be modified is the menu.jspx file, in which the login form is added; the New Singer
option will display only if the user is logged in.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<div id="menu" xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:sec="http://www.springframework.org/security/tags"
 version="2.0">
 <jsp:directive.page contentType="text/html;charset=UTF-8" />
 <jsp:output omit-xml-declaration="yes" />
 <spring:message code="menu_header_text" var="menuHeaderText"/>
 <spring:message code="menu_add_singer" var="menuAddSinger"/>
 <spring:url value="/singers?form" var="addSingerUrl"/>

 <spring:message code="label_login" var="labelLogin"/>
 <spring:url var="loginUrl" value="/login" />

Chapter 16 ■ Web Applications

730

 <h3>${menuHeaderText}</h3>
 <sec:authorize access="hasRole('ROLE_USER')">
 <h3>${menuAddSinger}</h3>
 </sec:authorize>

 <sec:authorize access="isAnonymous()">
 <div id="login">
 <form name="loginForm" action="${loginUrl}" method="post">
 <table>
 <caption align="left">Login:</caption>
 <tr>
 <td>User Name:</td>
 <td><input type="text" name="username"/></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="password"/></td>
 </tr>
 <tr>
 <td colspan="2" align="center">
 <input name="submit" type="submit" value="Login"/>
 </td>
 </tr>
 </table>
 </form>
 </div>
 </sec:authorize>
</div>

The Add Singer menu item will render only when the user is logged in and has the role USER granted (as
specified in the <sec:authorized> tag). Second, if the user is not logged in (the second <sec:authorized>
tag, when the expression isAnonymous() returns true), then the login form will be displayed.

Redeploy the application, and it will display the login form, noting the new singer link is not shown.
Enter user in both the username and password fields and click the Login button. The user information

will be displayed in the header area. The new singer link is also shown.
We also need to modify the show view (show.jspx) to show the edit singer link for only logged-in users,

but we will skip that here and leave it as an exercise for you.
When the login information is incorrect, the URL to handle this will be at /security/loginfail. So,

we need to implement a controller to handle this login fail scenario. The following code snippet shows the
SecurityController class:

package com.apress.prospring5.ch16.web;

import com.apress.prospring5.ch16.util.Message;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.MessageSource;
import org.springframework.stereotype.Controller; import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

Chapter 16 ■ Web Applications

731

import java.util.Locale;

@Controller
@RequestMapping("/security")
public class SecurityController {
 private final Logger logger = LoggerFactory.getLogger(SecurityController.class);

 private MessageSource messageSource;

 @RequestMapping("/loginfail")
 public String loginFail(Model uiModel, Locale locale) {
 logger.info("Login failed detected");
 uiModel.addAttribute("message", new Message("error",
 messageSource.getMessage("message_login_fail", new Object{}, locale)));
 return "singers/list";
 }

 @Autowired
 public void setMessageSource(MessageSource messageSource) {
 this.messageSource = messageSource;
 }
}

The controller class will handle all URLs with the prefix security, while the method loginFail() will
handle the login fail scenario. In the method, we store the login fail message in the model and then redirect
to the home page. Now redeploy the application and enter the wrong user information; the home page will
be displayed again with the login fail message.

Using Annotations to Secure Controller Methods
Hiding the new singer link in the menu is not enough. For example, if you enter the http://
localhost:8080/users?form URL in the browser directly, we can still see the add singer page, even though
you are not logged in yet. The reason is that we haven’t protected the application at the URL level. One
method for protecting the page is to configure the Spring Security filter chain to intercept the URL for only
authenticated users. However, doing this will block all other users from seeing the singer list view.

An alternative for solving the problem is to apply security at the controller method level, using Spring
Security’s annotation support. Method security is enabled by annotating the SecurityConfig class with
@EnableGlobalMethodSecurity(prePostEnabled = true), and the prePostEnabled attribute enables the
support of pre- and post-annotations to be used on methods.

Now we can use the @PreAuthorize annotation for the controller method we want to protect. The
following code snippet shows an example of protecting the createForm() method:

import org.springframework.security.access.prepost.PreAuthorize;
...

 @PreAuthorize("isAuthenticated()")
 @RequestMapping(params = "form", method = RequestMethod.GET)
 public String createForm(Model uiModel) {

Chapter 16 ■ Web Applications

732

 Singer singer = new Singer();
 uiModel.addAttribute("singer", singer);

 return "singers/create";
 }

We use the @PreAuthorize annotation to secure the createForm() method, with an argument being the
expression for security requirements.

Now you can try to directly enter the new singer URL in the browser, and if you are not logged in, Spring
Security will redirect you to the login page, which is the singer list view as configured in the SecurityConfig
class.

Creating Spring Web Applications with Spring Boot
Spring Boot was introduced really early in the book because it is a practical tool to create applications fast.
In this section, we cover how to create a full-blown web application with security and web pages created
using Thymeleaf. Thymeleaf is an XML/XHTML/HTML5 template engine that can work both in web and
nonweb environments. It is really easy to integrate it with Spring. It is the best-suited template engine for
Spring because its creator and project lead Daniel Fernandez started this project because he wanted to give
Spring MVC the template engine it deserved.6 Thymeleaf is a practical alternative to JSP or Tiles, and the
SpringSource team fancies it quite a bit, so knowing how to configure it and use it could be useful in your
future career.

The first Thymeleaf version was released in April 2011. At the time of writing, Thymeleaf 3.0.7 was
recently published, including an update to the new integration module for Spring 5. There are quite a few
extensions for Thymeleaf, written and maintained by the official Thymeleaf team (for example, Thymeleaf
Spring Security Extension7 and Thymeleaf Module for Java 8 Time API compatibility8).

Anyway, let’s leave Thymeleaf for later and dive into the creation of a Spring Boot web application. To
create a full-blown Spring web application, this means you need a DAO layer and a service layer in place.
This means you need the specific Boot starter library for persistence and transactions. Here you can see a
Gradle configuration snippet, depicting the libraries needed to create the application. Each of them will be
detailed at the appropriate time.

//pro-spring-15/build.gradle
ext {
 //spring libs
 bootVersion = '2.0.0.M3'

 bootstrapVersion = '3.3.7-1'
 thymeSecurityVersion = '3.0.2.RELEASE'
 jQueryVersion = '3.2.1'
 ...

6You can find a full discussion on the official Thymeleaf forum at http://forum.thymeleaf.org/why-Thymeleaf-
td3412902.html.
7The Thymeleaf Extras Spring Security library provides a dialect that allows you to integrate several authorization
and authentication aspects of Spring Security (versions 3.x and 4.x) into Thymeleaf-based applications. See https://
github.com/thymeleaf/thymeleaf-extras-springsecurity.
8This is a Thymeleaf Extras module, not part of the Thymeleaf core (and as such it follows its own versioning schema),
but it is fully supported by the Thymeleaf team. See https://github.com/thymeleaf/thymeleaf-extras-java8time.

http://forum.thymeleaf.org/why-Thymeleaf-td3412902.html
http://forum.thymeleaf.org/why-Thymeleaf-td3412902.html
https://github.com/thymeleaf/thymeleaf-extras-springsecurity
https://github.com/thymeleaf/thymeleaf-extras-springsecurity
https://github.com/thymeleaf/thymeleaf-extras-java8time

Chapter 16 ■ Web Applications

733

 spring = [
 ...
 springSecurityTest:
 "org.springframework.security:spring-security-test:$springSecurityVersion"

]

 boot = [
 ...
 starterThyme :
 "org.springframework.boot:spring-boot-starter-thymeleaf:$bootVersion",
 starterSecurity :
 "org.springframework.boot:spring-boot-starter-security:$bootVersion"
]

 web = [
 bootstrap : "org.webjars:bootstrap:$bootstrapVersion",
 jQuery : "org.webjars:jquery:$jQueryVersion",
 thymeSecurity:
 "org.thymeleaf.extras:thymeleaf-extras-springsecurity4:$thymeSecurityVersion"
]
 db = [
 ...
 h2 : "com.h2database:h2:$h2Version"
]
}

//chapter16/build.gradle
...
apply plugin: 'org.springframework.boot'

dependencies {
 compile boot.starterJpa, boot.starterJta, db.h2, boot.starterWeb,
 boot.starterThyme, boot.starterSecurity,
 web.thymeSecurity, web.bootstrap, web.jQuery
 testCompile boot.starterTest, spring.springSecurityTest
}

Setting Up the DAO Layer
The Spring Boot JPA library spring-boot-starter-data-jpa contains autoconfigured beans that can
be used to set up and generate an H2 database if the H2 library is in the classpath. All that is left for the
developer to do is to develop an entity class and a repository. For this example, things will be kept really
simple, so we’ll use a simple version of the Singer class.

package com.apress.prospring5.ch16.entities;

import org.hibernate.validator.constraints.NotBlank;

import javax.persistence.*;

Chapter 16 ■ Web Applications

734

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import java.io.Serializable;
import java.util.Date;

import static javax.persistence.GenerationType.IDENTITY;

@Entity
@Table(name = "singer")
public class Singer implements Serializable {

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;

 @Version
 @Column(name = "VERSION")
 private int version;

 @NotBlank(message = "{validation.firstname.NotBlank.message}")
 @Size(min = 2, max = 60, message = "{validation.firstname.Size.message}")
 @Column(name = "FIRST_NAME")
 private String firstName;

 @NotBlank(message = "{validation.lastname.NotBlank.message}")
 @Size(min = 1, max = 40, message = "{validation.lastname.Size.message}")
 @Column(name = "LAST_NAME")
 private String lastName;

 @NotNull
 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;

 @Column(name = "DESCRIPTION")
 private String description;

 //setters and getters
 ...
}

Also, because of the simplicity, the simplest extension of a CrudRepository instance will be used.

package com.apress.prospring5.ch16.repos;

import com.apress.prospring5.ch16.entities.Singer;
import org.springframework.data.repository.CrudRepository;

public interface SingerRepository extends CrudRepository<Singer, Long> {

}

Chapter 16 ■ Web Applications

735

Setting Up the Service Layer
The service layer is also simple; it is made of the SingerServiceImpl class and of the DBInitializer class
used to initialize the database and populate it with Singer records. The SingerServiceImpl class is depicted
here. The initializer class was covered in the previous sections, so it won’t be depicted again.

package com.apress.prospring5.ch16.services;

import com.apress.prospring5.ch16.entities.Singer;
import com.apress.prospring5.ch16.repos.SingerRepository;
import com.google.common.collect.Lists;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.util.List;

@Service
public class SingerServiceImpl implements SingerService {

 private SingerRepository singerRepository;

 @Override
 public List<Singer> findAll() {
 return Lists.newArrayList(singerRepository.findAll());
 }

 @Override
 public Singer findById(Long id) {
 return singerRepository.findById(id).get();
 }

 @Override
 public Singer save(Singer singer) {
 return singerRepository.save(singer);
 }

 @Autowired
 public void setSingerRepository(SingerRepository singerRepository) {
 this.singerRepository = singerRepository;
 }

}

Setting Up the Web Layer
The web layer consists only of the simplest version of SingerController. The @RequestMapping annotations
were replaced with equivalent annotations that no longer need to specify the HTTP method. The class is
shown here:

package com.apress.prospring5.ch16.web;

Chapter 16 ■ Web Applications

736

import com.apress.prospring5.ch16.entities.Singer;
import com.apress.prospring5.ch16.services.SingerService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.*;

import javax.validation.Valid;
import java.util.List;

@Controller
@RequestMapping(value = "/singers")
public class SingerController {

 private final Logger logger = LoggerFactory.getLogger(SingerController.class);
 @Autowired SingerService singerService;

 @GetMapping
 public String list(Model uiModel) {
 logger.info("Listing singers");
 List<Singer> singers = singerService.findAll();
 uiModel.addAttribute("singers", singers);
 logger.info("No. of singers: " + singers.size());
 return "singers";
 }

 @GetMapping(value = "/{id}")
 public String show(@PathVariable("id") Long id, Model uiModel) {
 Singer singer = singerService.findById(id);
 uiModel.addAttribute("singer", singer);
 return "show";
 }

 @GetMapping(value = "/edit/{id}")
 public String updateForm(@PathVariable Long id, Model model) {
 model.addAttribute("singer", singerService.findById(id));
 return "update";
 }

 @GetMapping(value = "/new")
 public String createForm(Model uiModel) {
 Singer singer = new Singer();
 uiModel.addAttribute("singer", singer);
 return "update";
 }

Chapter 16 ■ Web Applications

737

 @PostMapping
 public String saveSinger(@Valid Singer singer) {
 singerService.save(singer);
 return "redirect:/singers/" + singer.getId();
 }
}

The updateForm and createForm methods return the same view. The only difference is that the
updateForm receives as an argument an ID of an existing Singer instance, which is used as a model object
for the update view. The update view contains a button that, when clicked, calls the createSinger method.
If the Singer instance had an ID, an update of the object is performed in the database; otherwise, a new
Singer instance is created and saved to the database. Validation and proper handling of the validation
failures are not covered in this example. This will be left as an exercise for you.

The tasks of discovery and creation of controller beans are supported by the Spring Boot web starter
library spring-boot-starter-web.

Setting Up Spring Security
Spring Boot provides a Spring Security starter library called spring-boot-starter-security. If this library
is in the classpath, Spring Boot automatically secures all HTTP endpoints with basic authentication. But the
default security settings can be further customized. For this section, let’s assume that only the front page
(the home page) of the application is accesible using the root (/) context (http:\localhost:8080/). The
customized configuration is depicted here:

package com.apress.prospring5.ch16;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.authentication.builders.
 AuthenticationManagerBuilder;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.
 EnableWebSecurity;
import org.springframework.security.config.annotation.web.configuration.
 WebSecurityConfigurerAdapter;

@Configuration
@EnableWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http
 .authorizeRequests()
 .antMatchers("/", "/home").permitAll()
 .and()
 .authorizeRequests().antMatchers("/singers/**").authenticated()
 .and()

Chapter 16 ■ Web Applications

738

 .formLogin()
 .loginPage("/login")
 .permitAll()
 .and()
 .logout()
 .permitAll();
 }

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
 auth
 .inMemoryAuthentication()
 .withUser("user").password("user").roles("USER");
 }
}

Creating Thymeleaf Views
Before jumping into creating views using the Thymeleaf templating engine, let’s cover the basic structure of a
Spring Boot web application. A Spring Boot web application uses the resources directory as a web resources
directory, so no webapp directory is needed. If the contents of the resources directory are organized
following the default structure requirements of Spring Boot, a lot of configuration is not needed to be
written because preconfigured beans are provided by the Spring Boot starter libraries. To use the Thymeleaf
templating engine with the default configuration, the Spring Boot Thymeleaf starter library spring-boot-
starter-thymeleaf must be in the classpath of the project.

Figure 16-5 shows the transitive dependencies of the spring-boot-starter-thymeleaf library, along
with other starter libraries you might find interesting.

Chapter 16 ■ Web Applications

739

As you can see, Spring Boot Thymeleaf starter version 2.0.0.M3 comes with Thymeleaf 3.0.7, which is
the most recent released version at the time of writing.

Notice that spring-boot-starter-web has an embedded Tomcat server as a dependency that will be
used to run the application.

Now that we have all the libraries in the classpath, let’s analyze the structure of the resources
directory, which is depicted in Figure 16-6. By default Spring Boot configures the Thymeleaf engine to
read template files from the templates directory. If Spring MVC is being used alone, without Spring
Boot, the Thymeleaf engine needs to be explicitly configured by defining three beans: a bean of type
SpringResourceTemplateResolver, a bean of type SpringTemplateEngine, and a ThymeleafViewResolver
bean.9 Thus, with Spring Boot, all the developer has to do is start creating templates and drop them into the /
resources/templates directory.

Figure 16-5.  Spring Boot starter libraries and starter dependencies

9The Thymeleaf official site provides a good tutorial on working with Thymeleaf and Spring. See http://thymeleaf.
org/doc/tutorials/3.0/thymeleafspring.html#spring-mvc-configuration.

http://thymeleaf.org/doc/tutorials/3.0/thymeleafspring.html#spring-mvc-configuration
http://thymeleaf.org/doc/tutorials/3.0/thymeleafspring.html#spring-mvc-configuration

Chapter 16 ■ Web Applications

740

Creating the Thymeleaf template is easy, and the syntax is simple HTML. Let’s start with a simple
example.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head lang="en">

 <title>Spring Boot Thymeleaf Sample</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
</head>

Figure 16-6.  Default structure of the resources directory for a Spring Boot web application using Thymeleaf

Chapter 16 ■ Web Applications

741

<body>
<h1>Hello World</h1>

<h2>Just another simple text here</h2>
</body>
</html>

The line <html xmlns:th="http://www.thymeleaf.org"> is the Thymeleaf namespace declaration.
This is important, and without it, the template will just be a simple static HTML file. As a template engine,
Thymeleaf allows you to define and customize how the templates will be processed to a fine detail. Under
the hood, the templates are handled by a processor (or several), which recognizes certain elements written
in the Thymeleaf standard dialect. Most of the standard dialect consists of attribute processors; these allow
a browser to correctly display templates, even without the files being processed, because the unknown
attributes will just be ignored. Let’s consider the following example of a form input text field:

<input type="text" name="singerName" value="John Mayer" />

The previous declaration is a static HTML component, which the browser knows how to interpret. If you
were to write the same element using Spring form elements, it would look like this:

<form:inputText name="singerName" value="${singer.name}" />

A browser would not be able to display the earlier declaration, so when writing templates using Apache
Tiles, every time we want to view the form in a browser, we have to compile the project. Thymeleaf solves
this problem by using normal HTML elements, which can be configured using Thymeleaf attributes. This is
how the previous element looks written with Thymeleaf:

<input type="text" name="singerName" value="John Mayer"
 th:value="${singer.name}" />

With the previous declaration, the browser is able to display the element, and you can actually set a
value for the element so we can see how components come together in the page. This value will be replaced
by the result of the evaluation of ${singer.name} during processing of the template.

As mentioned in the previous sections, when writing interfaces for a web application, we might need
to isolate common parts and include them in other templates, to avoid code duplication. For example,
the header, footer and menus are common parts of all the pages of an application. These common parts
are represented with Thymeleaf by special templates called fragments. These partial templates should
be defined by default under the /templates/fragments directory, but the name of the directory can be a
different one if the situation requires it.10 The syntax to define a fragment is depicted here, where a footer.
html example is covered:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>
 ProSpring5 Singer Boot Application
 </title>
</head>

10A web application can have multiple themes, and each of them can be represented by a set of fragments.

http://www.thymeleaf.org/

Chapter 16 ■ Web Applications

742

<body>
<div th:fragment="footer" th:align="center">
 <p>Copyright (c) 2017 by Iuliana Cosmina and Apress. All rights reserved.</p>
</div>
</body>
</html>

Notice the th:fragment attribute that declares the name of the fragment, which can be used later in
other templates by inserting it or replacing certain elements. You can see the syntax to use the fragment
here, where a simple index.html template is shown:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>
 ProSpring5 Singer Boot Application
 </title>
</head>

<body>
<div th:replace="~{fragments/header :: header}">Header</div>
<div class="container">
 ...
</div>
</body>
</html>

There are three ways of using a fragment:

•	 th:replace replaces its host tag with the specified fragment.

•	 th:insert inserts the specified fragment as the body of its host tag.

•	 th:include inserts the contents of this fragment.11

If you want to know more about Thymeleaf templates, the best resources are available on the official site
at http://thymeleaf.org/documentation.html.

The last directory that we need to cover here is the static directory. The static directory contains
static resources for the application templates, such as CSS files and images. To include custom CSS classes in
a Thymeleaf template, you can use the following syntax:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

 <link href="../../public/css/general.css"
 th:href="@{css/general.css}" rel="stylesheet" media="screen"/>

 <title>

11As of version 3.0, this is not recommended.

http://thymeleaf.org/documentation.html

Chapter 16 ■ Web Applications

743

 ProSpring5 Singer Boot Application
 </title>
 </head>
 <body>
 ...
</body>
</html>

The href attribute contains the path relative to the template and is used when the template is opened
in the browser so that the general.css styles are loaded. The th:href attribute is used when the template is
processed, and {css/general.css} is resolved to the URL of the application.

Using Thymeleaf Extensions
In the application covered in this section, two Thymeleaf extensions are used. The thymeleaf-extras-
springsecurity4 extension is needed because we are building a secured application using Thymeleaf
templates. For example, when the user is not logged in, the Log In option should be shown, and when the
user is logged in, the Log Out option should be shown.

This is a Thymeleaf Extras module, not part of the Thymeleaf core, but it’s fully supported by the
Thymeleaf team. Although the number 4 is in the name, all that is needed is the support for some special
security utility objects. Thus, it is compatible with Spring Security 5.0.x, which is a transitive dependency of
the Spring Boot starter security library. Let’s take a look at a more extended header.html file that contains a
navigation menu with different menu items for authorized and unauthorized users:

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <link href="../../public/css/bootstrap.min.css"
 th:href="@{/webjars/bootstrap/3.3.7-1/css/bootstrap.min.css}"
 rel="stylesheet" media="screen"/>
 <script src="http://cdn.jsdelivr.net/webjars/jquery/3.2.1/jquery.min.js"
 th:src="@{/webjars/jquery/3.2.1/jquery.min.js}"></script>
 <title>
 ProSpring5 Singer Boot Application
 </title>
</head>
<body>
<div class="container">
 <div th:fragment="header">
 <nav class="navbar navbar-inverse">
 <div class="container-fluid">
 <div class="navbar-header">
 ProSpring 5
 </div>
 <ul class="nav navbar-nav">
 Singers
 Add Singer

Chapter 16 ■ Web Applications

744

 <ul class="nav navbar-nav navbar-right" >
 <li th:if="${#authorization.expression('!isAuthenticated()')}">

 Log in

 <li th:if="${#authorization.expression('isAuthenticated()')}">

 Logout

 <form style="visibility: hidden" id="form" method="post" action="#"
 th:action="@{/logout}"></form>

 </div>
 </nav>
 </div>
</div>
</body>
</html>

This module provides a new dialect called org.thymeleaf.extras.springsecurity4.dialect.
SpringSecurityDialect that includes the #authorization object (used in the previous example), which is
an expression utility object with methods for checking the authorization based on expressions, URLs, and
access control lists.12 This dialect is configured out of the box by Spring Boot.

The second Thymeleaf extension used in this application is thymeleaf-extras-java8time. This
dependency has to be explicitly added in the classpath of the project and provides support for the Java 8 Time
API. This extension is also fully supported by the official Thymeleaf team. It adds a #temporals (and others like
#dates) object to ApplicationContext as a utility object processor during expression evaluations. This means
expressions in the Object-Graph Navigation Language (OGNL) and Spring Expression Language (SpringEL) can
be evaluated. Let’s consider the template needed to display a singer’s details; it’s called the show.html template.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <link href="../../public/css/bootstrap.min.css"
 th:href="@{/webjars/bootstrap/3.3.7-1/css/bootstrap.min.css}"
 rel="stylesheet" media="screen"/>
 <script src="http://cdn.jsdelivr.net/webjars/jquery/3.2.1/jquery.min.js"
 th:src="@{/webjars/jquery/3.2.1/jquery.min.js}"></script>

 <title>
 ProSpring5 Singer Boot Application
 </title>

</head>

12As this extension is not in the scope of the book, if you are curious, you can visit the official site at https://github.com/
thymeleaf/thymeleaf-extras-springsecurity for more information.

https://github.com/thymeleaf/thymeleaf-extras-springsecurity
https://github.com/thymeleaf/thymeleaf-extras-springsecurity

Chapter 16 ■ Web Applications

745

<body>
<div th:replace="~{fragments/header :: header}">Header</div>
<div class="container">

 <h1>Singer Details</h1>

 <div>
 <form class="form-horizontal">
 <div class="form-group">
 <label class="col-sm-2 control-label">First Name:</label>
 <div class="col-sm-10">
 <p class="form-control-static" th:text="${singer.firstName}">
 Singer First Name
 </p>
 </div>
 </div>
 <div class="form-group">
 <label class="col-sm-2 control-label">Last Name:</label>
 <div class="col-sm-10">
 <p class="form-control-static" th:text="${singer.lastName}">
 Singer Last Name
 </p>
 </div>
 </div>
 <div class="form-group">
 <label class="col-sm-2 control-label">Description:</label>
 <div class="col-sm-10">
 <p class="form-control-static" th:text="${singer.description}">
 Singer Description
 </p>
 </div>
 </div>
 <div class="form-group">
 <label class="col-sm-2 control-label">BirthDate:</label>
 <div class="col-sm-10">
 <p class="form-control-static"
 th:text="${#dates.format(singer.birthDate, 'dd-MMM-yyyy')}">
 Singer BirthDate
 </p>
 </div>
 </div>
 </form>
</div>
<div th:insert="~{fragments/footer :: footer}">
 (c) 2017 Iuliana Cosmina & Apress</div>
</div>

</body>
</html>

Chapter 16 ■ Web Applications

746

In the previous example, singer.birthDate of type java.util.Date is formatted using the #dates
utility object. In this case, no date formatter object is needed, and the accepted date pattern is hard-coded in
the template.

This is not too practical, right?
Assume we have a DateFormatter class defined as shown in the following code snippet:

package com.apress.prospring5.ch16.util;

import org.springframework.format.Formatter;

import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;

public class DateFormatter implements Formatter<Date> {
 public static final SimpleDateFormat formatter =
 new SimpleDateFormat("yyyy-MM-dd");

 @Override
 public Date parse(String s, Locale locale) throws ParseException {
 return formatter.parse(s);
 }

 @Override
 public String print(Date date, Locale locale) {
 return formatter.format(date);
 }
}

Let’s use a minimal web configuration class to configure this formatter in the application classpath.

package com.apress.prospring5.ch16;

import com.apress.prospring5.ch16.util.DateFormatter;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.format.FormatterRegistry;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
public class MvcConfig implements WebMvcConfigurer {

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/index").setViewName("index");
 registry.addViewController("/").setViewName("index");
 registry.addViewController("/login").setViewName("login");
 }

Chapter 16 ■ Web Applications

747

 @Override
 public void addFormatters(FormatterRegistry formatterRegistry) {
 formatterRegistry.addFormatter(dateFormatter());
 }

 @Bean
 public DateFormatter dateFormatter() {
 return new DateFormatter();
 }
}

Once the date formatter is registered in the application, it can be used in Thymeleaf templates via the
double-bracket syntax. So this:

<p class="form-control-static"
 th:text="${#dates.format(singer.birthDate, 'dd-MMM-yyyy')}">
 Singer BirthDate
</p>

can be rewritten like this:

<p class="form-control-static" th:text="${{singer.birthDate}}">
 Singer BirthDate
</p>

So, the hard-coding of the date pattern was removed, and the date formatter class can be modified
externally, without any change to the Thymeleaf template. That’s more practical, right?

Using Webjars
In the most recent Thymeleaf template example, you might have noticed some strange links in the <head>
element.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <link href="../../public/css/bootstrap.min.css"
 th:href="@{/webjars/bootstrap/3.3.7-1/css/bootstrap.min.css}"
 rel="stylesheet" media="screen"/>
 <script src="http://cdn.jsdelivr.net/webjars/jquery/3.2.1/jquery.min.js"
 th:src="@{/webjars/jquery/3.2.1/jquery.min.js}"></script>
 <title>
 ProSpring5 Singer Boot Application
 </title>
</head>
<body>
...
</body>
</html>

Chapter 16 ■ Web Applications

748

Creating an HTML web page that looks amazing has become easier since Bootstrap13 appeared.
Bootstrap is the most popular HTML, CSS, and JS framework for developing responsive, mobile-first
projects on the Web. To use Bootstrap in your templates, you just have to link to the Bootstrap CSS file in
your template. For a long time, CSS styles and JavaScript code were part of a web application and were
manually copied by developers into a special directory. But lately, the most commonly used frameworks for
creating web pages, like jQuery and Bootstrap, can be used differently, by adding them as dependencies to
your application, packaged as Java archives, called webjars.14 Webjars are deployed on the Maven central
repository and will be downloaded and added to your application automatically by your build tool (Maven,
Gradle, etc.) once they’ve been declared as dependencies for your project.

In the example covered earlier, JQuery and Bootstrap webjars are declared using th:href attributes.
Having them linked in the template file makes sure all Bootstrap classes are applied to the elements in the
template (e.g., class="container-fluid") and all jQuery functions are accessible (onclick="$(’#form’).
submit();) when the template is processed and the application is deployed to a server.

After all this has been set up, if you run the SingerApplication class depicted next and you access
http://localhost:8080/, you should see the index.html processed template.

package com.apress.prospring5.ch16;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

@SpringBootApplication
public class SingerApplication {

 private static Logger logger =
 LoggerFactory.getLogger(SingerApplication.class);

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(SingerApplication.class, args);
 assert (ctx != null);
 logger.info("Application started...");

 System.in.read();
 ctx.close();
 }
}

Notice how no other annotation except @SpringBootApplication is needed. Entities, controllers, and
repositories are automatically picked up, just by adding the JPA and web Spring Boot starter libraries in the
classpath. Now if you access the http://localhost:8080/ URL in a browser, you should see the home page
of the application. If all went well and the Bootstrap webjar was processed correctly, the page should look
like Figure 16-7.

13Here is the official site: http://getbootstrap.com/.
14See https://www.webjars.org/.

http://getbootstrap.com/
https://www.webjars.org/

Chapter 16 ■ Web Applications

749

Summary
In this chapter, we covered many topics related to web development using Spring MVC. First, we discussed
the high-level concepts of the MVC pattern. Then we covered Spring MVC’s architecture, including its
WebApplicationContext hierarchy, request-handling life cycle, and configuration.

Next we learned how to develop a sample singer management application using Spring MVC, with JSPX
as the view technology. During the course of developing the samples, we elaborated on different areas. Main
topics included i18n, theming, and template support with Apache Tiles. Moreover, we learned how to use
jQuery, jQuery UI, and other JavaScript libraries to enrich the interface. Samples included the date picker,
rich-text editor, and data grid with pagination support. How to secure a web application with Spring Security
was discussed too.

We also went through some functionality of Servlet 3.0–compatible web containers such as code-based
configuration rather than using a web.xml file. We demonstrated how to handle file upload within a Servlet 3.0
environment.

And because Spring Boot is the prodigy feature of the Spring team, how to build a full-blown web
application using it had to be covered. Of course, the most Spring-suited template engine, Thymeleaf had to
be introduced as well.

In the next chapter, we cover more features that Spring brings in terms of web application development
by introducing WebSocket.

Figure 16-7.  The front page of the Spring Boot application built in this section

751© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_17

CHAPTER 17

WebSocket

Traditionally, web applications have utilized the standard request/response HTTP functionality to provide
communication between the client and server. As the Web has evolved, more interactive abilities have
been required, some of which demand push/pull or real-time updates from the server. Over time, various
methods have been implemented, such as continuous polling, long polling, and Comet. Each has its pros
and cons, and the WebSocket protocol is an attempt to learn from those needs and deficiencies, creating
a simpler and more robust way to build interactive applications. The HTML5 WebSocket specification
defines an API that enables web pages to use the WebSocket protocol for two-way communication with a
remote host.

This chapter covers a high-level overview of the WebSocket protocol and the main functionality
provided by the Spring Framework. Specifically, this chapter covers the following topics:

•	 Introduction to WebSocket: We provide a general introduction of the WebSocket
protocol. This section is not intended to serve as a detailed reference of the
WebSocket protocol but rather as a high-level overview.1

•	 Using WebSocket with Spring: In this section, we dive into some of the details of
using WebSocket with the Spring Framework; specifically, we cover using Spring’s
WebSocket API, utilizing SockJS as a fallback option for non-WebSocket-enabled
browsers, and sending messages using Simple (or Streaming) Text-Oriented Message
Protocol (STOMP) over SockJS/WebSocket.

Introducing WebSocket
WebSocket is a specification developed as part of the HTML5 initiative, allowing for a full-duplex
single-socket connection in which messages can be sent between a client and a server. In the past,
web applications requiring the functionality of real-time updates would poll a server-side component
periodically to obtain this data, opening multiple connections or using long polling.

Using WebSocket for bidirectional communication avoids the need to perform HTTP polling for
two-way communications between a client (for example, a web browser) and an HTTP server. The
WebSocket protocol is meant to supersede all existing bidirectional communication methods utilizing HTTP
as a transport. The single-socket model of WebSocket results in a simpler solution, avoiding the need for
multiple connections for each client and less overhead—for example, not needing to send an HTTP header
with each message.

1For details on the protocol, refer to RFC-6455 at http://tools.ietf.org/html/rfc6455 or
https://www.websocket.org/.

https://doi.org/10.1007/978-1-4842-2808-1_17
http://tools.ietf.org/html/rfc6455
https://www.websocket.org/

Chapter 17 ■ WebSocket

752

WebSocket utilizes HTTP during its initial handshake, which in turn allows it to be used over standard
HTTP (80) and HTTPS (443) ports. The WebSocket specification defines a ws:// and a wss:// scheme
to indicate nonsecure and secure connections. The WebSocket protocol has two parts: a handshake
between the client and server and then data transfer. A WebSocket connection is established by making
an upgrade request from HTTP to the WebSocket protocol during the initial handshake between the client
and the server, over the same underlying TCP/IP connection. During the data transfer portion of the
communication, both the client and server can send messages to each other simultaneously, which as you
can imagine opens the door to add more robust real-time communication functionality to your applications.

Using WebSocket with Spring
As of version 4.0, the Spring Framework supports WebSocket-style messaging as well as STOMP as an
application-level subprotocol. Within the framework, you can find support for WebSocket in the spring-
websocket module, which is compatible with JSR-356 (Java WebSocket).2

Application developers must also recognize that although WebSocket brings new and exciting
opportunities, not all web browsers support the protocol. Given this, the application must continue to work
for the user and utilize some sort of fallback technology to simulate the intended functionality as best as
possible. To handle this case, the Spring Framework provides transparent fallback options via the SockJS
protocol, which will we go into later in this chapter.

Unlike REST-based applications, where services are represented by different URLs, WebSocket uses
a single URL to establish the initial handshake, and data flows over that same connection. This type of
message-passing functionality is more along the lines of traditional messaging systems. As of Spring
Framework 4, core message-based interfaces such as Message have been migrated from the Spring
Integration project into a new module called spring-messaging to support WebSocket-style messaging
applications.

When we refer to using STOMP as an application-level subprotocol, we are talking about the protocol
that is transported via WebSocket. WebSocket itself is a low-level protocol that simply transforms bytes
into messages. The application needs to understand what is being sent across the wire, which is where a
subprotocol such as STOMP comes into play. During the initial handshake, the client and server can use the
Sec-WebSocket-Protocol header to define what subprotocol to use. While the Spring Framework provides
support for STOMP, WebSocket does not mandate anything specific.

Now that we have an understanding of what WebSocket is and the support Spring provides, where
we might use this technology? Given the single-socket nature of WebSocket and its ability to provide a
continuous bidirectional data flow, WebSocket lends itself well to applications that have a high frequency of
message passing and require low- latency communications. Applications that may be good candidates for
WebSocket could include gaming, real-time group collaboration tools, messaging systems, time-sensitive
pricing information such as financial updates, and so on. When designing your application with the
consideration of using WebSocket, you must take into account both the frequency of messages and latency
requirements. This will help determine whether to use WebSocket or, for example, HTTP long polling.

Using the WebSocket API
As mentioned earlier in this chapter, WebSocket simply transforms bytes into messages and transports
them between client and server. Those messages still need to be understood by the application itself,
which is where subprotocols such as STOMP come into play. In the event you want to work with the

2See www.oracle.com/technetwork/articles/java/jsr356-1937161.html.

http://www.oracle.com/technetwork/articles/java/jsr356-1937161.html

Chapter 17 ■ WebSocket

753

lower-level WebSocket API directly, the Spring Framework provides an API that you can interact with to
do so. When working with Spring’s WebSocket API, you would typically implement the WebSocketHandler
interface or use convenience subclasses such as BinaryWebSocketHandler for handling binary messages,
SockJsWebSocketHandler for SockJS messages, or TextWebSocketHandler for working with String-based
messages. In this example, for simplicity we will use a TextWebSocketHandler to pass String messages via
WebSocket. Let’s start by taking a look at how we can receive and work with WebSocket messages at a low
level, utilizing the Spring WebSocket API.

Each sample in this chapter can also be configured via Java configuration if that is your preference.
In our opinion, the XML namespace represents the configuration aspects in a succinct fashion, and it
will be used throughout the chapter. Please consult the reference manual for more information on Java
configuration. First let’s start by adding the required dependencies. The following Gradle configuration
snippet lists these libraries:

//pro-spring-15/build.gradle
ext {
 springVersion = '5.0.0.RC3'
 twsVersion = '9.0.0.M22'
 ...

 spring = [
 ...
 context : "org.springframework:spring-context:$springVersion",
 webmvc : "org.springframework:spring-webmvc:$springVersion",
 webSocket : "org.springframework:spring-websocket:$springVersion",
 messaging : "org.springframework:spring-messaging:$springVersion"

]
...
 web = [
 ...
 jacksonDatabind: "com.fasterxml.jackson.core:jackson-databind:$jacksonVersion",
 tomcatWsApi : "org.apache.tomcat:tomcat-websocket-api:$twsVersion",
 tomcatWsEmbed: "org.apache.tomcat.embed:tomcat-embed-websocket:$twsVersion",
 httpclient : "org.apache.httpcomponents:httpclient:$httpclientVersion",
 websocket : "javax.websocket:javax.websocket-api:1.1"
]
}
...
//pro-spring-15/chapter17/build.gradle
compile (web.tomcatWsApi) {
 exclude module: 'tomcat-embed-core'
 }
 compile (web.tomcatWsEmbed) {
 exclude module: 'tomcat-embed-core'
 }
 compile spring.context, spring.webSocket, spring.messaging,
 spring.webmvc, web.websocket, misc.slf4jJcl,
 misc.logback, misc.lang3, web.jacksonDatabind

Chapter 17 ■ WebSocket

754

In the next configuration snippet, you can see the contents of the WEB-INF/web.xml file that we need to
configure so we can use WebSocket with a standard Spring MVC dispatcher servlet:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <display-name>Spring WebSocket API Sample</display-name>

 <servlet>
 <servlet-name>websocket</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring/root-context.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>websocket</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

We first create the servlet definition utilizing Spring’s DispatcherServlet, providing it with a
configuration file (/WEB-INF/spring/root-context.xml). We then provide servlet mapping, indicating all
requests should go through DispatcherServlet.

Now let’s move on and create the root context file, which contains the WebSocket configuration as
shown here:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:websocket="http://www.springframework.org/schema/websocket"
 xmlns:mvc="http://www.springframework.org/schema/mvc"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/websocket
 http://www.springframework.org/schema/websocket/spring-websocket.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc.xsd">

Chapter 17 ■ WebSocket

755

 <websocket:handlers>
 <websocket:mapping path="/echoHandler" handler="echoHandler"/>
 </websocket:handlers>

 <mvc:default-servlet-handler/>

 <mvc:view-controller path= "/" view-name="/static/index.html" />

 <bean id="echoHandler"
 class="com.apress.prospring5.ch17.EchoHandler"/>
</beans>

First, we configure a static resource called index.html. This file contains static HTML and JavaScript
that is used to communicate with the back-end WebSocket service. Then, using the websocket namespace,
we configure our handlers and corresponding bean to handle the request. We define a single handler
mapping in this example, which receives requests at /echoHandler and uses the bean with the ID of
echoHandler to receive a message and respond by echoing the provided message back to the client.

The previous configuration is probably vaguely familiar to you as we haven’t used many XML
configurations in this book. So, let’s switch to Java configuration classes. Here is the configuration for Spring
MVC:

package com.apress.prospring5.ch17.config;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.*;

@Configuration
@EnableWebMvc
@ComponentScan(basePackages = {"com.apress.prospring5.ch17"})
public class WebConfig implements WebMvcConfigurer {

 // <=> <mvc:default-servlet-handler/>
 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

 // <=> <mvc:view-controller .../>
 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("/static/index.html");
 }
}

Chapter 17 ■ WebSocket

756

Let’s continue with the class that replaces web.xml to configure DispatcherServlet.

package com.apress.prospring5.ch17.config;

import org.springframework.web.servlet.support.
 AbstractAnnotationConfigDispatcherServletInitializer;

public class WebInitializer extends
 AbstractAnnotationConfigDispatcherServletInitializer {

 @Override
 protected Class<?>[] getRootConfigClasses() {
 return new Class<?>[]{
 WebSocketConfig.class
 };
 }

 @Override
 protected Class<?>[] getServletConfigClasses() {
 return new Class<?>[]{
 WebConfig.class
 };
 }

 @Override
 protected String[] getServletMappings() {
 return new String[]{"/"};
 }
}

The WebConfig class contains the infrastructure of a Spring MVC application, and because we
want to respect the principle of separation of concerns when using Java configuration, we need a
different configuration class to support WebSocket communication. The class must implement the
WebSocketConfigurer interface that defines callback methods to configure the WebSocket request handling.

package com.apress.prospring5.ch17.config;

import com.apress.prospring5.ch17.EchoHandler;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.socket.config.annotation.EnableWebSocket;
import org.springframework.web.socket.config.annotation.WebSocketConfigurer;
import org.springframework.web.socket.config.annotation.WebSocketHandlerRegistry;

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

Chapter 17 ■ WebSocket

757

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(echoHandler(), "/echoHandler");
 }

 @Bean
 public EchoHandler echoHandler() {
 return new EchoHandler();
 }
}

The @EnableWebSocket annotation needs to be added to a @Configuration class to configure
processing WebSocket requests.

Now we are ready to implement a subclass of TextWebSocketHandler (src/main/java/com/apress/
prospring5/ch17/EchoHandler.java) to help us deal with String-based messages in a convenient way, as
shown here:

package com.apress.prospring5.ch17;

import org.springframework.web.socket.TextMessage;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.handler.TextWebSocketHandler;

import java.io.IOException;

public class EchoHandler extends TextWebSocketHandler {
 @Override
 public void handleTextMessage(WebSocketSession session,
 TextMessage textMessage) throws IOException {
 session.sendMessage(new TextMessage(textMessage.getPayload()));
 }
}

As you can see, this is a basic handler that takes the provided message and simply echoes it back to the
client. The content of the received WebSocket message is contained in the getPayload() method.

That’s pretty much all that is needed on the back end. Given that EchoHandler is a typical Spring bean,
you can do anything you would in a normal Spring application, such as inject services, to carry out any
functions this handler may need to do.

Now let’s create a simple front-end client where we can interact with the back-end WebSocket
service. The front end is a simple HTML page with a bit of JavaScript that uses the browser’s API to make
the WebSocket connection; it also contains some jQuery to handle button-click events and data display.

Chapter 17 ■ WebSocket

758

The front-end application will have the ability to connect, disconnect, send a message, and display status
updates to the screen. The following code snippet shows the code for the front-end client page
(src/main/webapp/static/index.html):

<html>
<head>
 <meta charset="UTF-8">
 <title>WebSocket Tester</title>
 <script language="javascript" type="text/javascript"
 src="http://code.jquery.com/jquery-2.1.1.min.js"></script>
 <script language="javascript" type="text/javascript">
 var ping;
 var websocket;

 jQuery(function ($) {
 function writePing(message) {
 $('#pingOutput').append(message + '\n');
 }

 function writeStatus(message) {
 $("#statusOutput").val($("#statusOutput").val() + message + '\n');
 }

 function writeMessage(message) {
 $('#messageOutput').append(message + '\n')
 }

 $('#connect')
 .click(function doConnect() {
 websocket = new WebSocket($("#target").val());

 websocket.onopen = function (evt) {
 writeStatus("CONNECTED");

 var ping = setInterval(function () {
 if (websocket != "undefined") {
 websocket.send("ping");
 }
 }, 3000);
 };

 websocket.onclose = function (evt) {
 writeStatus("DISCONNECTED");
 };

 websocket.onmessage = function (evt) {
 if (evt.data === "ping") {
 writePing(evt.data);
 } else {
 writeMessage('ECHO: ' + evt.data);
 }
 };

Chapter 17 ■ WebSocket

759

 websocket.onerror = function (evt) {
 onError(writeStatus('ERROR:' + evt.data))
 };
 });

 $('#disconnect')
 .click(function () {
 if (typeof websocket != 'undefined') {
 websocket.close();
 websocket = undefined;
 } else {
 alert("Not connected.");
 }
 });

 $('#send')
 .click(function () {
 if (typeof websocket != 'undefined') {
 websocket.send($('#message').val());
 } else {
 alert("Not connected.");
 }
 });
 });
 </script>
</head>

<body>
 <h2>WebSocket Tester</h2> Target:
 <input id="target" size="40"
 value="ws://localhost:8080/websocket-api/echoHandler"/>

 <button id="connect">Connect</button>
 <button id="disconnect">Disconnect</button>

Message:
 <input id="message" value=""/>
 <button id="send">Send</button>

 <p>Status output:</p>
 <pre><textarea id="statusOutput" rows="10" cols="50"></textarea></pre>
 <p>Message output:</p>
 <pre><textarea id="messageOutput" rows="10" cols="50"></textarea></pre>
 <p>Ping output:</p>
 <pre><textarea id="pingOutput" rows="10" cols="50"></textarea></pre>
</body>
</html>

Chapter 17 ■ WebSocket

760

The following code snippet provides a UI that allows us to call back into the WebSocket API and watch
real-time results appear on the screen.

Build the project and deploy it into your web container. Then navigate to http://localhost:8080/
websocket-api/index.html to bring up the UI. After clicking the Connect button, you will notice a
CONNECTED message in the Status Output text area, and every three seconds a ping message will display
in the Ping Output text area. Go ahead and type a message in the Message text box and then hit the Send
button. This message will be sent to the back-end WebSocket service and displayed in the Message Output
box. When you have finished sending messages, feel free to click the Disconnect button, and you will see
a DISCONNECTED message in the Status Output text area. You will not be able to send any further messages
or disconnect again until you reconnect to the WebSocket service. While this example utilizes the Spring
abstraction on top of the low-level WebSocket API, you can clearly see the exciting possibilities this
technology can bring to your applications. Now let’s take a look at how to handle this functionality when
the browser does not support WebSocket and a fallback option is required. You can test your browser for
compatibility by using a site such as http://websocket.org/echo.html.

Using SockJS
Because all browsers may not support WebSocket and applications still need to function correctly for
end users, the Spring Framework provides a fallback option utilizing SockJS. Using SockJS will provide
WebSocket-like behavior as close as possible during runtime without the need for changes to application-
side code. The SockJS protocol is used on the client side via JavaScript libraries. The Spring Framework’s
spring-websocket module contains the relevant SockJS server-side components. When using SockJS to
provide a seamless fallback option, the client will first send a GET request to the server by using a path of
/info to obtain transport information from the server. SockJS will first try to use WebSocket, then HTTP
streaming, and finally HTTP long polling as a last resort. To learn more about SockJS and its various projects,
see https://github.com/sockjs.

Enabling SockJS via the websocket namespace support is simple and requires only an additional
directive inside the <websocket:handlers> block. Let’s build a similar application as with the raw
WebSocket API but using SockJS. The src/main/webapp/WEB-INF/spring/root-context.xml file will now
look like this:

<beans ...>

 <websocket:handlers>
 <websocket:mapping path="/echoHandler" handler="echoHandler"/>
 <websocket:sockjs/>
 </websocket:handlers>

 <mvc:default-servlet-handler/>

 <mvc:view-controller path= "/" view-name="/static/index.html" />

 <bean id="echoHandler" class="com.apress.prospring5.ch17.EchoHandler"/>
</beans>

Notice that the <websocket:sockjs> tag has been added. At the most basic level, this is all that is
needed to enable SockJS. We can reuse the EchoHandler class from the WebSocket API example, as we will
be providing the same functionality.

This <websocket:sockjs/> namespace tag also provides other attributes to set configuration options
such as handling session cookies (enabled by default), custom client library loading locations (at the
time of this writing, the default is https://d1fxtkz8shb9d2.cloudfront.net/sockjs-0.3.4.min.js),

http://websocket.org/echo.html
https://github.com/sockjs
https://d1fxtkz8shb9d2.cloudfront.net/sockjs-0.3.4.min.js

Chapter 17 ■ WebSocket

761

heartbeat configuration, message size limits, and so on. These options should be reviewed and configured
appropriately, depending on your application needs and transport types. In the web.xml file not much needs
to be added to reflect our SockJS servlet, as shown here:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <display-name>Spring SockJS API Sample</display-name>

 <servlet>
 <servlet-name>sockjs</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring/root-context.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 <async-supported>true</async-supported>
 </servlet>

 <servlet-mapping>
 <servlet-name>sockjs</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

As you probably suspect by now, the Java configuration follows here. There are two modifications
to be made to support WebSocket communication using SockJS. First we need to support asynchronous
messaging, which is enabled in the previous configuration using <async-supported>true</async-
supported>. This is done by annotating a Java configuration class (a class already annotated with
@Configuration) with another annotation: EnableAsync. If we look in the official Spring Javadoc, you find
that this annotation enables Spring’s asynchronous method execution capability, thus enabling annotation-
driven async processing for an entire Spring application context.3

package com.apress.prospring5.ch17.config;

import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.web.servlet.config.annotation.DefaultServletHandlerConfigurer;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

3You can find official site of the Spring Javadoc here: https://docs.spring.io/spring/docs/current/javadoc-
api/org/springframework/scheduling/annotation/EnableAsync.html.

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/annotation/EnableAsync.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/scheduling/annotation/EnableAsync.html

Chapter 17 ■ WebSocket

762

@Configuration
@EnableWebMvc
@EnableAsync
@ComponentScan(basePackages = {"com.apress.prospring5.ch17"})
public class WebConfig implements WebMvcConfigurer {

 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("/static/index.html");
 }
}

The second change must be done in WebSocketConfig to enable SockJS support for our handler.

package com.apress.prospring5.ch17.config;

import com.apress.prospring5.ch17.EchoHandler;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.simp.config.MessageBrokerRegistry;
import org.springframework.web.socket.config.annotation.*;

@Configuration
@EnableWebSocket
public class WebSocketConfig implements WebSocketConfigurer {

 @Override
 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
 registry.addHandler(echoHandler(),
 "/echoHandler").withSockJS();
 }

 @Bean
 public EchoHandler echoHandler() {
 return new EchoHandler();
 }
}

Chapter 17 ■ WebSocket

763

Next we will need to create an HTML page as we did in the WebSocket API sample, but this time
utilizing SockJS to take care of the transport negotiation. The most notable differences are that we use the
SockJS library rather than WebSocket directly and utilize a typical http:// scheme rather than ws:// to
connect to the endpoint. The simple HTML client code is shown here:

<html>
<head>
 <meta charset="UTF-8">
 <title>SockJS Tester</title>
 <script language="javascript" type="text/javascript"
 src="https://d1fxtkz8shb9d2.cloudfront.net/sockjs-0.3.4.min.js">
 </script>
 <script language="javascript" type="text/javascript"
 src="http://code.jquery.com/jquery-2.1.1.min.js">
 </script>
 <script language="javascript" type="text/javascript">
 var ping;
 var sockjs;

 jQuery(function ($) {
 function writePing(message) {
 $('#pingOutput').append(message + '\n');
 }

 function writeStatus(message) {
 $("#statusOutput").val($("#statusOutput").val() + message + '\n');
 }

 function writeMessage(message) {
 $('#messageOutput').append(message + '\n')
 }

 $('#connect')
 .click(function doConnect() {
 sockjs = new SockJS($("#target").val());

 sockjs.onopen = function (evt) {
 writeStatus("CONNECTED");

 var ping = setInterval(function () {
 if (sockjs != "undefined") {
 sockjs.send("ping");
 }
 }, 3000);
 };

 sockjs.onclose = function (evt) {
 writeStatus("DISCONNECTED");
 };

Chapter 17 ■ WebSocket

764

 sockjs.onmessage = function (evt) {
 if (evt.data === "ping") {
 writePing(evt.data);
 } else {
 writeMessage('ECHO: ' + evt.data);
 }
 };

 sockjs.onerror = function (evt) {
 onError(writeStatus('ERROR:' + evt.data))
 };
 });

 $('#disconnect')
 .click(function () {
 if(typeof sockjs != 'undefined') {
 sockjs.close();
 sockjs = undefined;
 } else {
 alert("Not connected.");
 }
 });

 $('#send')
 .click(function () {
 if(typeof sockjs != 'undefined') {
 sockjs.send($('#message').val());
 } else {
 alert("Not connected.");
 }
 });
 });
 </script>
</head>
<body>
<h2>SockJS Tester</h2>
 Target:
 <input id="target" size="40"
 value="http://localhost:8080/sockjs/echoHandler"/>

 <button id="connect">Connect</button>
 <button id="disconnect">Disconnect</button>

Message:
 <input id="message" value=""/>
 <button id="send">Send</button>

Chapter 17 ■ WebSocket

765

 <p>Status output:</p>
 <pre><textarea id="statusOutput" rows="10" cols="50"></textarea></pre>
 <p>Message output:</p>
 <pre><textarea id="messageOutput" rows="10" cols="50"></textarea></pre>
 <p>Ping output:</p>
 <pre><textarea id="pingOutput" rows="10" cols="50"></textarea></pre>
</body>
</html>

With the new SockJS code implemented, build and deploy the project to the container and navigate
to the UI located at http://localhost:8080/sockjs/index.html, which has all the same features and
functionality of the WebSocket sample. To test the SockJS fallback functionality, try disabling WebSocket
support in your browser. In Firefox, for example, navigate to the about:config page and then search for
network.websocket.enabled. Toggle this setting to false, reload the sample UI, and reconnect. Utilizing
a tool such as Live HTTP Headers will allow you to inspect the traffic going from browser to server for
verification purposes. After verifying the behavior, toggle the Firefox setting network.websocket.enabled
back to true, reload the page, and reconnect. Watching the traffic via Live HTTP Headers will now show you
the WebSocket handshake. In the simple example, everything should work just as with the WebSocket API.

Sending Messages with STOMP
When working with WebSocket, typically a subprotocol such as STOMP will be used as a common format
between the client and server so both ends know what to expect and react accordingly. STOMP is supported
out of the box by the Spring Framework, and we will use this protocol in the sample.

STOMP, a simple, frame-based messaging protocol modeled on HTTP, can be used over any reliable
bidirectional streaming network protocol such as WebSocket. STOMP has a standard protocol format;
JavaScript client-side support exists for sending and receiving messages in a browser and optionally for
plugging into traditional message brokers that support STOMP such as RabbitMQ and ActiveMQ. Out of
the box, the Spring Framework supports a simple broker that handles subscription requests and message
broadcasting to connected clients in memory. In this sample, we will utilize the simple broker and leave the
full-featured broker setup as an exercise for you.4

  For a full description of the STOMP protocol, see http://stomp.github.io/stomp-specification-1.
2.html.

In the STOMP sample, we will create a simple stock-ticker application that displays a few predefined
stock symbols, their current price, and the timestamp upon price change. New stock symbols and starting
prices can also be added through the UI. Any connecting clients (that is, other browsers in tabs or totally new
clients on other networks) will see the same data as they are subscribed to the message broadcasts. Every
second, each stock price will be updated to a new random amount and the timestamp updated.

To ensure that your clients will be able to use the stock ticker application, even if their browser does
not support WebSocket, we will utilize SockJS again to transparently handle any transport switching. Before
diving into the code, it is worth noticing that STOMP messages support is provided by the spring-messaging
library.

4See http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#
websocket-stomp-handle-broker-relay-configure for more.

http://stomp.github.io/stomp-specification-1
http://stomp.github.io/stomp-specification-1.2.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp-handle-broker-relay-configure
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/websocket.html#websocket-stomp-handle-broker-relay-configure

Chapter 17 ■ WebSocket

766

Now let’s first create the Stock domain object, which holds information about the stock such as its code
and price, as shown here:

package com.apress.prospring5.ch17;

import java.util.Date;
import java.io.Serializable;
import java.text.DateFormat;
import java.text.SimpleDateFormat;

public class Stock implements Serializable {
 private static final long serialVersionUID = 1L;
 private static final String DATE_FORMAT = "MMM dd yyyy HH:mm:ss";

 private String code;
 private double price;
 private Date date = new Date();
 private DateFormat dateFormat =
 new SimpleDateFormat(DATE_FORMAT);

 public Stock() { }

 public Stock(String code, double price) {

 this.code = code;
 this.price = price;
 }
 //setters and getters
 ...
}

Now we need to add an MVC controller to handle the incoming requests, as shown here:

package com.apress.prospring5.ch17;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.messaging.handler.annotation.MessageMapping;
import org.springframework.messaging.simp.SimpMessagingTemplate;
import org.springframework.scheduling.TaskScheduler;
import org.springframework.stereotype.Controller;

import javax.annotation.PostConstruct;
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.Random;

@Controller
public class StockController {
 private TaskScheduler taskScheduler;
 private SimpMessagingTemplate simpMessagingTemplate;

Chapter 17 ■ WebSocket

767

 private List<Stock> stocks = new ArrayList<Stock>();
 private Random random = new Random(System.currentTimeMillis());

 public StockController() {
 stocks.add(new Stock("VMW", 1.00d));
 stocks.add(new Stock("EMC", 1.00d));
 stocks.add(new Stock("GOOG", 1.00d));
 stocks.add(new Stock("IBM", 1.00d));
 }

 @MessageMapping("/addStock")
 public void addStock(Stock stock) throws Exception {
 stocks.add(stock);
 broadcastUpdatedPrices();
 }

 @Autowired
 public void setSimpMessagingTemplate(
 SimpMessagingTemplate simpMessagingTemplate) {
 this.simpMessagingTemplate = simpMessagingTemplate;
 }

 @Autowired
 public void setTaskScheduler(TaskScheduler taskScheduler) {
 this.taskScheduler = taskScheduler;
 }

 private void broadcastUpdatedPrices() {
 for(Stock stock : stocks) {
 stock.setPrice(stock.getPrice() +
 (getUpdatedStockPrice() * stock.getPrice()));
 stock.setDate(new Date());
 }

 simpMessagingTemplate.convertAndSend("/topic/price", stocks);
 }

 private double getUpdatedStockPrice() {
 double priceChange = random.nextDouble() * 5.0;

 if (random.nextInt(2) == 1) {
 priceChange = -priceChange;
 }

 return priceChange / 100.0;
 }

Chapter 17 ■ WebSocket

768

 @PostConstruct
 private void broadcastTimePeriodically() {
 taskScheduler.scheduleAtFixedRate(new Runnable() {
 @Override
 public void run() {
 broadcastUpdatedPrices();
 }
 }, 1000);
 }
}

The controller does a couple of things here. First, we add a few predefined stock symbols to the list and
their starting prices for demonstration purposes. We then define a method addStock, which takes a Stock
object, adds it to the list of stocks, and then broadcasts the stocks to all subscribers. When broadcasting the
stocks, we iterate through all the stocks that have been added, updating the price for each, and then send
them out to all subscribers of /topic/price by using the wired SimpMessagingTemplate. You also use a
TaskExecutor instance to continuously broadcast the updated list of stock prices to all subscribed clients
every second.

With the controller in place, let’s now create the HTML UI for display to clients (src/main/webapp/
static/in-dex.html), as shown in the following HTML snippet:

<html>
<head>
 <title>Stock Ticker</title>
 <script src="https://d1fxtkz8shb9d2.cloudfront.net/sockjs-0.3.4.min.js"/>
 <script src="http://cdnjs.cloudflare.com/ajax/libs/stomp.js/2.3.2/stomp.min.js"/>
 <script src="http://code.jquery.com/jquery-2.1.1.min.js"/>
 <script>
 var stomp = Stomp.over(new SockJS("/stomp/ws"));

 function displayStockPrice(frame) {
 var prices = JSON.parse(frame.body);

 $('#price').empty();

 for (var i in prices) {
 var price = pricesi;

 $('#price').append(
 $('<tr>').append(
 $('<td>').html(price.code),
 $('<td>').html(price.price.toFixed(2)),
 $('<td>').html(price.dateFormatted)
)
);
 }
 }

Chapter 17 ■ WebSocket

769

 var connectCallback = function () {
 stomp.subscribe('/topic/price', displayStockPrice);
 };

 var errorCallback = function (error) {
 alert(error.headers.message);
 };

 stomp.connect("guest", "guest", connectCallback, errorCallback);

 $(document).ready(function () {
 $('.addStockButton').click(function (e) {
 e.preventDefault();

 var jsonstr = JSON.stringify({ 'code': $('.addStock .code').val(),
 'price': Number($('.addStock .price').val()) });

 stomp.send("/app/addStock", {}, jsonstr);

 return false;
 });
 });
 </script>
</head>
<body>
<h1>Stock Ticker</h1>
<table border="1">
 <thead>
 <tr>
 <th>Code</th>
 <th>Price</th>
 <th>Time</th>
 </tr>
 </thead>
 <tbody id="price"></tbody>
</table>
<p class="addStock">
 Code: <input class="code"/>

 Price: <input class="price"/>

 <button class="addStockButton">Add Stock</button>
</p>
</body>
</html>

Similar to past examples, we have some HTML mixed in with JavaScript to update the display.5 We
utilize jQuery to update HTML data, SockJS to provide transport selection, and the STOMP JavaScript
library stomp.js for communication with the server. Data sent via STOMP messages is encoded in JSON
format, which we extract on events. Upon a STOMP connection, we subscribe to /topic/price to receive
stock-price updates.

5The reason you combine HTML with JavaScript, although it is not respecting commonsense programming rules, is to
keep the Spring MVC configuration as simple as possible.

Chapter 17 ■ WebSocket

770

Now let’s configure the built-in STOMP broker in root-context.xml (src/main/webapp/WEB-INF/
spring/root-context.xml).

<beans ...">

 <mvc:annotation-driven />

 <mvc:default-servlet-handler/>

 <mvc:view-controller path= "/" view-name="/static/index.html" />

 <context:component-scan base-package="com.apress.prospring5.ch17" />

 <websocket:message-broker application-destination-prefix="/app">
 <websocket:stomp-endpoint path="/ws">
 <websocket:sockjs/>
 </websocket:stomp-endpoint>
 <websocket:simple-broker prefix="/topic"/>
 </websocket:message-broker>

 <bean id="taskExecutor"
 class="org.springframework.core.task.SimpleAsyncTaskExecutor"/>
</beans>

For the most part, this configuration should look familiar. In this example, we configure message-
broker by using the WebSocket namespace, define a STOMP endpoint, and enable SockJS. We also configure
the prefix that subscribers will use to receive messages from. The configured TaskExecutor is used to
provide stock quotes on the defined interval in the controller class. When using the namespace support,
SimpMessagingTemplate is automatically created for us and available to inject into our beans.

Now all that’s left to do is configure our web.xml file (src/main/webapp/WEB-INF/web.xml), as shown in
the following configuration snippet:

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <display-name>Spring STOMP Sample</display-name>

 <servlet>
 <servlet-name>stomp</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring/root-context.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 <async-supported>true</async-supported>
 </servlet>

Chapter 17 ■ WebSocket

771

 <servlet-mapping>
 <servlet-name>stomp</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The XML configuration has been covered, so let’s switch to the nontraditional configuration using
Java configuration classes. To enable Spring asynchronous calls and task execution, you must annotate
WebConfig with @EnableAsync, and you must declare a bean of type org.springframework.core.task.
TaskExecutor.

package com.apress.prospring5.ch17.config;

import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.task.SimpleAsyncTaskExecutor;
import org.springframework.core.task.TaskExecutor;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.web.servlet.config.annotation.DefaultServletHandlerConfigurer;
import org.springframework.web.servlet.config.annotation.EnableWebMvc;
import org.springframework.web.servlet.config.annotation.ViewControllerRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;

@Configuration
@EnableWebMvc
@EnableAsync
@ComponentScan(basePackages = {"com.apress.prospring5.ch17"})
public class WebConfig implements WebMvcConfigurer {

 // <=> <mvc:default-servlet-handler/>
 @Override
 public void configureDefaultServletHandling(
 DefaultServletHandlerConfigurer configurer) {
 configurer.enable();
 }

 // <=> <mvc:view-controller .../>
 @Override
 public void addViewControllers(ViewControllerRegistry registry) {
 registry.addViewController("/").setViewName("/static/index.html");
 }

 @Bean TaskExecutor taskExecutor() {
 return new SimpleAsyncTaskExecutor();
 }
}

Chapter 17 ■ WebSocket

772

The more serious changes are needed in the class WebSocketConfig. This class must now implement
org.springframework.web.s or extend the AbstractWebSocketMessageBrokerConfigurer abstract class,
which will help us decide on what methods we actually want to implement. The class will now define
methods for configuring message handling with simple messaging protocols like STOMP from WebSocket
clients. Also, it has to be annotated with a different annotation called @EnableWebSocketMessageBroker,
which will enable broker-backed messaging over WebSocket using a higher-level messaging subprotocol.

package com.apress.prospring5.ch17.config;

import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.simp.config.MessageBrokerRegistry;
import org.springframework.web.socket.config.annotation.AbstractWebSocketMessageBrokerConf
import org.springframework.web.socket.config.annotation.EnableWebSocketMessageBroker;
import org.springframework.web.socket.config.annotation.StompEndpointRegistry;

@Configuration
@EnableWebSocketMessageBroker
public class WebSocketConfig extends
 AbstractWebSocketMessageBrokerConfigurer {

 // <=> <websocket:stomp-endpoint ... />
 @Override
 public void registerStompEndpoints(StompEndpointRegistry registry) {
 registry.addEndpoint("/ws").withSockJS();
 }

 //<=> websocket:message-broker../>
 @Override
 public void configureMessageBroker(MessageBrokerRegistry config) {
 config.setApplicationDestinationPrefixes("/app");
 config.enableSimpleBroker("/topic");
 }
}

The methods that we are overriding in the previous configuration are the equivalents of the XML
elements they are commented with. They are used to configure a STOMP endpoint and the message broker.

Summary
In this chapter, we covered the general concepts of WebSocket. We discussed the Spring Framework’s
support for the low-level WebSocket API and then moved on to using SockJS as a fallback option to select
the appropriate transport, depending on the client browser. Finally, we introduced STOMP as a WebSocket
subprotocol for passing messages between the client and server. For all examples, we presented the XML
and Java configuration classes because the overall tendency in the business is to drop XML completely.

In the next chapter, we will discuss Spring subprojects that you can mix into your applications to
provide even more robust functionality.

773© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1_18

CHAPTER 18

Spring Projects: Batch, Integration,
XD, and More

This chapter presents a high-level overview of a few projects that are part of the Spring portfolio, notably
Spring Batch, Integration, XD, and a few notable features added in Spring Framework version 5. This chapter
is not intended to cover each project in detail but to provide just enough information and a sample to get
you started. The Spring portfolio contains many more projects than the ones discussed in this chapter, but
we feel the ones presented here are widely used, and some are new and upcoming projects. You can view the
full list of Spring projects at http://spring.io/projects. This chapter covers the following topics:

•	 Spring Batch: We cover the core concepts of the Spring batch-processing framework,
including what it provides you as a developer, and we touch on the new JSR-352
support as of Spring Batch 3.0.

•	 Spring Integration: Integration patterns are used in many enterprise applications,
and Spring Integration provides a robust framework for implementing these
patterns. We build upon the batch example to show how Spring Integration can be
used as part of a workflow to initiate a batch job.

•	 Spring XD: Spring XD ties together many of the existing Spring projects to provide
a unified and extensible system for big data applications. Spring XD is a distributed
system focusing on data ingestion, real-time analytics, batch processing, and data
export. We show how to implement the applications from the Batch and Integration
samples by utilizing Spring XD via simple DSL in the shell interface.

•	 Notable features introduced in Spring 5: There were a lot of discussions about Spring
Framework 5 new features, but as the official release date was getting close, the list
became fixed. Aside from under-the-hood features such as migrating the full code
base to Java 8,1 finally fixing the logging mess by integrating the Commons Logging
bridge module (named spring-jcl instead of the standard Commons Logging2

1The intention was for Spring 5 to be fully compatible with Java 9, but as its release is about 18 months late already, the
Spring team decided to stick with Java 8. However, Java 9 is planned to be released in September 2017, and release 5.x
probably will be fully integrated with it.
2You might remember that the project setup was done in such a way to avoid Commons Logging because
of its problematic runtime discovery algorithm; You can read about this on Spring’s official reference
page at https: //docs.spring.io/spring/docs/current/spring-framework-reference/
htmlsingle/#overview-avoiding-commons-logging.

https://doi.org/10.1007/978-1-4842-2808-1_18
http://spring.io/projects
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#overview-avoiding-commons-logging
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#overview-avoiding-commons-logging
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#overview-avoiding-commons-logging

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

774

and autodetecting Log4j 2.x, SLF4J, and JUL without any extra bridges), adding the
candidate component index as an alternative to classpath scanning, and more,3 there
were a few other notable improvements. Three of them are covered in this chapter.

–– The Functional Web Framework: spring-webflux is a complement to spring-mvc
and was built on a reactive foundation. As the Reactive Streams API is an official
part of Java 9, the Spring Framework 5 streaming support was built upon Project
Reactor (http://projectreactor.io/), which implements the Reactive Streams
API specification.

–– Full interoperability with Java 9: The Spring Framework RC3 release became avail-
able in July 2017 and was advertised to be fully tested against the recent JDK 9
release candidate. Java 9 introduces quite a few interesting features, including the
following: the Jigsaw project/Java modularity, a new HTTP client that supports the
HTTP 2 protocol and WebSocket handshake, an improved process API, improved
syntax for features such as try-with-resources, diamond operator and interface
private methods, a publish-subscribe framework for reactive programming, and a
set of new APIs. The official list of changes and features is available on the Oracle
site,4 but there are basically only two features that will be relevant for Spring: the
modular functionality of JDK and the reactive framework.

–– Full support of JUnit 5 Jupiter5: JUnit 5’s Jupiter programming and extension
models are fully supported in Spring Framework 5, including support for parallel
test execution in the Spring TestContext Framework.

As each of these topics could have their own chapter or even books, covering all the details of each
project and its various offerings would be impossible. We hope the introductions and basic samples will
capture your interest to explore these topics further.

Spring Batch
Spring Batch, a framework for batch processing, is part of the Spring portfolio of projects. It’s lightweight,
flexible, and designed to provide developers with the ability to create robust batch applications with minimal
effort. Spring Batch comes with a number of off-the-shelf components for a variety of technologies, and in
most cases you may even be able to build your batch application by solely using the provided components.

Typical batch applications include daily invoice generation, payroll systems, and extract, transform,
load (ETL) processes. While these are typical examples people may think of up front, Spring Batch can be
used for any process that needs to run unattended, not just for these scenarios. As with all other Spring
projects, Spring Batch builds upon the core Spring Framework, and you have full access to all its capabilities.

At a high level, a batch job contains one or more steps. Each step can provide the ability to either
execute a single unit of work, which is represented by a tasklet implementation, or participate in what’s
called chunk-oriented processing. With chunk-oriented processing, a step utilizes an ItemReader to read
some form of data, an optional ItemProcessor to do any transformations required on that data, and finally
an ItemWriter to write the data out. A step also has various configuration attributes such as the ability to
configure a chunk size (the amount of data to process per transaction), enable multithreaded execution,

3Check out the full list at https://github.com/spring-projects/spring-framework/wiki/
What’s-New-in-the-Spring-Framework#whats-new-in-spring-framework-5x.
4See https://docs.oracle.com/javase/9/whatsnew/toc.htm.
5You can find the official site here: http://junit.org/junit5/docs/current/user-guide/.

http://projectreactor.io/
https://github.com/spring-projects/spring-framework/wiki/What’s-New-in-the-Spring-Framework#whats-new-in-spring-framework-5x
https://github.com/spring-projects/spring-framework/wiki/What’s-New-in-the-Spring-Framework#whats-new-in-spring-framework-5x
https://docs.oracle.com/javase/9/whatsnew/toc.htm
http://junit.org/junit5/docs/current/user-guide/

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

775

skip limits, and so on. Listeners can be used at the step level as well as the job level to receive notifications of
various events that occur during the batch job life cycle, for example, before a step starts, when a step ends,
during a chunk-oriented processing scenario, and so on.

While most jobs can run perfectly fine in a single-threaded, single-process manner, Spring Batch also
provides options for scaling and parallel processing of jobs. Currently, Spring Batch provides the following
scalability options out of the box:

•	 Multithreaded steps: This is the simplest way to make a step multithreaded. Simply
add a TaskExecutor instance of your choice to the step configuration, and each
chunk of items in a chunk-oriented processing setup will be processed in its own
thread of execution.

•	 Parallel steps: Let’s say, for example, you need to read in two large files with different
data at the start of your job. At first you may create two steps, and one will execute after
the other. If both of these data file loads do not depend on each other, why not process
them both at the same time? For this case, Spring Batch allows you to define a split that
contains flow elements and encapsulates these tasks to be executed in parallel.

•	 Remote chunking: This scalability option allows you to take a step and remotely
distribute the work to a number of remote workers and communicate via some
sort of durable middleware such as AMQP or JMS. Remote chunking is typically
used when the reading of data is not the bottleneck in the process, yet the writing
and optionally processing of chunk data is. Chunks of data are sent through the
middleware for slave nodes to pick up and process, which then communicate back to
the master about the status of their processing of that chunk.

•	 Partitioning: This scalability option is generally used when you want to process a
range of data, utilizing threads for each range. A typical scenario is a database table
filled with data that has a numerical identifier column. With partitioning, you can
“partition” the data to be processed in separate threads with a certain number of
records. Spring Batch provides the ability for you as the developer to hook into this
partitioning scheme, as it’s highly dependent on the use case at hand. Partitioning
can be done in local threads or farmed out to remote workers (similar to the remote
chunking option).

One basic yet common use case of batch processing is reading in a file of some sort, usually a flat file
in a delimited format (for example, comma separated), which then needs to be loaded into a database,
with each record optionally processed prior to writing to the database. Let’s take a look at how we would
implement this use case in Spring Batch. First we need to add the required dependencies, as shown in the
following Gradle configuration:

//pro-spring-15/build.gradle
ext {
 //spring libs
 ...
 springBatchVersion = '4.0.0.M3'
 ...

 spring = [
 context : "org.springframework:spring-context:$springVersion",
 jdbc : "org.springframework:spring-jdbc:$springVersion",
 batchCore : "org.springframework.batch:spring-batch-core:$springBatchVersion"
 ...
]

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

776

 misc = [
 io : "commons-io:commons-io:2.5",
 ...
]

 db = [
 ...
 dbcp2 : "org.apache.commons:commons-dbcp2:$dbcpVersion",
 h2 : "com.h2database:h2:$h2Version",

 // needed for the Batch JSR-352 module
 hsqldb: "org.hsqldb:hsqldb:2.4.0"
 dbcp : "commons-dbcp:commons-dbcp:1.4",
]
}
...
//pro-spring-15/chapter18/build.gradle
dependencies {
 if (!project.name.contains("boot")) {
 compile(spring.jdbc) {
 // exclude these as batchCore will bring them
 // on as transitive dependencies
 exclude module: 'spring-core'
 exclude module: 'spring-beans'
 exclude module: 'spring-tx'
 }
 compile spring.batchCore, db.dbcp2, db.h2, misc.io,
 misc.slf4jJcl, misc.logback
 }
}

In the previous configuration, you can see the core dependencies we need to add to a Spring Batch
project (not a Spring Boot project). That is why we have the f (!project.name.contains("boot"))
condition; it prevents libraries with the version explicitly set to mingle with dependencies of Spring Boot
projects in this chapter.

With the dependencies in place, let’s dive into the code. First we create a domain object that represents
a Singer based on the data in the file we will read, as shown here:

package com.apress.prospring5.ch18;

public class Singer {
 private String firstName;
 private String lastName;
 private String song;

 ... // setters & getters

 @Override
 public String toString() {
 return "firstName: " + firstName + ", lastName: "
 + lastName + ", song: " + song;
 }
}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

777

Next, let’s create an implementation of an ItemProcessor used to transform the first name, last name,
and song of each singer represented by the Singer object to uppercase, as shown here:

package com.apress.prospring5.ch18;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.item.ItemProcessor;
import org.springframework.stereotype.Component;

@Component("itemProcessor")
public class SingerItemProcessor implements
 ItemProcessor<Singer, Singer> {
 private static Logger logger =
 LoggerFactory.getLogger(SingerItemProcessor.class);

 @Override
 public Singer process(Singer singer) throws Exception {
 String firstName = singer.getFirstName().toUpperCase();
 String lastName = singer.getLastName().toUpperCase();
 String song = singer.getSong().toUpperCase();

 Singer transformedSinger = new Singer();
 transformedSinger.setFirstName(firstName);
 transformedSinger.setLastName(lastName);
 transformedSinger.setSong(song);

 logger.info("Transformed singer: " + singer + " Into: " +
 transformedSinger);

 return transformedSinger;
 }
}

Please note that ItemProcessors are not required in a chunk-oriented processing scenario; only
ItemReader and ItemWriter are. We are using ItemProcessor here to serve as an example of how you can
transform data prior to writing.

Next up, we will create a StepExecutionListener implementation that resides at the Step level and will
tell you how many records were written after the step has completed, as shown in the following code snippet:

package com.apress.prospring5.ch18;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.StepExecution;
import org.springframework.batch.core.listener.StepExecutionListenerSupport;
import org.springframework.stereotype.Component;

@Component
public class StepExecutionStatsListener extends
 StepExecutionListenerSupport {

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

778

 public static Logger logger = LoggerFactory.
 getLogger(StepExecutionStatsListener.class);

 @Override
 public ExitStatus afterStep(StepExecution stepExecution) {
 logger.info("--> Wrote: " + stepExecution.getWriteCount()
 + " items in step: " + stepExecution.getStepName());
 return null;
 }
}

StepExecutionListener also allows us to modify the returned ExitStatus value if needed; otherwise,
simply return null to keep it unchanged. At this point, we have the core components assembled, but before
moving on to the configuration and invocation code, let’s take a look at the data model and the data itself.
The data model for this job is simple (src/main/resources/support/singer.sql) and is shown here with
the src/main/resources/support/test-data.sql file that contains test data:

-- singer.sql
DROP TABLE singer IF EXISTS;

CREATE TABLE singer (
 singer_id BIGINT IDENTITY NOT NULL PRIMARY KEY,
 first_name VARCHAR(20),
 last_name VARCHAR(20),
 song VARCHAR(100)
);

-- test-data.sql
John,Mayer,Helpless
Eric,Clapton,Change The World
John,Butler,Ocean
BB,King,Chains And Things

Now all we need is to create the Spring Batch configuration file, define the job, and set up the
embedded database and related job components. As the XML configuration is cumbersome and was
covered in the previous edition of this book, this chapter will focus only on the Java configuration classes.
In the spirit of commonsense programming rules, you will decouple the batch configuration from the data
source configuration by creating a separate configuration class for each. Here is the DataSourceConfig
configuration class:

package com.apress.prospring5.ch18.config;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseBuilder;
import org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType;

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

779

import javax.sql.DataSource;

@Configuration
public class DataSourceConfig {

 private static Logger logger = LoggerFactory.getLogger(DataSourceConfig.class);

 @Bean
 public DataSource dataSource() {
 try {
 EmbeddedDatabaseBuilder dbBuilder = new EmbeddedDatabaseBuilder();
 return dbBuilder.setType(EmbeddedDatabaseType.H2)
 .addScripts("classpath:/org/springframework/batch/core/schema-h2.sql",
 "classpath:support/singer.sql").build();
 } catch (Exception e) {
 logger.error("Embedded DataSource bean cannot be created!", e);
 return null;
 }
 }

}

As this configuration should be familiar by now, we will explain only the schema-h2.sql file. This file
is part of the spring-batch-core library and contains DML statements needed to create the Spring Batch
utility tables.

The DataSourceConfig class will be imported into the BatchConfig class, which is depicted here:

package com.apress.prospring5.ch18.config;

import com.apress.prospring5.ch18.Singer;
import com.apress.prospring5.ch18.StepExecutionStatsListener;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemProcessor;
import org.springframework.batch.item.ItemReader;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.database.BeanPropertyItemSqlParameterSourceProvider;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper;
import org.springframework.batch.item.file.mapping.DefaultLineMapper;
import org.springframework.batch.item.file.transform.DelimitedLineTokenizer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;
import org.springframework.core.io.ResourceLoader;

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

780

import javax.sql.DataSource;

@Configuration
@EnableBatchProcessing
@Import(DataSourceConfig.class)
@ComponentScan("com.apress.prospring5.ch18")
public class BatchConfig {

 @Autowired
 private JobBuilderFactory jobs;

 @Autowired
 private StepBuilderFactory steps;

 @Autowired DataSource dataSource;

 @Autowired ResourceLoader resourceLoader;
 @Autowired StepExecutionStatsListener executionStatsListener;

 @Bean
 public Job job(@Qualifier("step1") Step step1) {
 return jobs.get("singerJob").start(step1).build();
 }

 @Bean
 protected Step step1(ItemReader<Singer> reader,
 ItemProcessor<Singer,Singer> itemProcessor,
 ItemWriter<Singer> writer) {
 return steps.get("step1").listener(executionStatsListener)
 .<Singer, Singer>chunk(10)
 .reader(reader)
 .processor(itemProcessor)
 .writer(writer)
 .build();
 }

 @Bean
 public ItemReader itemReader() {
 FlatFileItemReader itemReader = new FlatFileItemReader();
 itemReader.setResource(resourceLoader.getResource(
 "classpath:support/test-data.csv"));
 DefaultLineMapper lineMapper = new DefaultLineMapper();

 DelimitedLineTokenizer tokenizer = new DelimitedLineTokenizer();
 tokenizer.setNames("firstName","lastName","song");
 tokenizer.setDelimiter(",");
 lineMapper.setLineTokenizer(tokenizer);

 BeanWrapperFieldSetMapper<Singer> fieldSetMapper =
 new BeanWrapperFieldSetMapper<>();
 fieldSetMapper.setTargetType(Singer.class);
 lineMapper.setFieldSetMapper(fieldSetMapper);

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

781

 itemReader.setLineMapper(lineMapper);
 return itemReader;
 }
 @Bean
 public ItemWriter itemWriter() {
 JdbcBatchItemWriter<Singer> itemWriter = new JdbcBatchItemWriter<>();
 itemWriter.setItemSqlParameterSourceProvider(
 new BeanPropertyItemSqlParameterSourceProvider<>());
 itemWriter.setSql("INSERT INTO singer (first_name, last_name, song)
 VALUES (:firstName, :lastName, :song)");
 itemWriter.setDataSource(dataSource);
 return itemWriter;
 }
}

Although BatchConfig seems big, it is not nearly as big as the XML configuration would have been. Now
it is time to explain each bean defined in it.

•	 The @EnableBatchProcessing annotation works in a similar way to all the @Enable*
Spring annotations. This one provides a base configuration for building batch
jobs. By annotating a configuration class with this annotation, the following things
happen:

–– An instance of org.springframework.batch.core.scope.StepScope is created.
Objects in this scope use the Spring container as an object factory, so there is only
one instance of such a bean per executing step.

–– A set of specific batch infrastructure beans is made available for autowiring:
jobRepository (of type JobRepository), jobLauncher (of type jobLauncher),
jobBuilders (of type JobBuilderFactory, stepBuilders (of type StepBuilderFactory).
This means they do not have to be explicitly declared (like in XML).

•	 The job bean is the batch job called singerJob that is created by calling
JobBuilderFactory.get(...).

•	 The step1 bean is created by calling StepBuilderFactory.get(...) and is configured
for chunk-oriented processing. The Spring container will inject the ItemReader,
ItemProcessor, and ItemWriter instances found in the context automatically. The
StepExecutionStatsListener bean must be set explicitly, though.

•	 The database bean is used in the declaration of ItemWriter, as this is the bean that
will be used to write Singer instances to the embedded database.

Finally, we need a driver program to launch the job, as shown here:

package com.apress.prospring5.ch18;

import com.apress.prospring5.ch18.config.BatchConfig;
import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParameters;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.context.annotation.AnnotationConfigApplicationContext;
import org.springframework.context.support.GenericApplicationContext;

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

782

import java.util.Date;

public class SingerJobDemo {

 public static void main(String... args) throws Exception {
 GenericApplicationContext ctx =
 new AnnotationConfigApplicationContext(BatchConfig.class);

 Job job = ctx.getBean(Job.class);
 JobLauncher jobLauncher = ctx.getBean(JobLauncher.class);
 JobParameters jobParameters = new JobParametersBuilder()
 .addDate("date", new Date())
 .toJobParameters();
 jobLauncher.run(job, jobParameters);

 System.in.read();
 ctx.close();
 }
}

This code should be familiar to you, as for the most part we are creating our context, obtaining a few
beans, and calling methods on them. One thing you may notice is the JobParameters object. This object
encapsulates parameters that are used to distinguish one instance of a job from another. Job identity is
important in determining the last state of the job, if any, which also plays into other things such as the ability
to restart a job. In this example, we simply use the current date as the Job parameter. JobParameters objects
can be of many types, and these parameters can be accessed in the job as reference data. At this point, we
are ready to test the new job. Compile the code and run the SinxgerJobDemo class. You will see some log
statements display on the screen, and the ones of interest are as follows:

o.s.b.c.l.s.SimpleJobLauncher - Job: [SimpleJob: [name=singerJob]] launched with the
 following parameters: [{date=1501418591075}]
o.s.b.c.j.SimpleStepHandler - Executing step: [step1]
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: John, lastName: Mayer,
 song: Helpless Into: firstName: JOHN, lastName: MAYER, song: HELPLESS
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: Eric, lastName: Clapton,
 song: Change The World Into: firstName: ERIC, lastName: CLAPTON, song: CHANGE THE WORLD
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: John, lastName: Butler,
 song: Ocean Into: firstName: JOHN, lastName: BUTLER, song: OCEAN
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: BB, lastName: King,
 song: Chains And Things Into: firstName: BB, lastName: KING, song: CHAINS AND THINGS
c.a.p.c.StepExecutionStatsListener - --> Wrote: 4 items in step: step1
o.s.b.c.l.s.SimpleJobLauncher - Job: [SimpleJob: [name=singerJob]] completed with the
 following parameters: [{date=1501418591075}] and the following status: [COMPLETED]

That’s all there is to it. You have now built a simple batch job that reads data from a CSV file, transforms
the data via ItemProcessor to change the singer’s first and last name and song to uppercase, and then writes the
results to a database. You also used StepListener to output the number of items that were written in
the step. For more information on Spring Batch, please see its project page at http://projects.spring.io/
spring-batch/.

http://projects.spring.io/spring-batch/
http://projects.spring.io/spring-batch/

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

783

JSR-352
JSR-352 (Batch Applications for the Java Platform) was heavily influenced by Spring Batch. If you choose
to utilize JSR-352 for your jobs, you will notice more and more similarities between the two and should
feel comfortable if you are already a Spring Batch user. For the most part, Spring Batch and JSR-352 have
similar constructs, and Spring Batch has fully supported this JSR as of Spring Batch 3.0. Like Spring Batch,
JSR-352 jobs are configured via an XML schema in what is referred to as the Job Specification Language
(JSL). Because JSR-352 defines a spec and an API, no off-the-shelf infrastructure components are provided
as you may be used to when working with Spring Batch. If you strictly adhere to the JSR-352 API, this means
implementing JSR-352 interfaces and writing all of the infrastructure components such as ItemReaders and
ItemWriters on your own.

In this example, we will convert the previous batch example to utilize the JSR-352 JSL, but rather than
rolling our own infrastructure components, we will utilize the same ItemReader, ItemProcessor, and
ItemWriter as well as take advantage of Spring for dependency injection and so on. Implementing this job
100 percent to comply with the JSR-352 specification will be left as an exercise for you.

In this sample, as mentioned, we will reuse most of the code from the pure Spring Batch sample, with a
few minor changes that we will explain here. If you haven’t yet, this would be a good time to get the Spring
Batch example working and then go forward with applying the changes in this section.

For this example, the H2 database will be replaced with HSQLDB and DBCP 2 with DBCP because
newer versions are not supported. Also, JSR requires the singerJob.xml configuration file to be declared
under src/main/resources/META-INF/batch-jobs/, and when starting a job, all that is needed is the file
name without the .xml extension. So yeah, there’s no way around it with JSR-352; XML must be used. The
XML configuration file for this example is depicted here:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/jobXML_1_0.xsd">

 <job id="singerJob" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">
 <step id="step1">
 <listeners>
 <listener ref="stepExecutionStatsListener"/>
 </listeners>
 <chunk item-count="10">
 <reader ref="itemReader"/>
 <processor ref="itemProcessor"/>
 <writer ref="itemWriter"/>
 </chunk>
 <fail on="FAILED"/>
 <end on="*"/>
 </step>
 </job>

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

784

 <jdbc:embedded-database id="dataSource" type="HSQL">
 <jdbc:script location="classpath:support/singer.sql"/>
 </jdbc:embedded-database>

 <!-- no transaction manager needed -->
 <bean id="stepExecutionStatsListener" ../>
 <bean id="itemReader" ../>
 <bean id="itemProcessor" ../>
 <bean id="itemWriter" ../>
</beans>

The beans that are not shown previously have the same definition when using Spring Batch. You can
find the complete XML definition in the sources attached to the book. And now, because we must, here is
how the previous job is configured with Spring Batch XML:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:batch="http://www.springframework.org/schema/batch"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="
 http://www.springframework.org/schema/batch
 http://www.springframework.org/schema/batch/spring-batch.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <batch:job id="singerJob">
 <batch:step id="step1">
 <batch:tasklet>
 <batch:chunk reader="itemReader"
 processor="itemProcessor"
 writer="itemWriter"
 commit-interval="10"/>
 <batch:listeners>
 <batch:listener ref="stepExecutionStatsListener"/>
 </batch:listeners>
 </batch:tasklet>
 <batch:fail on="FAILED"/>
 <batch:end on="*"/>
 </batch:step>
 </batch:job>

 <jdbc:embedded-database id="dataSource" type="H2">
 <jdbc:script location="classpath:/org/springframework/batch/core/schema-h2.sql"/>
 <jdbc:script location="classpath:support/singer.sql"/>
 </jdbc:embedded-database>

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

785

 <batch:job-repository id="jobRepository"/>

 <bean id="jobLauncher"

 class="org.springframework.batch.core.launch.support.SimpleJobLauncher"
 p:jobRepository-ref="jobRepository"/>

 <bean id="transactionManager"

 class="org.springframework.jdbc.datasource.DataSourceTransactionManager"
 p:dataSource-ref="dataSource"/>
 <bean id="stepExecutionStatsListener" ../>
 <bean id="itemReader" ../>
 <bean id="itemProcessor" ../>
 <bean id="itemWriter" ../>
</beans>

Thus, these two configurations look pretty much the same, except the job definition uses the JSR-352
JSL, and we are able to remove a few beans (transactionManager, jobRepository, and jobLauncher) as
they are already provided for us in one way or another. You will also notice an additional schema definition
using jobXML_1.0.xsd. Support for this schema is obtained via the JSR-352 API JAR and brought down
automatically as a transitive dependency when using a build tool such as Gradle. If we need to obtain the
dependency manually, see the project page listed at the end of this section. The second part that we need
to modify is the SingerJobDemo class, as we are now using JSR-352-specific code to invoke the job, as shown
here:

package com.apress.prospring5.ch18;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParameters;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.core.launch.JobLauncher;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import java.util.Date;

public class SingerJobDemo {
 public static void main(String... args) throws Exception {
 ApplicationContext applicationContext
 = new ClassPathXmlApplicationContext("/spring/singerJob.xml");

 Job job = applicationContext.getBean(Job.class);
 JobLauncher jobLauncher = applicationContext.getBean(JobLauncher.class);

 JobParameters jobParameters = new JobParametersBuilder()
 .addDate("date", new Date())
 .toJobParameters();

 jobLauncher.run(job, jobParameters);
 }
}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

786

This is a bit different from other examples, where we work with ApplicationContext and beans
directly. When creating a JSR-352 job, we use JsrJobOperator to start and control jobs. Rather than taking a
JobParameters object to provide parameters to the job, a Properties object is used instead. The Properties
object used is a standard java.util.Properties class, and job parameters should be created with both a
String key and value. Another interesting change you may notice is the waitForJob() method. JSR-352 by
default launches all jobs asynchronously. Thus, in the stand-alone program, as shown, we need to wait for
the job to be in an acceptable state before the program terminates. If your code is running in a container
such as an application server of some sort, this code may not be needed. Now let’s compile and run the
SingerJobDemo class, which will yield the following relevant log statements:

o.s.b.c.r.s.JobRepositoryFactoryBean - No database type set,
 using meta data indicating: HSQL
o.s.b.c.j.c.x.JsrXmlApplicationContext - Refreshing org.springframework.batch.core.jsr.
 configuration.xml.JsrXmlApplicationContext@48c76607
o.s.b.c.j.SimpleStepHandler - Executing step: [step1]
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: John, lastName: Mayer,
 song: Helpless Into: firstName: JOHN, lastName: MAYER, song: HELPLESS
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: Eric, lastName: Clapton,
 song: Change The World Into: firstName: ERIC, lastName: CLAPTON, song: CHANGE THE WORLD
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: John, lastName: Butler,
 song: Ocean Into: firstName: JOHN, lastName: BUTLER, song: OCEAN
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: BB, lastName: King,
 song: Chains And Things Into: firstName: BB, lastName: KING, song: CHAINS AND THINGS
c.a.p.c.StepExecutionStatsListener - --> Wrote: 4 items in step: step1
o.s.b.c.j.c.x.JsrXmlApplicationContext - Closing ... JsrXmlApplicationContext

The log output looks pretty much the same, and you have now utilized JSR-352 to define and run this
job along with using Spring’s functionality for dependency injection and infrastructure components from
Spring Batch rather than writing your own.

For more information on JSR-352, please see its project page at https://jcp.org/en/jsr/detail?id=352.

Spring Boot Batch
As expected, here comes Spring Boot, with a special starter library for Spring Batch to declutter the
configuration even more. The swell part is that with the Spring Boot starter library for Spring Batch in the
classpath, you won’t need to bother too much with the dependencies. The bad part is that when it comes to
configuration, well, the Spring Batch details cannot be reduced that much.

However, let’s try to modify the batch example we have kept running so far and replace
StepExecutionStatsListener with a JobExecutionStatsListener class; this class will extend
the JobExecutionListenerSupport class, which is an empty abstract implementation of the
JobExecutionListener interface that is used to provide callbacks at specific points in the life cycle of a job.
In this case, the JobExecutionStatsListener class will query the database to check that our singer entries
were indeed saved there.

The class JobExecutionStatsListener is depicted here:

package com.apress.prospring5.ch18;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.batch.core.BatchStatus;

https://jcp.org/en/jsr/detail?id=352

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

787

import org.springframework.batch.core.ExitStatus;
import org.springframework.batch.core.JobExecution;
import org.springframework.batch.core.StepExecution;
import org.springframework.batch.core.listener.JobExecutionListenerSupport;
import org.springframework.batch.core.listener.StepExecutionListenerSupport;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.stereotype.Component;

import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.List;

@Component
public class JobExecutionStatsListener extends JobExecutionListenerSupport {

 public static Logger logger = LoggerFactory.
 getLogger(JobExecutionStatsListener.class);

 private final JdbcTemplate jdbcTemplate;

 @Autowired
 public JobExecutionStatsListener(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
 @Override
 public void afterJob(JobExecution jobExecution) {
 if(jobExecution.getStatus() == BatchStatus.COMPLETED) {
 logger.info(" --> Singers were saved to the database. Printing results ...");
 jdbcTemplate.query("SELECT first_name, last_name, song FROM SINGER",
 (rs, row) -> new Singer(rs.getString(1),
 rs.getString(2), rs.getString(3))).forEach(
 singer -> logger.info(singer.toString())
);
 }
 }
}

As we can see, lambda expressions were heavily used just for fun in the previous example, but it is quite
obvious what is going on in the afterJob callback method’s body.

Also, let’s see what you can do with the BatchConfig class.

package com.apress.prospring5.ch18;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.Step;
import org.springframework.batch.core.configuration.annotation.EnableBatchProcessing;
import org.springframework.batch.core.configuration.annotation.JobBuilderFactory;
import org.springframework.batch.core.configuration.annotation.StepBuilderFactory;
import org.springframework.batch.item.ItemProcessor;

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

788

import org.springframework.batch.item.ItemReader;
import org.springframework.batch.item.ItemWriter;
import org.springframework.batch.item.database.
 BeanPropertyItemSqlParameterSourceProvider;
import org.springframework.batch.item.database.JdbcBatchItemWriter;
import org.springframework.batch.item.file.FlatFileItemReader;
import org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper;
import org.springframework.batch.item.file.mapping.DefaultLineMapper;
import org.springframework.batch.item.file.transform.DelimitedLineTokenizer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.ComponentScan;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.ClassPathResource;
import org.springframework.core.io.ResourceLoader;

import javax.sql.DataSource;

@Configuration
@EnableBatchProcessing
public class BatchConfig {

 @Autowired
 private JobBuilderFactory jobs;
 @Autowired
 private StepBuilderFactory steps;

 @Autowired DataSource dataSource;

 @Autowired SingerItemProcessor itemProcessor;

 @Bean
 public Job job(JobExecutionStatsListener listener) {
 return jobs.get("singerJob")
 .listener(listener)
 .flow(step1())
 .end()
 .build();
 }

 @Bean
 protected Step step1() {
 return steps.get("step1")
 .<Singer, Singer>chunk(10)
 .reader(itemReader())
 .processor(itemProcessor)
 .writer(itemWriter())
 .build();
 }

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

789

 //adding lambda expressions
 @Bean
 public ItemReader itemReader() {
 FlatFileItemReader<Singer> itemReader = new FlatFileItemReader<>();
 itemReader.setResource(new ClassPathResource("support/test-data.csv"));
 itemReader.setLineMapper(new DefaultLineMapper<Singer>() {{
 setLineTokenizer(new DelimitedLineTokenizer() {{
 setNames(new String { "firstName", "lastName", "song" });
 }});
 setFieldSetMapper(new BeanWrapperFieldSetMapper<Singer>() {{
 setTargetType(Singer.class);
 }});
 }});
 return itemReader;
 }

 @Bean
 public ItemWriter itemWriter() {
 ... //same as before
 }
}

So, aside from lambda expressions being heavily used in the declaration of the itemReader bean,
the bean that changed the most is the job bean. The execution step is no longer autowired by the Spring
container based on a qualifier, and the flow method is called to create a new job builder that will execute a
step or sequence of steps.

That’s pretty much it with Spring Boot; all that is left is to start the application by executing the typical
Application class.

package com.apress.prospring5.ch18;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.ConfigurableApplicationContext;

@SpringBootApplication
public class Application {

 private static Logger logger = LoggerFactory
 .getLogger(Application.class);

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(Application.class, args);
 assert (ctx != null);
 logger.info("Application started...");

 System.in.read();
 ctx.close();
 }
}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

790

Eventually you can check the logs for the expected results printed by the JobExecutionStatsListener
class, as shown here:

o.s.b.c.l.s.SimpleJobLauncher - Job: [FlowJob: [name=singerJob]] launched with
 the following parameters: [{}]
o.s.b.c.j.SimpleStepHandler - Executing step: [step1]
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: John, lastName: Mayer,
 song: Helpless Into: firstName: JOHN, lastName: MAYER, song: HELPLESS
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: Eric, lastName: Clapton,
 song: Change The World Into: firstName: ERIC, lastName: CLAPTON, song: CHANGE THE WORLD
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: John, lastName: Butler,
 song: Ocean Into: firstName: JOHN, lastName: BUTLER, song: OCEAN
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: BB, lastName: King,
 song: Chains And Things Into: firstName: BB, lastName: KING, song: CHAINS AND THINGS
 c.a.p.c.JobExecutionStatsListener - --> Singers were saved to the database. Printing results ...
c.a.p.c.JobExecutionStatsListener - firstName: JOHN, lastName: MAYER, song: HELPLESS
c.a.p.c.JobExecutionStatsListener - firstName: ERIC, lastName: CLAPTON, song: CHANGE THE WORLD
c.a.p.c.JobExecutionStatsListener - firstName: JOHN, lastName: BUTLER, song: OCEAN
c.a.p.c.JobExecutionStatsListener - firstName: BB, lastName: KING, song: CHAINS AND THINGS
o.s.b.c.l.s.SimpleJobLauncher - Job: [FlowJob: [name=singerJob]] completed with the
 following parameters: [{}] and the following status: [COMPLETED]

Spring Integration
The Spring Integration project provides out-of-the box implementations of the well-known enterprise
integration patterns (EIP). Spring Integration focuses on message-driven architectures. It provides a simple
model for integration solutions, asynchronous abilities, and loosely coupled components, and it is designed
for extension as well as testability.

At its core, a Message wrapper plays a central role in the framework. This generic wrapper around a Java
object is combined with metadata used by the framework (more specifically the payload and headers) and is
used to determine how to handle that object.

A Message channel is the pipe in a pipes-and-filters architecture in which producers send messages
to this channel and consumers receive from it. Message endpoints, on the other hand, represent the filter
of the pipes-and-filters architecture, and they connect application code to the messaging framework.
Some Message endpoints that are provided out of the box by Spring Integration are Transformers, Filters,
Routers, and Splitters, each providing their own roles and responsibilities.

Spring Integration also provides a plethora of integration endpoints (20+ at the time of this writing),
which can be located in the documentation section “Endpoint Quick Reference Table” at http://docs.
spring.io/spring-integration/ reference/htmlsingle/#endpoint-summary. These endpoints provide
the ability to connect various resources such as AMQP, files, HTTP, JMX, Syslog, and Twitter. Going even
beyond what is provided out of the box by Spring Integration, another project named Spring Integration
Extensions is a community-based contribution model located at https://github.com/spring-projects/
spring-batch-extensions that contains even more integration possibilities, including Amazon Web
Services (AWS), Apache Kafka, Short Message Peer-to-Peer (SMPP), and Voldemort. Between the out-of-the-
box and extension project components, Spring Integration provides a wealth of off-the-shelf components,
which means the likelihood of having to write your own is greatly reduced.

In this example, we will build upon the previous batch examples, but this time we will introduce Spring
Integration to show how we can use it to monitor a directory at a given interval. When a file arrives, we detect
that file and kick off the batch job for processing.

http://docs.spring.io/spring-integration/reference/htmlsingle/#endpoint-summary
http://docs.spring.io/spring-integration/reference/htmlsingle/#endpoint-summary
http://docs.spring.io/spring-integration/reference/htmlsingle/#endpoint-summary
https://github.com/spring-projects/spring-batch-extensions
https://github.com/spring-projects/spring-batch-extensions

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

791

In this sample, we are again going to build on the initial “pure” Spring Batch project that we started
with in this chapter. Please be sure to take a look and have that running before proceeding, as we will be
explaining only the new classes and configuration modifications here.

Obviously, some new dependencies must be added to the project.

//pro-spring-15/build.gradle
ext {
 //spring libs
 ...
 springBatchVersion = '4.0.0.M3'
 springIntegrationVersion = '5.0.0.M6'
 springBatchIntegrationVersion = '4.0.0.M3'
 ...

 spring = [
 context : "org.springframework:spring-context:$springVersion",
 jdbc : "org.springframework:spring-jdbc:$springVersion",
 batchCore : "org.springframework.batch:spring-batch-core:$springBatchVersion"
 batchIntegration :
"org.springframework.batch:spring-batch-integration:$springBatchIntegrationVersion",
 integrationFile :
"org.springframework.integration:spring-integration-file:$springIntegrationVersion"
 ...
]

 misc = [
 io : "commons-io:commons-io:2.5",
 ...
]

 db = [
 ...
 dbcp2 : "org.apache.commons:commons-dbcp2:$dbcpVersion",
 h2 : "com.h2database:h2:$h2Version",

 // needed for the Batch JSR-352 module
 hsqldb: "org.hsqldb:hsqldb:2.4.0"
 dbcp : "commons-dbcp:commons-dbcp:1.4",
]
}
...

//pro-spring-15/chapter18/build.gradle
dependencies {
 if (!project.name.contains("boot")) {
 compile(spring.jdbc) {
 // exclude these as batchCore will bring them
 // on as transitive dependencies
 exclude module: 'spring-core'
 exclude module: 'spring-beans'
 exclude module: 'spring-tx'
 }

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

792

 compile spring.batchCore, db.dbcp2, db.h2, misc.io,
 spring.batchIntegration, spring.integrationFile,
 misc.slf4jJcl, misc.logback
 }
 }

With the new dependencies in place, let’s create a class that acts as a Spring Integration transformer.
This Transformer instance will receive a Message instance from an inbound channel that represents a found
file and launch the batch job with it, as depicted in the code snippet here:

package com.apress.prospring5.ch18;

import org.springframework.batch.core.Job;
import org.springframework.batch.core.JobParametersBuilder;
import org.springframework.batch.integration.launch.JobLaunchRequest;
import org.springframework.messaging.Message;

import java.io.File;

public class MessageToJobLauncher {
 private Job job;
 private String fileNameKey;

 public MessageToJobLauncher(Job job, String fileNameKey) {
 this.job = job;
 this.fileNameKey = fileNameKey;
 }

 public JobLaunchRequest toRequest(Message<File> message) {
 JobParametersBuilder jobParametersBuilder = new JobParametersBuilder();
 jobParametersBuilder.addString(fileNameKey, message.getPayload().
 getAbsolutePath());

 return new JobLaunchRequest(job, jobParametersBuilder.
 toJobParameters());
 }
}

Now, let’s modify the BatchConfig class to support batch integration. What is really needed is to
modify the itemReader bean, to be created every time a new file needs to be processed. This means that
the path location must be injected into the bean, and it also means that the bean can no longer have the
singleton scope.

package com.apress.prospring5.ch18.config;
...
@Configuration
@EnableBatchProcessing
@Import(DataSourceConfig.class)
@ComponentScan("com.apress.prospring5.ch18")
public class BatchConfig {
 ... // autowired beans

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

793

 @Bean
 public Job singerJob() {
 return jobs.get("singerJob").start(step1()).build();
 }

 @Bean
 protected Step step1() {
 ...// no change
 }

 @Bean
 @StepScope

public FlatFileItemReader itemReader(
 @Value("file://#{jobParameters['file.name']}") String filePath) {
 FlatFileItemReader itemReader = new FlatFileItemReader();
 itemReader.setResource(resourceLoader.getResource(filePath));
 DefaultLineMapper lineMapper = new DefaultLineMapper();
 DelimitedLineTokenizer tokenizer = new DelimitedLineTokenizer();
 tokenizer.setNames("firstName", "lastName", "song");
 tokenizer.setDelimiter(",");
 lineMapper.setLineTokenizer(tokenizer);
 BeanWrapperFieldSetMapper<Singer> fieldSetMapper =
 new BeanWrapperFieldSetMapper<>();
 fieldSetMapper.setTargetType(Singer.class);
 lineMapper.setFieldSetMapper(fieldSetMapper);
 itemReader.setLineMapper(lineMapper);
 return itemReader;
 }

 @Bean
 public ItemWriter<Singer> itemWriter() {
 ...//no change
 }
}

The @StepScope is a convenient annotation that is equivalent to @Scope(value="step",
proxyMode=TARGET_CLASS), thus making the itemReader bean have the scope proxy and naming this scope
step so it is clear how this bean is being used.

Now that we have the batch configuration in place, let’s add the integration typical configuration. We’ll
do this using an XML configuration file because at the time of writing, it really is more practical like this:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:batch-int="http://www.springframework.org/schema/batch-integration"
 xmlns:int="http://www.springframework.org/schema/integration"
 xmlns:int-file="http://www.springframework.org/schema/integration/file"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/batch-integration

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

794

http://www.springframework.org/schema/batch-integration/spring-batch-integration.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-integration.xsd
 http://www.springframework.org/schema/integration/file
http://www.springframework.org/schema/integration/file/spring-integration-file.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd">

 <bean name="/BatchConfig" class="com.apress.prospring5.ch18.config.BatchConfig"/>

 <context:annotation-config/>

 <int:channel id="inbound"/>
 <int:channel id="outbound"/>
 <int:channel id="loggingChannel"/>

 <int-file:inbound-channel-adapter id="inboundFileChannelAdapter" channel="inbound"
 directory="file:/tmp/" filename-pattern="*.csv">
 <int:poller fixed-rate="1000"/>
 </int-file:inbound-channel-adapter>

 <int:transformer input-channel="inbound"
 output-channel="outbound">
 <bean class="com.apress.prospring5.ch18.MessageToJobLauncher">
 <constructor-arg ref="singerJob"/>
 <constructor-arg value="file.name"/>
 </bean>
 </int:transformer>

 <batch-int:job-launching-gateway request-channel="outbound"
 reply-channel="loggingChannel"/>

 <int:logging-channel-adapter channel="loggingChannel"/>
</beans>

The main additions to the configuration are the sections that are prefixed with the int: and batch-int:
namespaces. First we create a few named channels to pass data through. We then configure an
inbound-channel-adapter specifically for watching the specified directory on a given interval of one
second. We then configure the Transformer bean, which receives files as standard java.io.File objects
wrapped in a Message. Next we configure job-launching-gateway, which receives job-launch requests from
Transformer to actually invoke the batch job. Last but not least, we create logging-channel-adapter, which
will print out informational notices after the job completes. As you can see by following the configured
Channel attributes, each component either consumes messages or produces messages, or both, via Channel
instances. Now let’s create a simple driver class that loads the configuration file. All this driver class does
is load the application context with the configuration and remain running until you kill the process as it
continuously polls the specified directory.

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

795

package com.apress.prospring5.ch18;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.support.GenericXmlApplicationContext;

public class FileWatcherDemo {

 private static Logger logger =
 LoggerFactory.getLogger(FileWatcherDemo.class);

 public static void main(String... args) throws Exception {
 GenericXmlApplicationContext ctx
 = new GenericXmlApplicationContext(
 "classpath:spring/integration-config.xml");
 assert (ctx != null);
 logger.info("Application started...");
 System.in.read();
 ctx.close();
 }
}

Now compile the code and run the FileWatcherDemo class. When the application starts, you may notice
that some log messages are printed to the screen, but eventually nothing else happens. This is because
the Spring Integration file adapter is waiting for files to be placed in the configured location on a polling
interval, and nothing will happen until it detects a file in that location. In the src/main/resources/support/
directory, you will find four CSV files, named singer1.csv to singer4.csv. Each of them contains a single
line with the first and last names of a singer and one of the singer’s song names. Copy this files one by one
into the tmp directory and watch the console to see what happens.

o.s.i.f.FileReadingMessageSource - Created message: [GenericMessage [
 payload=/tmp/singers1.csv, headers={file_originalFile=/tmp/singers1.csv,
 id=ca0ec15e-b9b6-5dc2-2fc6-44fdb4b433f4, file_name=singers1.csv,
 file_relativePath=singers1.csv, timestamp=1501442201624}]]
o.s.b.c.l.s.SimpleJobLauncher - Job: [SimpleJob: [name=singerJob]] launched with
 the following parameters: [{file.name=/tmp/singers1.csv}]
o.s.b.c.j.SimpleStepHandler - Executing step: [step1]
c.a.p.c.SingerItemProcessor - Transformed singer: firstName: John, lastName: Mayer,
 song: Helpless Into: firstName: JOHN, lastName: MAYER, song: HELPLESS
INFO c.a.p.c.StepExecutionStatsListener - --> Wrote: 1 items in step: step1
 o.s.b.c.l.s.SimpleJobLauncher - Job: [SimpleJob: [name=singerJob]] completed with
 the following parameters: [{file.name=/tmp/singers1.csv}] and the following
 status: [COMPLETED]
o.s.i.h.LoggingHandler - JobExecution: id=1, version=2,
 startTime=Sun Jul 30 22:16:41 EEST 2017, endTime=Sun Jul 30 22:16:41 EEST 2017,
 lastUpdated=Sun Jul 30 22:16:41 EEST 2017, status=COMPLETED,
 exitStatus=exitCode=COMPLETED;exitDescription=, job=[JobInstance: id=1,
 version=0, Job=[singerJob]], jobParameters=[{file.name=/tmp/singers1.csv}]

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

796

As you can see from the log statements, Spring Integration detected the file, created a Message from
it, invoked the batch job that transformed the contents of the CSV file, and then wrote the contents to the
in-memory database. While this is a simple example, it demonstrates how you can build complex and
decoupled workflows between various types of applications by using Spring Integration.

For more information on Spring Integration, please see its project page at http://projects.spring.
io/spring-integration/.

Spring XD
Spring XD is an extensible runtime service designed for distributed data ingestion, real-time analytics, batch
processing, and data export. Spring XD builds upon many of the existing Spring portfolio projects, most
notably the Spring Framework, Batch, and Integration. The goal of Spring XD is to provide a unified way to
integrate many systems into a cohesive big data solution that helps solve the complexity of many common
use cases.

Spring XD can run in a single stand-alone mode, typically for development and testing purposes, as
well as in a fully distributed mode, providing the ability to have high-availability master nodes along with
any number of worker nodes. Spring XD enables you to manage these services via a shell interface (utilizing
the Spring shell) as well as through a graphical web interface. These interfaces allow you to define how to
assemble various components to accomplish your data processing needs through either by using a DSL-type
syntax via the shell application or by entering data into the web interface, which will build the definitions
for you.

The Spring XD DSL is based around a few concepts, notably, streams, modules, sources, processors,
sinks, and jobs. By combining these components via concise syntax, it is easy to create flows to connect
various technologies to ingest data, process it, and eventually output the data to an external source, or even
run a batch job for further processing. Let’s take a quick look at these concepts:

•	 A stream defines how data will flow from a source to a sink and may pass through
any number of processors. A DSL is used to define a stream; for example, a basic
source-to-sink definition may look like http | file.

•	 A module encapsulates a reusable unit of work that streams are composed of.
Modules are categorized by type based on their role. At the time of this writing,
Spring XD contains modules of type source, processor, sink, and job.

•	 Sources in Spring XD either poll an external resource or are triggered by some sort of
event. Sources provide output only to downstream components, and the first module
in a stream must be a source.

•	 Processors are similar in nature to what we saw in Spring Batch. The role of a
processor is to take an input, perform transformation or business logic on the
provided object, and return an output.

•	 On the flip side of a source, a sink takes an input source and outputs that data to its
destination resource. A sink is the final stop in the stream.

•	 Jobs are modules that define a Spring Batch job. These jobs are defined in the same
way as we described at the start of this chapter and are deployed into Spring XD to
provide batch-processing capabilities.

•	 Taps, as indicated by their name, listen to data flowing through the stream and also
allow you to process that tapped data in a separate stream. The tap concept is similar
to the WireTap enterprise integration pattern.

http://projects.spring.io/spring-integration/
http://projects.spring.io/spring-integration/

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

797

As you would expect, Spring XD provides a number of out-of-the-box sources, processors, sinks,
jobs, and taps. As a developer, you are also not limited just to what’s provided out of the box but are free
to build your own modules and components as well. For more details on creating your own modules and
components, see the reference manual on these customization points of interest:

•	 Modules: http://docs.spring.io/spring-xd/docs/current/reference/html/#_
creating_a_module

•	 Sources: http://docs.spring.io/spring-xd/docs/current/reference/
html/#creating-a-source-module

•	 Processors: http://docs.spring.io/spring-xd/docs/current/reference/
html/#creating-a-processor-module

•	 Sinks: http://docs.spring.io/spring-xd/docs/current/reference/
html/#creating-a-sink-module

•	 Jobs: http://docs.spring.io/spring-xd/docs/current/reference/
html/#creating-a-job-module

In this example, we will show you how to use Spring XD’s off-the-shelf components to replicate what we
created with the Batch and Integration examples, all through a simple command-line configuration utilizing
the XD shell and DSL.

Before you can begin, you must install Spring XD. Refer to the user manual section “Getting Started” at
http://docs.spring.io/spring-xd/docs/current/reference/html/#getting-started, which provides
details on the various ways of installing XD on your machine. The method of installation you choose is a
matter of preference and does not impact the sample. Once you have XD installed, start the runtime in
single-node mode as described in the documentation.

To replicate what we created in the Batch and Integration samples in XD, we need to do only a few basic
tasks. First we need to create a CSV file to import, as shown here, and place that in /tmp/singers.csv:

John,Mayer,Helpless
Eric,Clapton,Change The World
John,Butler,Ocean
BB,King,Chains And Things

In your Spring XD shell console, type the following command:

job create singerjob --definition "filejdbc --resources=file:///tmp/singers.csv
 --names=firstname,lastname,song --tableName=singer
 --initializeDatabase=true" --deploy

Upon hitting Enter in the console, you should see a message stating, “Successfully created and deployed
job ‘singerjob.’” If not, inspect the console output in the terminal where you launched the single-node XD
container for more details.

At this point, you have created a new job definition, but nothing has happened yet, as it has not been
launched. In the shell, type the following command to launch the job:

job launch singerjob

The shell should now respond with a message indicating that a launch request for singerjob has been
successfully submitted.

http://docs.spring.io/spring-xd/docs/current/reference/html/#_creating_a_module
http://docs.spring.io/spring-xd/docs/current/reference/html/#_creating_a_module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-source-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-source-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-processor-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-processor-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-sink-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-sink-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-job-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#creating-a-job-module
http://docs.spring.io/spring-xd/docs/current/reference/html/#getting-started

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

798

Breaking down the provided DSL, Spring XD knows that we wanted to create a batch job that reads
from a file and outputs to a database via JDBC by the job create statement and the filejdbc source. It
also automatically creates the table for us by using the tableName parameter, obtains the column names
from the names parameter, and reads the data from the resources parameter in which we provided the file
path to the CSV file.

If you want to inspect the imported data, use your favorite database tool to connect to the database
you used during setup (either an embedded or real RDBMS) and select the records from the Singer table
to verify. If you do not see data, check the log statements in the console that the single-node container is
running in.

At this point, we have typed two commands into the shell but have not written any code or complex
configuration. Yet we have imported the contents of the CSV file into the database with minimal effort. We
accomplished this by utilizing Spring XD’s prebuilt batch job, defining it with simple command-line DSL
syntax, and then launched the job from the shell.

As you can see, Spring XD provides a lot of functionality out of the box that removes the need for the
developer to create some of the more common use-case scenarios. Because we did some transformation to
change the person’s first and last names to uppercase in prior samples, we will leave that as an exercise for
you to explore Spring XD further!

For more information on Spring XD, please see its project page at http://projects.spring.io/spring-xd/.

Spring Framework’s Five Most Notable Features
At the time of writing, Spring Framework RC3 version was released. Spring 5.0 was a major revision of the
core framework and came with a code base rewritten in Java 8, and it started being adapted to Java 9 with the
RC3 release. There are a few major features announced for this version:

•	 It comes with the spring-webflux module, built on Reactor 3.1 with support for
RxJava 1.3 and 2.1, which is also known as the Reactive Web Framework. This is a
reactive complement to spring-webmvc that provides a web programming model
designed for asynchronous APIs running on Tomcat, Jetty, or Undertow.

•	 Kotlin support is provided via a full null-safe API for bean registration and functional
web endpoints.

•	 Integration with Java EE 8 APIs includes support for Servlet 4.0, Bean Validation 2.0,
 JPA 2.2, and the JSON Binding API (as an alternative to Jackson/Gson in Spring MVC).

•	 Full support for JUnit 5 Jupiter will allow developers to write tests and extensions in
JUnit 5 and execute them in parallel with the Spring TestContext Framework.

•	 Java 9 interoperability was something desired by the Spring team for Spring
Framework version 5. Because Oracle postponed the release of Java 9 for several
months, the Spring Framework ended up being developed and released with Java 8
and using Project Reactor for the reactive programming support. But the promise to
fully support Java 9 remained, and it started to be fulfilled with RC3.

•	 Many more features are available.6

The following sections will cover only three features from the list introduced previously.

6To keep track of the Spring project releases and contents, we recommend you follow the official Spring blog at
https://spring.io/blog.

http://projects.spring.io/spring-xd/
https://spring.io/blog

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

799

The Functional Web Framework
As stated earlier, the functional web framework (the spring-webflux module) is a reactive complement
to spring-webmvc that provides a web programming model designed for asynchronous APIs. It was built
according to reactive programming principles. Reactive programming can be explained in the simplest
way as “programming with reactive streams.” Streams are central to the reactive programming model, and
they are used to support the asynchronous processing of anything. In a nutshell, reactive libraries offer
the possibility for anything to be used as a stream (variables, user inputs, caches, data structures, etc.)
and thus support stream-specific operations such as the following: filtering a stream to create another,
merging streams, mapping values from one stream to another, and so on. The reactive part in reactive
programming means that a stream will be an “observable” object that will be observed by a component
and will react to it according to the objects emitted. A stream can emit three types of objects: values,
errors, or “completed” signals.

To turn a normal application into a reactive application, the first logical step is to modify components to
produce and handle data streams. There two types of data streams.

•	 reactor.core.publisher.Flux7: This is a stream of [0..n] elements. The easiest
way to create a Flux is as follows:

Flux simple = Flux.just("1", "2", "3");
//or from an existing list: List<Singer> Flux<Singer>
fromList = Flux.fromIterable(list);

•	 reactor.core.publisher.Mono: 8 This is a stream of [0..1] elements. The easiest
way to create a Mono is as follows:

Mono simple = Mono.just("1");
//or from an existing object of type Singer
Mono<Singer> fromObject = Mono.justOrEmpty(singer);

Both classes are implementations of org.reactivestreams.Publisher<T>, and you might wonder at this
point if the Mono implementation is actually needed. The answer is yes, because of practical reasons: depending
on the type of operation done with the values a stream is emitting, it is always useful to know the cardinality.
Imagine a reactive repository class, for example: would it make sense for the findOne method to return a Flux?

This short introduction should be enough for you to grasp the basics of reactive programming and be
able to understand the functionality that spring-webflux brings to the table.9

In this section, you will use the Spring Boot web application that was introduced in Chapter 16 that
used Thymeleaf and transform it to use Spring WebFlux. The first step is to add the spring-boot-starter-
webflux as a dependency and remove the unnecessary dependencies. In the following snippet, you can see
the libraries needed, configured in the parent project, and used in the webflux-boot module:

//pro-spring-15/build.gradle
ext {
 //spring libs
 bootVersion = '2.0.0.M3'
 springDataVersion = '2.0.0.M3'

7You can find a detailed explanation at https://projectreactor.io/docs/core/release/reference/#flux.
8You can find a detailed explanation at https://projectreactor.io/docs/core/release/reference/#mono.
9If you need more resources about the reactive programming model and programming with reactive streams,
you might want to try the reference documentation, code samples, and Javadoc of Project Reactor at https://
projectreactor.io/docs or the really great introduction to reactive programming at https://gist.github.com/
staltz/868e7e9bc2a7b8c1f754.

http://dx.doi.org/10.1007/978-1-4842-2808-1_16
https://projectreactor.io/docs/core/release/reference/#flux
https://projectreactor.io/docs/core/release/reference/#mono
https://projectreactor.io/docs
https://projectreactor.io/docs
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

800

 junit5Version = '5.0.0-M4'
...
boot = [
...
 springBootPlugin:
 "org.springframework.boot:spring-boot-gradle-plugin:$bootVersion",
 starterWeb :
 "org.springframework.boot:spring-boot-starter-web:$bootVersion",
 starterTest :
 "org.springframework.boot:spring-boot-starter-test:$bootVersion",
 starterJpa :
 "org.springframework.boot:spring-boot-starter-data-jpa:$bootVersion",
 starterJta :
 "org.springframework.boot:spring-boot-starter-jta-atomikos:$bootVersion",
 starterWebFlux :
 "org.springframework.boot:spring-boot-starter-webflux:$bootVersion"

]

 testing = [
 ...
 junit5 : "org.junit.jupiter:junit-jupiter-engine:$junit5Version"
]

 db = [
 ...
 h2 : "com.h2database:h2:$h2Version"
]
}

//chapter18/webflux-module/build.gradle
buildscript {
 repositories {
 ...
 }

 dependencies {
 classpath boot.springBootPlugin
 }
}

apply plugin: 'org.springframework.boot'

dependencies {
 compile boot.starterWebFlux, boot.starterWeb,
 boot.starterJpa, boot.starterJta, db.h2
 testCompile boot.starterTest, testing.junitJupiter, testing.junit5
}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

801

The spring-boot-starter-webflux module depends on a few reactive libraries that will be added
to the application automatically. Figure 18-1 shows the dependencies of the application as depicted by
the Gradle view in IntelliJ IDEA. Notice the reactive-streams library. This library contains the reactive
streaming basic interfaces, the standard specification, and four interfaces: Publisher, Subscriber,
Subscription, and Processor. You can read more about it at www.reactive-streams.org, as the
streaming API is not the focus of this section. The streaming implementations that are used in the
application in this section are provided by the reactor-core library, and you can read more about its
contents at https://projectreactor.io/.

Figure 18-1.  Project dependencies depicted by the Gradle view in IntelliJ IDEA

To keep things simple, the security layer will be removed, and we’ll remove the interface as well. We’ll
use REST and use a set of test classes to test the application. The Singer class will be simplified by removing
all validator annotations, as these are not the focus in this section.

package com.apress.prospring5.ch18.entities;

import javax.persistence.*;
import java.io.Serializable;
import java.text.SimpleDateFormat;
import java.util.Date;

import static javax.persistence.GenerationType.IDENTITY;
@Entity
@Table(name = "singer")

http://www.reactive-streams.org/
https://projectreactor.io/

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

802

public class Singer implements Serializable {

 @Id
 @GeneratedValue(strategy = IDENTITY)
 @Column(name = "ID")
 private Long id;
 @Version
 @Column(name = "VERSION")
 private int version;
 @Column(name = "FIRST_NAME")
 private String firstName;
 @Column(name = "LAST_NAME")
 private String lastName;
 @Temporal(TemporalType.DATE)
 @Column(name = "BIRTH_DATE")
 private Date birthDate;
 public Singer() {
 }

 public Singer(String firstName,
 String lastName, Date birthDate) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.birthDate = birthDate;
 }
 //setters and getters
 ...
}

The repository implementation will be an empty extension of the CrudRepository<Singer, Long>
interface, and it won’t be depicted here again. The novelty here is that this repository will be used by a
reactive repository implementation. Here you can see the contents of the ReactiveSingerRepo interface,
which makes use of Mono and Flux to handle Singer objects:

package com.apress.prospring5.ch18.repos;

import com.apress.prospring5.ch18.entities.Singer;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

public interface ReactiveSingerRepo {

 Mono<Singer> findById(Long id);

 Flux<Singer> findAll();

 Mono<Void> save(Mono<Singer> singer);
}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

803

The implementation is shown here:

package com.apress.prospring5.ch18.repos;

import com.apress.prospring5.ch18.entities.Singer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

@Service
public class ReactiveSingerRepoImpl implements ReactiveSingerRepo {

 @Autowired
 SingerRepository singerRepository;

 @Override public Mono<Singer> findById(Long id) {
 return Mono.justOrEmpty(singerRepository.findById(id));
 }

 @Override public Flux<Singer> findAll() {
 return Flux.fromIterable(singerRepository.findAll());
 }

 @Override public Mono<Void> save(Mono<Singer> singerMono) {
 return singerMono.doOnNext(singer ->
 singerRepository.save(singer)
).thenEmpty((Mono.empty()));
 }
}

Let’s discuss each of the methods in this class separately.

•	 The findById method returns a simple stream, which will emit a Singer object if
the call to singerRepository.findById(id) returns one; otherwise, it will emit
an onComplete signal. This means that the returned object will be a Mono<Singer>
object that will contain nothing.

•	 The findAll method returns a stream containing all the Singer objects returned by
the textitsingerRepository.findAll() method.

•	 The save method receives a parameter of type Mono<Singer> instance,
which contains one Singer instance. An instance of java.util.function.
Consumer<Singer> is declared so that when the Singer object is emitted successfully,
it will be persisted to the database by singerRepository. This method returns an
empty Mono instance because there is nothing to return.

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

804

Now that we have the reactive repository, we need a reactive handler for it. Because the typical Spring
@Controller would just consume the streams and return the contents in a view, we need to use something
different. The class is called SingerHandler and is depicted here:

package com.apress.prospring5.ch18.web;

import com.apress.prospring5.ch18.entities.Singer;
import com.apress.prospring5.ch18.repos.ReactiveSingerRepo;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.BodyInserters.fromObject;

@Component
public class SingerHandler {

 @Autowired ReactiveSingerRepo reactiveSingerRepo;

 public Mono<ServerResponse> list(ServerRequest request) {
 Flux<Singer> singers = reactiveSingerRepo.findAll();
 return ServerResponse.ok().contentType(APPLICATION_JSON)
 .body(singers, Singer.class);
 }

 public Mono<ServerResponse> show(ServerRequest request) {
 Mono<Singer> singerMono = reactiveSingerRepo.findById(Long
 .valueOf(request.pathVariable("id")));
 Mono<ServerResponse> notFound = ServerResponse.notFound().build();
 return singerMono
 .flatMap(singer -> ServerResponse.ok().contentType(APPLICATION_JSON)
 .body(fromObject(singer)))
 .switchIfEmpty(notFound);
 }

 public Mono<ServerResponse> save(ServerRequest request) {
 Mono<Singer> data = request.bodyToMono(Singer.class);
 reactiveSingerRepo.save(data);
 return ServerResponse.ok().build(reactiveSingerRepo.save(data));
 }
}

Requests are handled by a handler function, which takes as a parameter a ServerRequest and
returns a Mono<ServerResponse>. These two interfaces are re-immutable and provide access to the
underlying HTTP messages. Both are fully reactive; ServerRequest exposes the body as Flux or Mono, and
Mono<ServerResponse> accepts any reactive stream as the body.

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

805

ServerRequest also provides access to other HTTP-related data such as the URI being handled,
headers, and path variables. Access to the body is provided by the bodyToMono(...) method or equivalent
bodyToFlux(...). ServerResponse provides access to the HTTP response. Being immutable, it has to be
created using a builder class and the HTTP response status. The headers and body are set by calling various
methods. All the examples in the previous code snippet create a response with a 200 (OK) status, JSON
content-type, and a body.

But where does the name functional web framework comes from? Well, lambdas are the source of
this. If you look at the previous code snippet, you will notice that list and create can be easily written as
functions. The two lambda functions are shown here:

package com.apress.prospring5.ch18.web;

import com.apress.prospring5.ch18.entities.Singer;
import com.apress.prospring5.ch18.repos.ReactiveSingerRepo;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import org.springframework.web.reactive.function.server.HandlerFunction;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import static org.springframework.http.MediaType.APPLICATION_JSON;
import static org.springframework.web.reactive.function.BodyInserters.fromObject;

@Component
public class SingerHandler {

 @Autowired ReactiveSingerRepo reactiveSingerRepo;

 public HandlerFunction<ServerResponse> list =
 serverRequest -> ServerResponse.ok().contentType(APPLICATION_JSON)
 .body(reactiveSingerRepo.findAll(), Singer.class);

 public Mono<ServerResponse> show(ServerRequest request) {
 Mono<Singer> singerMono = reactiveSingerRepo.findById(
 Long.valueOf(request.pathVariable("id")));
 Mono<ServerResponse> notFound = ServerResponse.notFound().build();
 return singerMono
 .flatMap(singer -> ServerResponse.ok()
 .contentType(APPLICATION_JSON).body(fromObject(singer)))
 .switchIfEmpty(notFound);
 }

 public HandlerFunction<ServerResponse> save =
 serverRequest -> ServerResponse.ok()

 .build(reactiveSingerRepo.save(serverRequest.bodyToMono(Singer.class)));
}

The HandlerFunction<ServerResponse> interface, which essentially is a Function<Request,
Response<T>>, is side effect free because it returns the response directly, instead of taking it as a parameter.
This makes this type of functions very practical because they can be easier to test, compose, and optimize.

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

806

Pretty neat, right? Just remember when it comes to lambdas, overusing them comes with the cost of
readability and maintainability. Also, I know what you might be thinking right now: OK, OK, reactive streams
and lambdas are cool, but where are the mappings? How is the container supposed to know which function is
mapped to an HTTP request? Well, there are some new classes for that.

Here is the Spring application class that must be run to start the application and dissect it afterward:

package com.apress.prospring5.ch18;

import com.apress.prospring5.ch18.web.SingerHandler;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.web.servlet.ServletRegistrationBean;
import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.context.annotation.Bean;

import org.springframework.http.server.reactive.HttpHandler;
import org.springframework.http.server.reactive.ServletHttpHandlerAdapter;

import org.springframework.web.reactive.function.server.RouterFunction;

import org.springframework.web.reactive.function.server.ServerResponse;
import org.springframework.web.server.WebHandler;
import org.springframework.web.server.adapter.WebHttpHandlerBuilder;

import static org.springframework.web.reactive.function.BodyInserters.fromObject;
import static org.springframework.web.reactive.function.server.RequestPredicates.GET;
import static org.springframework.web.reactive.function.server.RequestPredicates.POST;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;
import static org.springframework.web.reactive.function.server.RouterFunctions.
toHttpHandler;
import static org.springframework.web.reactive.function.server.ServerResponse.ok;

@SpringBootApplication
public class SingerApplication {

 private static Logger logger = LoggerFactory.getLogger(SingerApplication.class);

 @Autowired
 SingerHandler singerHandler;

 private RouterFunction<ServerResponse> routingFunction() {
 return route(GET("/test"), serverRequest -> ok().body(fromObject("works!")))
 .andRoute(GET("/singers"), singerHandler.list)
 .andRoute(GET("/singers/{id}"), singerHandler::show)
 .andRoute(POST("/singers"), singerHandler.save)
 .filter((request, next) -> {
 logger.info("Before handler invocation: " + request.path());
 return next.handle(request);
 });
 }

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

807

 @Bean
 public ServletRegistrationBean servletRegistrationBean() throws Exception {
 HttpHandler httpHandler = RouterFunctions.toHttpHandler(routingFunction());
 ServletRegistrationBean registrationBean = new ServletRegistrationBean<>
 (new ServletHttpHandlerAdapter(httpHandler), "/");
 registrationBean.setLoadOnStartup(1);
 registrationBean.setAsyncSupported(true);
 return registrationBean;
 }

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(SingerApplication.class, args);
 assert (ctx != null);
 logger.info("Application started...");

 System.in.read();
 ctx.close();
 }
}

The request-handling functions are exposed with the new functional web framework by
using a RouterFunction, which is used to create an HttpHandler by the RouterFunctions.
toHttpHandler utility method. This HttpHandler is used to create a ServletRegistrationBean that is a
ServletContextInitializer used to register Servlets in a Servlet 3.0+ container.

A RouterFunction evaluates the request URI and checks whether there is a handler function that
matches; otherwise, it returns an empty result. Its behavior resembles the @RequestMapping annotation,
but the advantage of a RouterFunction is that expressing a route is not limited to what can be defined using
annotation values and is not scattered inside a class. The code is in one place, and it can be overridden or
replaced easily. The syntax for writing and composing RouterFunctions is really flexible; in the previous
code sample, the most practical syntax was chosen.10

The easiest way to do an initial testing of the application is to run SingerApplication and access the
URIs defined in RouterFunction in the browser. For example, if you access http://localhost:8080/test,
you should see the “works!” text.

Still, we haven’t provided an example of steams being used as streams, with each value being processed
as it is being emitted. Let’s create a REST controller, which returns directly a Flux object of singers but emits
an object every two seconds.

package com.apress.prospring5.ch18;

import com.apress.prospring5.ch18.entities.Singer;
import com.apress.prospring5.ch18.repos.ReactiveSingerRepo;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

10If you want to take a deeper look into this, there is a blog entry on the official Spring Blog about it: https://spring.
io/blog/2016/09/22/new-in-spring-5-functional-web-framework.

https://spring.io/blog/2016/09/22/new-in-spring-5-functional-web-framework
https://spring.io/blog/2016/09/22/new-in-spring-5-functional-web-framework

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

808

import org.springframework.context.ConfigurableApplicationContext;
import org.springframework.http.MediaType;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import reactor.util.function.Tuple2;

import java.time.Duration;

@SpringBootApplication
@RestController
public class ReactiveApplication {

 private static Logger logger = LoggerFactory.getLogger(ReactiveApplication.class);
 @Autowired ReactiveSingerRepo reactiveSingerRepo;

 @GetMapping(value = "/all", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
 public Flux<Singer> oneByOne() {
 Flux<Singer> singers = reactiveSingerRepo.findAll();
 Flux<Long> periodFlux = Flux.interval(Duration.ofSeconds(2));

 return Flux.zip(singers, periodFlux).map(Tuple2::getT1);
 }

 @GetMapping(value = "/one/{id}")
 public Mono<Singer> one(@PathVariable Long id) {
 return reactiveSingerRepo.findById(id);
 }

 public static void main(String... args) throws Exception {
 ConfigurableApplicationContext ctx =
 SpringApplication.run(ReactiveApplication.class, args);
 assert (ctx != null);
 logger.info("Application started...");
 System.in.read();
 ctx.close();
 }
}

MediaType.TEXT_EVENT_STREAM_VALUE denotes a special type of plain-text response. This makes sure
that the server will create a response that is served with text/event-stream Content-Type, which follows
the server-sent events format. The response should contain a "data:" line followed by the message, in this
case a text representation of a Singer object, followed by two "\n" characters to end the stream. This applies
for only one message, meaning one object being emitted. In the case of multiple objects being emitted,
multiple "data:" lines will be generated. Two or more consecutive lines beginning with "data:" will be
treated as a single piece of data, meaning only one message event will be fired. Each line should end in a
single "\n" (except for the last, which should end with two).

The oneByOne method contains an implementation that combines two streams. One is a Flux
implementation returned by the reactive repository and contains singer instances. The other is a steam
containing an interval of seconds, generated with the java.time.Duration class. Using the zip method that
is used to combine two streams together, you wait for all the streams to emit one element and combine these

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

809

elements once into an output value (constructed by the provided combinator). The operator will continue
doing so until any source completes. The combinator, in this case, is the map(Tuple2::getT1) statement,
represented here as a method reference; it can also be written as map(t -> t.getT1()), which makes it
easier to understand that basically one element in a stream is mapped to the other.

Let’s test two new handler functions. There are two ways to do this, using the browser and using the
curl command. In the browser, if you try to access localhost:8080/, all you will get is a blank page, and
the browser will ask you if you want to save it all to a file. If you do, a pop-up will be displayed showing
you the file download in progress. At some point, the download will finish, and the contents of the file will
be displayed to you in an editor of your choosing. If you open the file, you will see its contents. If invisible
characters are shown, you should be able to see the "\n" line terminators. Figure 18-2 shows the contents
of the downloaded file. But still, aside from the slow download time, we do not clearly see that a singer is
emitted every two seconds. This can be seen only by using the curl command, which is available on Unix-
based systems. For Windows, you can try Invoke-RestMethod in PowerShell. If you call curl with the URIs
mapped in the previous example, this is what you will see. The output for curl http://localhost:8080/all
will take a while to execute, and a line will be printed every two seconds.

Figure 18-2.  Response with Content-Type text/event-stream

$ curl http://localhost:8080/one/1
{"id":1,"version":0,"firstName":"John","lastName":"Mayer","birthDate":"1977-10-15"}
$ curl http://localhost:8080/all
data:{"id":1,"version":0,"firstName":"John","lastName":"Mayer","birthDate":"1977-10-15"}

data:{"id":2,"version":0,"firstName":"Eric","lastName":"Clapton","birthDate":"1945-03-29"}

data:{"id":3,"version":0,"firstName":"John","lastName":"Butler","birthDate":"1975-03-31"}

data:{"id":4,"version":0,"firstName":"B.B.","lastName":"King","birthDate":"1925-10-15"}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

810

data:{"id":5,"version":0,"firstName":"Jimi","lastName":"Hendrix","birthDate":"1942-12-26"}

data:{"id":6,"version":0,"firstName":"Jimmy","lastName":"Page","birthDate":"1944-02-08"}

data:{"id":7,"version":0,"firstName":"Eddie","lastName":"Van Halen","birthDate":"1955-02-25"}

data:{"id":8,"version":0,"firstName":"Saul Slash","lastName":"Hudson","birthDate":"1965-08-22"}

data:{"id":9,"version":0,"firstName":"Stevie","lastName":"Ray Vaughan","birthDate":"1954-11-02"}

data:{"id":10,"version":0,"firstName":"David","lastName":"Gilmour","birthDate":"1946-04-05"}

data:{"id":11,"version":0,"firstName":"Kirk","lastName":"Hammett","birthDate":"1992-12-17"}

data:{"id":12,"version":0,"firstName":"Angus","lastName":"Young","birthDate":"1955-04-30"}

data:{"id":13,"version":0,"firstName":"Dimebag","lastName":"Darrell","birthDate":"1966-09-19"}

data:{"id":14,"version":0,"firstName":"Carlos","lastName":"Santana","birthDate":"1947-08-19"}

$

For the http://localhost:8080/one/1 URI, the data is automatically transformed into text, because that
is the default accept header, as there is only one entry that is being returned. For http://localhost:8080/all,
the request hangs, and each message is transformed into text as it arrives. Notice the different syntax; for the
stream with multiple messages, the "data:" prefix is used for each element sent.

Another way to access the stream returned by an HTTP request for http://localhost:8080/all is to use
a reactive web client. An interface for that is provided, of course. And here we explain how it is used. Because
we need to share the context, we will declare the client in the same Spring Boot Application class, and if you
look in the console, you will see that the client gets run immediately after starting up the application.

package com.apress.prospring5.ch18;
...
@SpringBootApplication
@RestController
public class ReactiveApplication {
...

 @Bean WebClient client() {
 return WebClient.create("http://localhost:8080");
 }

 @Bean CommandLineRunner clr(WebClient client) {
 return args -> {
 client.get().uri("/all")
 .accept(MediaType.TEXT_EVENT_STREAM)
 .exchange()
 .flatMapMany(cr -> cr.bodyToFlux(Singer.class))
 .subscribe(System.out::println);
 };
 }
}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

811

The WebClient bean is a reactive, nonblocking alternative to RestTemplate, which will replace
AsyncRestTemplate in future Spring releases. In Spring 5, it is already marked as deprecated.

There are a lot of new components in Spring WebFlux that can be used to write reactive web
applications; if we covered them all here, this book would double in size. Just follow Spring’s official blog at
https://spring.io/blog to quickly be updated with all the new components introduced and how they are
used. Now let’s get into the alternative.

Java 9 Interoperabiliy
Because the Java 9 release date kept being postponed, Spring 5 had to be released based on Java 8, but the
team continued working in parallel to adapt it to Java 9 by working with early builds of the JDK. At the time of
this writing, most of the novelty components of Java 9 have been stabilized, and the planned release date of
September 2017 seems to be realistic. Thus, interoperability with Java 9 is covered in this book based on an
early access build. Let’s dive right in.

JDK Modularity
JDK modularity is thought to be the biggest improvement in Java 9. Making the JDK modular has the benefit
of scalability, as now Java can be deployed on smaller devices. The modularity functionality is known as
Project Jigsaw, and the plan was for it to be a part of Java 8, but it was pushed to Java 9 because it wasn’t
considered stable enough. So, Java 9 introduces the module concept, which is a unit of software that is
configured in a file named module-info.java that resides in the source code directory of a project and
contains the following information:

•	 A module name that should follow the package naming convention: By convention,
the module should have the same name as the root package.

•	 A set of packages that are exported: These are considered public APIs and are usable
by other modules. If a class is in an exported package, it can be accessed and used
outside the module.

•	 A set of packages that are required: These are modules that this module depends on.
All public types in packages exported by these modules are accessible and can be
used by dependent modules.

This basically means that accessibility is no longer represented by the four Java classifiers: public,
private, default, and protected. Because the module configuration decides what another module can use
from its dependent module, you now have the following:

•	 Public at module level, to everyone who reads this module (exports)

•	 Public at module level, to a selected list of modules (yes, filtered access, export to)

•	 Public inside the module and public to every other class inside the module

•	 Private inside the module, typical priv ate access

•	 <default> inside the module, typical default access

•	 Protected inside the module, typical protected access

https://spring.io/blog

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

812

This model was applied to the JDK, and apparently a lot of cyclical and unintuitive dependencies were
removed. The operation also involved some cleanup because there were packages that were going beyond
the scope of JSE.11

This topic is important for Spring interoperability because components of the JDK might not be
accessible directly anymore. Until now in the book, we didn’t really cover Java 9 because the project was
built using Java 8, as Java 9 was not stable enough to use. But now the time has come. So, after changing the
JDK, the Gradle installation must be upgraded to the latest 4.2 milestone release to support Java 9. After that,
the first build of the project will fail with the following message:

$ gradle clean build -x test
> Task :chapter03:collections:compileJava
/workspace/pro-spring-15/chapter03/collections/src/main/java/com/apress/prospring5/ch3/
 annotated/CollectionInjection.java:13: error: package javax.annotation is not visible
import javax.annotation.Resource;
 ^
 (package javax.annotation is declared in module java.xml.ws.annotation,
 which is not in the module graph)
Note: Some input files use unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
1 error

FAILURE: Build failed with an exception.

What happened here is that the package javax.annotation is not one of those exported, and any of
the annotations in it can no longer be used. The reason why this package and a lot of related ones are no
longer accessible is that they contained enterprise components that were more suitable to be part of the JEE.
Those packages are part of a module named java.se.ee, and according to everything mentioned before, we
should just add the following module to our file and everything should work:

module collections.main {
 requires java.se.ee;
}

But this is not the case because if we open java.se.ee module-info.java, here is what we find:

@java.lang.Deprecated(since = "9", forRemoval = true)
module java.se.ee {
 requires transitive java.xml.bind;
 requires transitive java.activation;
 requires transitive java.corba;
 requires transitive java.se;
 requires transitive java.transaction;
 requires transitive java.xml.ws;
 requires transitive java.xml.ws.annotation;
}

11Read more about this at https://blog.codecentric.de/en/2015/11/first-steps-with-java9-jigsaw-part-1/.

https://blog.codecentric.de/en/2015/11/first-steps-with-java9-jigsaw-part-1/

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

813

As you can see, there is no line containing exports java.xml.ws.annotation;, which is the module
that contains the javax.annotation package. So, what is the solution here? We add the JEE dependency that
contains that package, of course. Here it is as defined in the Gradle configuration file:

misc = [
 ...
 jsr250 : "javax:javaee-endorsed-api:7.0"
 ...
]

Of course, misc.jsr250 will have to be added everywhere annotations from that package are used. Let’s
try that again. Depending on when this book reaches you, you might also see something like this:

$ gradle clean build -x test
all good until here
...
:chapter05:aspectj-aspects:compileAspect
[ant:iajc] java.nio.file.NoSuchFileException:
 /Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home/jrt-fs.jar
[ant:iajc] at java.base/sun.nio.fs.UnixException.translateToIOExceptionUnixException.java:92
[ant:iajc] at java.base/sun.nio.fs.UnixException.rethrowAsIOExceptionUnixException.java:111
...
[ant:iajc] /workspace/pro-spring-15/chapter05/aspectj-aspects/src/main/java/com/apress/
 prospring5/ch5/MessageWriter.java:5 [error] Implicit super constructor Object is undefined.
 Must explicitly invoke another constructor
[ant:iajc] public MessageWriter {
[ant:iajc] ^^^^^^^^^^
[ant:iajc] /workspace/pro-spring-15/chapter05/aspectj-aspects/src/main/java/com/apress/
prospring5/ch5/MessageWriter.java:9 [error] System cannot be resolved
[ant:iajc] System.out.println"foobar!";
[ant:iajc]
[ant:iajc] /workspace/pro-spring-15/chapter05/aspectj-aspects/src/main/java/com/apress/
prospring5/ch5/MessageWriter.java:13 [error] System cannot be resolved
[ant:iajc] System.out.println"foo";
[ant:iajc]
[ant:iajc]
[ant:iajc] 11 errors
:chapter05:aspectj-aspects:compileAspect FAILED
276 actionable tasks: 186 executed, 90 up-to-date

What happened here is that aspectj-aspects could not be compiled because aspects are not
recognized. This happens because the JAR needed to do so is not in the right place according to the Gradle
aspects plug-in. The plug-in is clearly outdated and does not match the new JDK internal structure, but
there is a small fix for this: just copy the jrt-fs.jar file from under the $JAVA_HOME/libs directory in the
location where the plug-in looks for it.

When the build is run again, there will be a lot of deprecation warnings, but at least the build will be
successful. Now we could start adding module-info.java files for all the modules if we want. Let’s take the
chapter02/hello-world project and define module-info.java because it is a small project and should be
easy.

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

814

// pro-spring-15/chapter02/hello-world/src/main/java/module-info.java
module com.apress.prospring5.ch2 {
 requires spring.context;
 requires logback.classic;
 exports com.apress.prospring5.ch2;
}

That’s about it. To keep its module names simple, the Spring team decided to break convention;
otherwise, instead of requires spring.context;, we would have to add requires org.springframework.
context.12

The modularity added in by Project Jigsaw does more than split up the JDK and restrict access to
certain packages and components (reflection does not work on nonexported modules); it detects circular
dependencies at compile time, improves readability, and detects duplicate module dependencies that
differ only by version, eliminating conflicts or chaotic behavior of an application. And because of all these
development benefits, this novelty feature of Java 9 deserves its own section in the book.

Reactive Programming with Java 9 and Spring WebFlux
A few sections ago, we introduced the reactive model and mentioned the standard API. Well, move away
reactive-streams.jar, because there’s a new boy in town! We introduce you to the java.base module,
which exports the package exports java.util.concurrent, which among other things contains four
functional interfaces with the same purpose all defined in the java.util.concurrent.Flow final class.

•	 Flow.Processor, which is the equivalent of org.reactivestreams.Processor<T>

•	 Flow.Publisher, which is the equivalent of org.reactivestreams.Publisher<T>

•	 Flow.Subscriber, which is the equivalent of org.reactivestreams.Subscriber<T>

•	 Flow.Subscription, which is the equivalent of org.reactivestreams.
Subscription<T>

These interfaces have the same functions as the ones defined by the Reactive Streams project and
are used to support the creation of publish-subscribe applications, meaning reactive applications. JDK
9 provides a simple implementation of Publisher that can be used for simple use cases and can also
be extended depending on the requirements. SubmissionPublisher<T> is an implementation class of
the Flow.Publisher<> interface that also implements AutoCloseable and can be used in a try-with-
resources block.

RxJava13 is one of the reactive implementation for the JVM designed to support sequences of data/events
and adds operators that allow stream composition and filtering by hiding low-level concerns as thread
synchronization and thread safety. At the time of writing, there are two versions on RxJava: RxJava 1.x
and RxJava 2.x. RxJava 1.x is an implementation of ReactiveX (Reactive Extensions)14 that is an API for
asynchronous programming with observable streams. RxJava1 will be dropped, because it was completely
rewritten on top of the Reactive Streams API introduced in the previous section. Spring 5 can work with both,
but because RxJava 1.x will be dropped in 2018, let’s focus on the future.

In the Spring reactive programming example with Project Reactor, we implemented a reactive
repository and a reactive client. we’ll do this here by using RxJava2. we’ll define a reactive repository
interface named Rx2SingerRepo.

12Check out the discussion that led to this decision: https://jira.spring.io/browse/SPR-14579.
13See https://github.com/ReactiveX/RxJava.
14See https://reactivex.io/.

https://jira.spring.io/browse/SPR-14579
https://github.com/ReactiveX/RxJava
https://reactivex.io/

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

815

package com.apress.prospring5.ch18.repos;

import com.apress.prospring5.ch18.entities.Singer;
import io.reactivex.Flowable;
import io.reactivex.Single;

public interface Rx2SingerRepo {
 Single<Singer> findById(Long id);
 Flowable<Singer> findAll();
 Single<Void> save(Single<Singer> singer);
}

After looking attentively at the previous snippet, you probably noticed the equivalences: the Flowable
class is the implementation of a stream of elements, and Single is the implementation for a stream of
[0..1] elements. Creating them is just as easy, and you will notice a small API difference for the Single type
regarding creating an empty stream.

Flowable simple = Flowable.just("1", "2", "3");
//or from an existing list: List<Singer>
Flowable<Singer> fromList = Flowable.fromIterable(list);

Single simple = Single.just("1");
//or from an existing object of type Singer
Single<Singer> fromObject = Single.just(null);

So, let’s see how the reactive repository implementation looks with RxJava2:

package com.apress.prospring5.ch18.repos;

import com.apress.prospring5.ch18.entities.Singer;
import io.reactivex.Flowable;
import io.reactivex.Single;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;

@Component
public class Rx2SingerRepoImpl implements Rx2SingerRepo {

 @Autowired
 SingerRepository singerRepository;

 @Override public Single<Singer> findById(Long id) {
 return Single.just(singerRepository.findById(id).get());
 }

 @Override public Flowable<Singer> findAll() {
 return Flowable.fromIterable(singerRepository.findAll());
 }

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

816

 @Override public Single<Void> save(Single<Singer> singerSingle) {
 singerSingle.doOnSuccess(singer -> singerRepository.save(singer));
 return Single.just(null);
 }
}

As we can see, the syntax is similar, but there are small differences in the API to take into account. If we
were to rewrite the mapping methods as well, this is how they would look:

package com.apress.prospring5.ch18;
...
@SpringBootApplication
@RestController
public class Rx2ReactiveApplication {

 private static Logger logger = LoggerFactory.getLogger(Rx2ReactiveApplication.class);

 @Autowired Rx2SingerRepo rx2SingerRepo;

 @GetMapping(value = "/all", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
 public Flowable<Singer> all() {
 Flowable<Singer> singers = rx2SingerRepo.findAll();
 Flowable<Long> periodFlowable = Flowable.interval(2, TimeUnit.SECONDS);
 return singers.zipWith(periodFlowable, (singer, aLong) -> {
 Thread.sleep(aLong);
 return singer;
 });
 }

 @GetMapping(value = "/one/{id}")
 public Single<Singer> one(@PathVariable Long id) {
 return rx2SingerRepo.findById(id);
 }
...
}

It seems a little more complicated to implement the zipping function with RxJava2, doesn’t it?
The test the mappings, you can still use the Spring reactive WebClient, which is pretty cool. Or, you can

take the new HTTP client from JDK 9 for a test run.

import jdk.incubator.http.HttpClient;
import jdk.incubator.http.HttpRequest;
import jdk.incubator.http.HttpResponse;
...

URI oneURI = new URI("http://localhost:8080/one/1");
HttpClient client = HttpClient
 .newBuilder()
 .build();

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

817

HttpRequest httpRequest = HttpRequest.newBuilder().GET().build();
HttpResponse httpResponse = client.send(httpRequest,
 HttpResponse.BodyHandler.asString());

System.out.println(httpResponse.statusCode());
System.out.println(httpResponse.body());

Just make sure to add a dependency in the jdk.incubator.httpclient module in your module-info.
java file.

This is all that can be said about Java 9 interoperability. The biggest changes that are relevant to the
Spring Framework are the modularization and the new reactive API, RxJava2, that Spring already supports.
All other Java 9 novelties are covered by another really interesting Apress book, called Java 9 Revealed.15

Spring Support for JUnit 5 Jupiter
JUnit 5 was mentioned shortly in Chapter 13, and now it is time to dig a little deeper. If you are wondering
what all the fuss is about, you can find the simplest answer in the official documentation at
http://junit.org/junit5/docs/current/user-guide/#overview (see Figure 18-3).

Figure 18-3.  JUnit 5

The JUnit platform serves as a foundation for launching testing frameworks on the JVM. It comes with
a Console Launcher used to launch the platform from the command line and build plug-ins for Gradle and
Maven. This launcher can be used to discover, filter, and execute tests; thus, there’s no need for Surefire or
customizations for the Gradle test task. Also, third-party libraries such as Spock, Cucumber, and FitNesse
can plug into the JUnit platform’s launching infrastructure by providing a custom TestEngine.

JUnit Jupiter is the combination of the new programming model (based on a set of new JUnit5
annotations that reside in the org.junit.jupiter.api package) and extension model (the Extension API
with its @ExtendWith annotation is designed to replace JUnit 4’s Runner @Rule and @ClassRule) for writing
tests and extensions in JUnit 5. The Jupiter subproject provides a TestEngine for running Jupiter-based tests
on the platform.

JUnit Vintage as you probably guess provides a TestEngine for running JUnit 3 and JUnit 4–based tests
on the platform.

15You can order it from www.apress.com/la/book/9781484225912.

http://dx.doi.org/10.1007/978-1-4842-2808-1_13
http://junit.org/junit5/docs/current/user-guide/#overview
http://www.apress.com/la/book/9781484225912

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

818

But, let’s see it in action, by testing the SingerHandler class. We’ll start with a negative test method;
specifically, let’s try to obtain a singer who does not exist.

package com.apress.prospring5.ch18;

import com.apress.prospring5.ch18.entities.Singer;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.http.HttpMethod;
import org.springframework.http.HttpStatus;
import org.springframework.http.client.reactive.ReactorClientHttpConnector;
import org.springframework.web.reactive.function.BodyInserters;
import org.springframework.web.reactive.function.client.ClientRequest;
import org.springframework.web.reactive.function.client.ClientResponse;
import org.springframework.web.reactive.function.client.ExchangeFunction;
import org.springframework.web.reactive.function.client.ExchangeFunctions;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

import java.net.URI;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.List;

import static org.junit.jupiter.api.Assertions.*;
public class SingerHandlerTest {

 private static Logger logger = LoggerFactory.getLogger(SingerHandlerTest.class);

 public static final String HOST = "localhost";

 public static final int PORT = 8080;

 private static ExchangeFunction exchange;

 @BeforeAll
 public static void init(){
 exchange = ExchangeFunctions.create(new ReactorClientHttpConnector());
 }

 @Test
 public void noSinger(){
 //get singer
 URI uri = URI.create(String.format("http://%s:%d/singers/99", HOST, PORT));
 logger.debug("GET REQ: "+ uri.toString());
 ClientRequest request = ClientRequest.method(HttpMethod.GET, uri).build();

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

819

 Mono<Singer> singerMono = exchange.exchange(request)
 .flatMap(response -> response.bodyToMono(Singer.class));
 Singer singer = singerMono.block();
 assertNull(singer);
 }
...
}

ExchangeFunction is a functional interface that is used to exchange a ClientRequest for a delayed
ClientResponse and can be used as an alternative to WebClient. Using such an implementation request can
be sent to a running server, and responses can be analyzed. In the previous example, you probably noticed
the following things:

•	 The @BeforeAll annotation is similar to @BeforeClass from JUnit classic; thus,
methods annotated with it must be executed before any methods annotated
with @Test (or derivate annotations like RepeatedTest) in the current class.
What is special about it is that it can be set on nonstatic methods if the
@TestInstance(Lifecycle.PER_CLASS) annotation is used at the class level.

•	 The @Test annotation from package org.junit.jupiter.api is the equivalent of the
same annotation from JUnit classic; the only difference is that this annotation does
not declare any attributes since test extensions in JUnit Jupiter operate based on
their own dedicated annotations.

•	 The assertNull statement from class org.junit.jupiter.api.Assertions
is also analogous to the same annotation in JUnit classic. There are analogous
implementations and some extra ones for all the static functions in the Assertions
class that lend themselves well to being used with Java 8 lambdas.

Let’s see a more detailed example. This time, we are testing the editing of a singer instance. First we test
that we definitely retrieved the correct singer, by checking firstName and lastName with grouped assertions.

package com.apress.prospring5.ch18;

import com.apress.prospring5.ch18.entities.Singer;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.http.HttpMethod;
import org.springframework.http.HttpStatus;
import org.springframework.http.client.reactive.ReactorClientHttpConnector;
import org.springframework.web.reactive.function.BodyInserters;
import org.springframework.web.reactive.function.client.ClientRequest;
import org.springframework.web.reactive.function.client.ClientResponse;
import org.springframework.web.reactive.function.client.ExchangeFunction;
import org.springframework.web.reactive.function.client.ExchangeFunctions;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

820

import java.net.URI;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.List;

import static org.junit.jupiter.api.Assertions.*;

public class SingerHandlerTest {

 private static Logger logger = LoggerFactory.getLogger(SingerHandlerTest.class);

 public static final String HOST = "localhost";

 public static final int PORT = 8080;

 private static ExchangeFunction exchange;

 @BeforeAll
 public static void init(){
 exchange = ExchangeFunctions.create(new ReactorClientHttpConnector());
 }
 @Test
 public void editSinger() {
 //get singer
 URI uri = URI.create(String.format("http://%s:%d/singers/1", HOST, PORT));
 logger.debug("GET REQ: "+ uri.toString());
 ClientRequest request = ClientRequest.method(HttpMethod.GET, uri).build();

 Mono<Singer> singerMono = exchange.exchange(request)
 .flatMap(response -> response.bodyToMono(Singer.class));
 Singer singer = singerMono.block();
 assertNotNull(singer);

 assertAll("singer",
 () -> assertEquals("John", singer.getFirstName()),
 () -> assertEquals("Mayer", singer.getLastName()));

 logger.info("singer:" + singer.toString());

 //edit singer
 singer.setFirstName("John Clayton");
 uri = URI.create(String.format("http://%s:%d/singers", HOST, PORT));
 logger.debug("UPDATE REQ: "+ uri.toString());
 request = ClientRequest.method(HttpMethod.POST, uri)
 .body(BodyInserters.fromObject(singer)).build();

 Mono<ClientResponse> response = exchange.exchange(request);
 assertEquals(HttpStatus.OK, response.block().statusCode());
 logger.info("Update Response status: " + response.block().statusCode());
 }
}

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

821

We can do even more. In the previous example, we could condition the execution of the assertEquals
assertions by the assetNotNull assertions above them. In the previous case, both assertEquals statements
are executed and fail if the wrong singer is returned.16 The code to declare the previous assertEquals
execution dependent of the assertNotNull execution is shown here:

assertAll("singer", () -> {
 assertNotNull(singer);
 assertAll("singer",
 () -> assertEquals("John", singer.getFirstName()),
 () -> assertEquals("Mayer", singer.getLastName()));
});

We’ll stop here with JUnit-specific testing components and move on to more Spring testing novelties.
Aside from the WebClient interface, for the reactive programming model, spring-test now includes
WebTestClient for integrating testing support for Spring WebFlux. The new WebTestClient, similar to
MockMvc, does not need a running server. That doesn’t mean it cannot be used with an existing one. In the
following sample, a WebTestClient is used with the application run from the SingerApplication class:

package com.apress.prospring5.ch18;

import com.apress.prospring5.ch18.entities.Singer;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import org.springframework.http.MediaType;
import org.springframework.test.web.reactive.server.FluxExchangeResult;
import org.springframework.test.web.reactive.server.WebTestClient;
import reactor.core.publisher.Mono;

import java.util.Date;
import java.util.GregorianCalendar;

import static org.junit.jupiter.api.Assertions.*;

public class AnotherSingerHandlerTest {

 private static WebTestClient client;

 @BeforeAll
 public static void init() {
 client = WebTestClient
 .bindToServer()
 .baseUrl("http://localhost:8080")
 .build();
 }

16Just try to change the URI to http://%s:%d/singers/2.

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

822

 @Test
 public void getSingerNotFound() throws Exception {
 client.get().uri("/singers/99").exchange().expectStatus().isNotFound()
 .expectBody().isEmpty();
 }

 @Test
 public void getSingerFound() throws Exception {
 client.get().uri("/singers/1").exchange().expectStatus().isOk()
 .expectBody(Singer.class).consumeWith(seer -> {
 Singer singer = seer.getResponseBody();
 assertAll("singer", () ->

 {
 assertNotNull(singer);
 assertAll("singer",
 () -> assertEquals("John", singer.getFirstName()),
 () -> assertEquals("Mayer", singer.getLastName()));
 });
 });
 }

 @Test
 public void getAll() throws Exception {
 client.get().uri("/singers").accept(MediaType.TEXT_EVENT_STREAM)
 .exchange()
 .expectStatus().isOk()
 .expectHeader().contentType(MediaType.APPLICATION_JSON)
 .expectBodyList(Singer.class).consumeWith(Assertions::assertNotNull);
 }

 @Test
 public void create() throws Exception {
 Singer singer = new Singer();
 singer.setFirstName("Ed");
 singer.setLastName("Sheeran");
 singer.setBirthDate(new Date(
 (new GregorianCalendar(1991, 2, 17)).getTime().getTime()));

 client.post().uri("/singers").body(Mono.just(singer), Singer.class)
 .exchange().expectStatus().isOk();
 }
}

WebTestClient is the main component for testing WebFlux server endpoints. It has a similar API to
WebClient and delegates most of the work to an internal WebClient that is focused mainly on providing
a test context. To run integration tests on an actual running server, the bindToServer() method must
be called. The previous example is quite simple. WebTestClient is bound to an address where an actual
application is running; thus, it does not need to define its own mappings or routing functions. But in certain
situations when this is necessary, it can be done because there are many more configuration methods
available. The test method in the following code snippet uses a custom RouterFunction by calling
bindToRouterFunction(function):

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

823

@Test
public void testCustomRouting(){
 RouterFunction function = RouterFunctions.route(
 RequestPredicates.GET("/test"),
 request -> ServerResponse.ok().build()
);

 WebTestClient
 .bindToRouterFunction(function)
 .build().get().uri("/test")
 .exchange()
 .expectStatus().isOk()
 .expectBody().isEmpty();
}

Another feature that is worth mentioning here is that with Spring JUnit 5, integration tests can be run
in parallel. And now we have to leave the Singer application behind so that we can keep the code samples
on point. To show you how tests can be run in parallel, a simple Spring Boot application will be used that
declares only a bean of type FluxGenerator, which, as the name says, generates Flux instances. The code of
the configuration/entry point to the application and the simple bean type FluxGenerator is depicted here:

//FluxGenerator.java
package com.apress.prospring5.ch18;

import org.springframework.stereotype.Component;
import reactor.core.publisher.Flux;

@Component
public class FluxGenerator {

 public Flux<String> generate(String... args){
 return Flux.just(args);
 }
}

//Application.java
package com.apress.prospring5.ch18;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.builder.SpringApplicationBuilder;
import org.springframework.context.ConfigurableApplicationContext;

@SpringBootApplication
public class Application {

 private static final Logger logger = LoggerFactory.getLogger(Application.class);

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

824

 public static void main(String args) throws Exception {
 ConfigurableApplicationContext ctx =
 new SpringApplicationBuilder(Application.class)
 .run(args);
 assert (ctx != null);
 logger.info("Application started...");

 System.in.read();
 ctx.close();
 }
}

Next, we will create two test classes, IntegrationOneTest and IntegrationTwoTest, that will have two
test methods declared each; they will not test anything and will just use the FluxGenerator bean to get a
Flux instance and print its contents. The two classes are depicted here, and as you can see, the sets of values
are different so we can track the execution in the command line and make sure it is done in parallel.

//IntegrationOneTest.java
package com.apress.prospring5.ch18.test;

import com.apress.prospring5.ch18.FluxGenerator;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@SpringBootTest
public class IntegrationOneTest {

 private final Logger logger = LoggerFactory.getLogger(IntegrationOneTest.class);
 @Autowired FluxGenerator fluxGenerator;

 @Test
 public void test1One() {
 fluxGenerator.generate("1", "2", "3").collectList().block()
 .forEach(s -> executeSlow(2000, s));
 }

 @Test
 public void test2One() {
 fluxGenerator.generate("11", "22", "33").collectList().block()
 .forEach(s -> executeSlow(1000, s));
 }

 private void executeSlow(int duration, String s) {
 try {
 Thread.sleep(duration);

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

825

 logger.info(s);
 } catch (InterruptedException e) {
 }
 }
}

//IntegrationTwoTest.java
package com.apress.prospring5.ch18.test;
... // same imports as above
@RunWith(SpringRunner.class)
@SpringBootTest
public class IntegrationTwoTest {
 private final Logger logger =
 LoggerFactory.getLogger(IntegrationTwoTest.class);

 @Autowired FluxGenerator fluxGenerator;

 @Test
 public void test1One() {
 fluxGenerator.generate(2, "a", "b", "c").collectList().block()
 .forEach(logger::info);
 }

 @Test
 public void test2One() {
 fluxGenerator.generate(3, "aa", "bb", "cc").collectList().block()
 .forEach(logger::info);
 }
}

The class to execute those tests is defined here. It contains two test methods—one that executes the test
in parallel and one that executes them in a linear manner, one after the other.

package com.apress.prospring5.ch18.test;

import org.junit.experimental.ParallelComputer;
import org.junit.jupiter.api.Test;
import org.junit.runner.Computer;
import org.junit.runner.JUnitCore;

public class ParallelTests {
 @Test
 void executeTwoInParallel() {
 final Class<?> classes = {
 IntegrationOneTest.class, IntegrationTwoTest.class
 };

 JUnitCore.runClasses(new ParallelComputer(true, true), classes);
 }

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

826

 @Test
 void executeTwoLinear() {
 final Class<?> classes = {
 IntegrationOneTest.class, IntegrationTwoTest.class
 };

 JUnitCore.runClasses(new Computer(), classes);
 }
}

JUnitCore is a facade for running tests. It supports JUnit 4, 3.8 tests, and mixtures. It receives as a
parameter a Computer instance, or an extension of the ParallelComputer instance. The Computer class
is used to execute tests normally, in a linear manner one after the other. The ParallelComputer instance
allows running tests in parallel, and its constructor receives two Boolean arguments. The first one is for
classes’ execution in parallel; the second is for methods. In the previous example, we set them both to
"true" to tell the JUnit runner that we want classes executed in parallel and methods in them as well. That is
why IntegrationOneTest is slightly different than its counterpart IntegrationTwoTest class.

If you run the executeTwoInParallel methods, you should see in the console a log similar to the output
depicted here:

...
17:29:30.460 [pool-2-thread-2] INFO c.a.p.c.t.IntegrationTwoTest - aa
17:29:30.460 [pool-2-thread-2] INFO c.a.p.c.t.IntegrationTwoTest - bb
17:29:30.460 [pool-2-thread-1] INFO c.a.p.c.t.IntegrationTwoTest - a
17:29:30.460 [pool-2-thread-2] INFO c.a.p.c.t.IntegrationTwoTest - cc
17:29:30.460 [pool-2-thread-1] INFO c.a.p.c.t.IntegrationTwoTest - b
17:29:30.460 [pool-2-thread-1] INFO c.a.p.c.t.IntegrationTwoTest - c
17:29:31.463 [pool-1-thread-2] INFO c.a.p.c.t.IntegrationOneTest - 11
17:29:32.461 [pool-1-thread-1] INFO c.a.p.c.t.IntegrationOneTest - 1
17:29:32.468 [pool-1-thread-2] INFO c.a.p.c.t.IntegrationOneTest - 22
17:29:33.472 [pool-1-thread-2] INFO c.a.p.c.t.IntegrationOneTest - 33
17:29:34.466 [pool-1-thread-1] INFO c.a.p.c.t.IntegrationOneTest - 2
17:29:36.471 [pool-1-thread-1] INFO c.a.p.c.t.IntegrationOneTest - 3
...

The last subject we want to touch here is the JUnit 5 Extension API. At its core is the Extension
interface, which is just a marker interface for components that can be registered explicitly with @ExtendWith
or automatically via Java’s ServiceLoader mechanism. In Spring 5, the SpringExtension has been added to
the spring-test module, which implements a lot of Jupiter interface derivatives of @ExtendWith to integrate
the Spring TestContext Framework into JUnit 5’s Jupiter programming model. To use this extension, simply
annotate a JUnit Jupiter-based test class with @ExtendWith(SpringExtension.class), @SpringJUnitConfig,
or @SpringJUnitWebConfig.

Let’s see a simple example. We will create a class namedTestConfig that will declare a bean of type
FluxGenerator and create a test class to test this bean. The two classes are depicted here:

//TestConfig.java
package com.apress.prospring5.ch18.test.config;

import com.apress.prospring5.ch18.FluxGenerator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

Chapter 18 ■ Spring Projects: Batch, Integration, XD, and More

827

@Configuration
public class TestConfig {

 @Bean FluxGenerator generator(){
 return new FluxGenerator();
 }
}

package com.apress.prospring5.ch18.test;

import com.apress.prospring5.ch18.Application;
import com.apress.prospring5.ch18.FluxGenerator;
import com.apress.prospring5.ch18.test.config.TestConfig;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.extension.ExtendWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit.jupiter.SpringExtension;

import java.util.List;
import static org.junit.jupiter.api.Assertions.assertEquals;

//JUnit5IntegrationTest.java
@ExtendWith(SpringExtension.class)
@ContextConfiguration(classes = TestConfig.class)
public class JUnit5IntegrationTest {

 @Autowired FluxGenerator fluxGenerator;

 @Test
 public void testGenerator() {
 List<String> list = fluxGenerator.generate("2", "3")
 .collectList().block();
 assertEquals(2, list.size());
 }
}

There is still a lot of work being done on Spring JUnit 5 support. Thus, the source code introduced in this
section might suffer some modifications in future releases of Spring. The area is so new it hasn’t even been
introduced in the Spring documentation yet,17 which will probably be updated at some point in the future.

Summary
In this chapter, we provided high-level overviews of a few projects in the Spring portfolio. We took a look
at Spring Batch, JSR-352, Integration, XD, WebFlux, and Spring’s support of JUnit 5, each providing its own
unique capabilities aimed at simplifying specific tasks at hand for you as the developer. Some of these
projects are new, and some have been proven stable and solid, serving as ideal foundations for other
frameworks. We encourage you to take a look at these projects in deeper detail, as we think they will greatly
simplify your Java projects in general.

17The Testing chapter of the Spring reference does not even mention JUnit 5 yet; see https://docs.spring.io/
spring/docs/current/spring- framework- reference/htmlsingle/#testing.

https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#testing
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#testing
https://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#testing

829© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1

APPENDIX A

Setting Up Your Development
Environment

This appendix helps you set up the development environment that you will use to write, compile, and
execute the Spring applications discussed in this book.

Introducing Project pro-spring-15
Project pro-spring-15 is a three-level Gradle project. pro-spring-15* is the root project and is the parent of
the projects named chapter02 through chapter18. Each of these chapter** projects is also a parent project
for the module projects nested under it. The project was designed in this way to help you get oriented with
the code and easily match each chapter to the source code associated with it.

*At the time when this Appendix was being written, the project was still in raw form. It was later completed, renamed to
pro-spring-5 and hosted on the Apress official repository located at: https://github.com/Apress/pro-spring-5.
All written above is still valid, except for the project name.

https://doi.org/10.1007/978-1-4842-2808-1
https://github.com/Apress/pr o-sp ring-5

APPENDIX A ■ Setting Up Your Development Environment

830

Figure A-1 shows the project structure.

Figure A-1.  pro-spring-15 project structure in Intellij IDEA

APPENDIX A ■ Setting Up Your Development Environment

831

Understanding the Gradle Configuration
The pro-spring-15 project defines a set of libraries available for the child modules to use, and it has the
Gradle configuration in a file typically named build.gradle. All the modules on the second level (in other
words, the chapter** projects) have a Gradle configuration file named [module_name].gradle (for example,
chapter02.gradle) so you can quickly find the configuration file with the settings that are common to the
projects for that chapter. Also, there’s a closure element in pro-spring-15/settings.gradle that verifies at
build time that all chapter modules have their configuration file present.

rootProject.children.each { project ->
 project.buildFileName = "${project.name}.gradle"
 assert project.projectDir.isDirectory()
 assert project.buildFile.exists()
 assert project.buildFile.isFile()
}

If a Gradle build file is not named the same as the module, then when executing any Gradle task, an
error is thrown. The error is similar to the one depicted in the following code snippet, where the chapter02.
gradle file was renamed to chapter02_2.gradle:

$ gradle clean
FAILURE: Build failed with an exception.

* Where:
Settings file '/workspace/pro-spring-15/settings.gradle' line: 328

* What went wrong:
A problem occurred evaluating settings 'pro-spring-15'.
> assert project.buildFile.exists
 | | |
 | | false
 | /workspace/pro-spring-15/chapter02/chapter02.gradle
 :chapter02

* Try:
Run with --stacktrace option to get the stack trace. Run with --info or --debug
 option to get more log output.

BUILD FAILED in 0s

This was a development choice; the configuration file of a chapter module is more visible in an editor
this way. Plus, if you want to modify the configuration file for a chapter module, you can easily find the file in
IntelliJ IDEA using a unique name.

In the pro-spring-15 project, each module on the third level (in other words, the children of chapter**)
has a Gradle configuration file named build.gradle. This was also a development choice; in Gradle, having
uniquely named Gradle configuration files is not possible at this level in this particular configuration.

Another approach for a multimodular project would have been to have in the main build.gradle file
specific closures to customize the configuration for each module. But in the spirit of good development
practices, we decided to keep the configurations for the modules as decoupled as possible and in the same
location as the module contents.

APPENDIX A ■ Setting Up Your Development Environment

832

The pro-spring-15/build.gradle configuration file contains a variable for each software version being
used. These variables are used to customize the dependency declaration strings that are grouped in arrays
named for a specific purpose or technology. This file also contains a list of public repositories from where
the dependencies are downloaded.

In the following configuration, you can see the versions and the array for the persistency libraries used
in the project:

ext {
 ...
 //persistency libraries
 hibernateVersion = '5.2.10.Final'
 hibernateJpaVersion = '1.0.0.Final'
 hibernateValidatorVersion = '5.4.1.Final' //6.0.0.Beta2
 atomikosVersion = '4.0.4'

 hibernate = [
 validator : "org.hibernate:hibernate-validator:$hibernateValidatorVersion",
 jpaModelGen: "org.hibernate:hibernate-jpamodelgen:$hibernateVersion",
 ehcache : "org.hibernate:hibernate-ehcache:$hibernateVersion",
 em : "org.hibernate:hibernate-entitymanager:$hibernateVersion",
 envers : "org.hibernate:hibernate-envers:$hibernateVersion",
 jpaApi : "org.hibernate.javax.persistence:hibernate-jpa-2.1-api:
 $hibernateJpaVersion",
 querydslapt: "com.mysema.querydsl:querydsl-apt:2.7.1",
 tx : "com.atomikos:transactions-hibernate4:$atomikosVersion"
]
 }
 ...
 subprojects {
 version '5.0-SNAPSHOT'

 repositories {
 mavenLocal()
 mavenCentral()
 maven { url "http://repo.spring.io/release" }
 maven { url "http://repo.spring.io/snapshot" }
 maven { url "https://repo.spring.io/libs-snapshot" }
 maven { url "http://repo.spring.io/milestone" }
 maven { url "https://repo.spring.io/libs-milestone" }
 }
}

tasks.withType(JavaCompile) {
 options.encoding = "UTF-8"
}

In the projects on the second level of the hierarchy (in other words, the chapter** projects), you’ll find
the chapter**.gradle configuration files. These dependencies are referred to by their array name and the
name associated with then. These files also contain the project group name that is specific to that chapter,
additional plug-ins, and extra Gradle tasks. Here you can see the chapter08.gradle file:

APPENDIX A ■ Setting Up Your Development Environment

833

subprojects {
 group 'com.apress.prospring5.ch08'
 apply plugin: 'java'

 /*Task that copies all the dependencies under build/libs */
 task copyDependenciestype: Copy {
 from configurations.compile
 into 'build/libs'
 }

 dependencies {
 if !project.name.contains"boot" {
 compile spring.contextSupport {
 exclude module: 'spring-context'
 exclude module: 'spring-beans'
 exclude module: 'spring-core'
 }
 compile spring.orm, spring.context, misc.slf4jJcl,
 misc.logback, db.h2, misc.lang3, hibernate.em
 }
 testCompile testing.junit
 }
}

The if (!project.name.contains("boot")) is necessary here because under project chapter08 one or
more Spring Boot projects are nested, and as Spring Boot comes with its own fixed set of dependencies and
versions for them, you do not want the configuration defined in this file to be inherited, which can lead to
conflicts or unpredictable behavior.

For projects on the third level, you can further customize the configurations inherited from the
chapter** parent by adding their own dependencies and declaring their own manifest file specifications,
their own plug-ins, and their own tasks. The following is a simple file called chapter12\spring-invoker\
build.gradle (if you want to check out a heavily customized Gradle configuration, check out the
chapter08\jpa-criteria\build.gradle file):

apply plugin: 'war'

dependencies {
 compile project(':chapter12:base-remote')
 compile spring.webmvc, web.servlet
 testCompile spring.test
}

war {
 archiveName = 'remoting.war'
 manifest {
 attributes("Created-By" : "Iuliana Cosmina",
 "Specification-Title": "Pro Spring 5",
 "Class-Path" : configurations.compile.collect { it.getName() }.join(' '))
 }
}

APPENDIX A ■ Setting Up Your Development Environment

834

Building and Troubleshooting
After you clone the source code (or download it), you need to import the project in the IntelliJ IDEA editor.
To do this, follow these steps:

	 1.	 Select from the Intellij IDEA menu File ➤ New ➤ Project from Existing Sources
(as shown in Figure A-2).

After selecting the proper option, a pop-up window will appear requesting the
location of the project (as shown in Figure A-3).

	 2.	 Select the pro-spring-15 directory. A pop-up will ask for the project type.
Intellij IDEA can create its own type of project from the selected sources and
build it with its internal Java builder, but this option is not useful here because
pro-spring-15 is a Gradle project.

Figure A-3.  Selecting the project root directory pop-up in Intellij IDEA

Figure A-2.  Project import menu options in Intellij IDEA

APPENDIX A ■ Setting Up Your Development Environment

835

	 3.	 Check the “Import project from external model” radio button and select Gradle
from the menu, as depicted in Figure A-4.

	 4.	 The last pop-up window will appear and ask for the location of the build.gradle
file and the Gradle executable. The options will be already populated for you
(as shown in Figure A-5). If you have Gradle installed on the system, you might
want to use it.

Before getting to work, you should build the project. This can be done from Intellij IDEA by clicking the
Refresh button, as shown by the (1) in Figure A-6. Clicking this button will cause IntelliJ IDEA to scan the
configuration of the project and resolve dependencies. This includes downloading missing libraries and
doing an internal light build of the project (just enough to remove compile-time errors caused by missing
dependencies).

Figure A-4.  Selecting the project type Intellij IDEA

Figure A-5.  Last pop-up for project import in Intellij IDEA

APPENDIX A ■ Setting Up Your Development Environment

836

The Gradle compileJava task, marked with (3) in Figure A-6, executes a full build of the project. You can
also do the same this from the command line, by executing the Gradle build command, as depicted below:

.../workspace/pro-spring-15 $ gradle build

Or you can do this from Intellij IDEA, by double clicking the build task, as depicted by the (2) in
Figure A-6.

Figure A-6.  Last pop-up for project import in Intellij IDEA

APPENDIX A ■ Setting Up Your Development Environment

837

This will execute the following set of tasks on every module:

:chapter02:hello-world:compileJava
:chapter02:hello-world:processResources
:chapter02:hello-world:classes
:chapter02:hello-world:jar
:chapter02:hello-world:assemble
:chapter02:hello-world:compileTestJava
:chapter02:hello-world:compileTestResources
...

In the previous example, the tasks were depicted only for module chapter02. The Gradle build task will
execute all the tasks it depends on. As you can see, it does not run the clean task, so you need to make sure
to run this task manually multiple times when building a project to make sure the most recent versions of the
classes are used.

Because this project contains tests that were designed to fail, executing this task will fail. You can
instead just execute tasks clean and compileJava. Another option is to execute the Gradle build task, but to
skip the tests using "-x" argument:

.../workspace/pro-spring-15 $ gradle build -x test

Deploy on Apache Tomcat
There are a few web applications under the pro-spring-15 project. Most of them are Spring Boot
applications that run on an embedded server. But there are certain advantages in using an external
container like the Apache Tomcat server. Starting the server in debug mode and using breakpoints to debug
an application is much easier to do, but that’s only one advantage. An external container can run multiple
applications at a time without the need to stop the server. Embedded servers are useful for testing, fast
development, and educational purposes, like Spring Boot is, but in production, application servers are
preferred.

APPENDIX A ■ Setting Up Your Development Environment

838

Here is what you have to do if you are interested in using an external server. First download the latest
version of Apache Tomcat from the official site.1 You can get version 8 or 9; they will both work with the
sources of this book. Unpack the archive somewhere on your system. Then configure an IntelliJ IDEA
launcher to start the server and deploy the chosen application. This is quite easy to do; follow these steps:

	 1.	 From the runnable configuration menu, choose Edit Configurations, as shown by
(1) in Figure A-7. A pop-up window will appear and list a set of launchers. Click
the plus (+) sign and select the Tomcat Server option. The menu will expand;
select Local, as shown by (2) in Figure A-7, because you are using a server
installed on your computer.

	 2.	 A pop-up window like the one in Figure A-8 will appear and will request some
information.

Figure A-7.  Menu options to create a Tomcat launcher in Intellij IDEA

1The Apache Tomcat official site is at http://tomcat.apache.org/.

http://tomcat.apache.org/

APPENDIX A ■ Setting Up Your Development Environment

839

In Figure A-8, you’ll see that some items are numbered. Here is what the
numbers mean:

•	 1 is the launcher name. You can put anything here, preferably the name of the
application you are deploying.

•	 2 is the Tomcat instance name.

•	 3 is the button that will open the pop-up window to insert the Tomcat instance
location, as depicted in Figure A-9.

Figure A-9.  Configuring the Tomcat instance in Intellij IDEA

Figure A-8.  Pop-up to create a Tomcat launcher in Intellij IDEA

APPENDIX A ■ Setting Up Your Development Environment

840

•	 4 is the URL where the Tomcat server can be accessed.

•	 5 is the Fix button, which is used to choose an artifact to deploy on the Tomcat
instance. If there is no web archive set to be deployed to Tomcat, this button will
be displayed with a red lightbulb icon on it.

	 3.	 Click the Fix button and select an artifact. IntelliJ IDEA will detect all artifacts
available (Figure A-10) and present them to you in a list. If you intend to open the
server in debug mode and use breakpoints in the code, select an artifact with the
name postfixed with (exploded); this way, Intellij IDEA manages the contents of
the exploded WAR and can link the actions in the browser with the breakpoints
in the code.

	 4.	 Complete the configuration by clicking the OK button. You can specify a
different application context by inserting a new value in the Application
Context field. Choosing a different application context will tell Tomcat
to deploy the application under the given name. The application will be
accessible via this URL:

http://localhost:8080/[app_context_name]/.

Other application servers can be used in a similar way as long as IntelliJ IDEA provides plug-ins for
them. Launcher configurations can be duplicated, and multiple Tomcat instances can be started at the same
time as long as they function on different ports, which can make for faster testing and comparisons between
implementations. IntelliJ IDEA is really flexible and practical, and that’s why we recommend it for practicing
the exercises in this book. The Gradle projects can also be imported in Eclipse and other Java editors that
support Gradle.

Figure A-10.  Deployable artifact list in Intellij IDEA

841© Iuliana Cosmina, Rob Harrop, Chris Schaefer, and Clarence Ho 2017
I. Cosmina et al., Pro Spring 5, https://doi.org/10.1007/978-1-4842-2808-1

�       � A
Advanced Message Queuing Protocol (AMQP)

JMS, 606
rabbitListenerContainerFactory, 609–611
RabbitMQ, 608, 611
RPC calls, 608
Spring Boot, 612–613
WeatherService, 607–608
XML configuration, 609

After-returning advice
KeyGenerator, 224–227
SimpleAfterReturningAdvice, 224–225

ApplicationContext interface
ApplicationEvent, 171–173
event usage, 173–174
features, 167
getMessage(), 170
MessageSource, 168, 170

ApplicationContextAware interface, 148–150
Application programming

interfaces (APIs), 10
Around advice

MethodInterceptor, 227
ProfilingDemo, 229–230
ProfilingInterceptor, 228–229

AspectJ
AnnotationAdvice, 285–286
aop namespace, 286
AOP configuration, 291
configuration, 287–288
Java configuration, 284–285
pointcut expression, 246
singleton aspects, 292–294
Spring Boot, 289–290
test methods, 288–289

Aspect-oriented programming (AOP), 2, 10
advice types, 218

after-returning, 224–227
around, 227–230
before, 219–224
throws, 230–232

AgentDecorator, 214–215
alliance, 214
aop namespace

advice class, 278
configuration, 281
MethodBeforeAdvice, 278
MethodInterceptor, 282
pointcut, 283
simpleBeforeAdvice, 279
sing(), 280

declarative configuration, 271
definition, 212–213
dynamic, 213
introductions

(see IntroductionInterceptor)
joinpoints, 216
OOP, 211
ProxyFactory class, 217
static, 213

AssertTrue, 534
Auditing strategies, 451–452

�       � B
BatchSqlUpdate class

insertWithAlbum(), 343–346
test method, 346–347

Bean life-cycle management
ApplicationContext, 130
default-init-method, 131
destruction, 139
initialization callback, 128
InitializingBean, 132–134
init-method, 129–130
interface mechanism, 127
JSR-250, 134–136
post-initialization and

pre-destruction, 127
Bean-managed transactions (BMTs), 467
Before advice

SecureBean, 221, 223–224
SecurityAdvice, 222–224

Index

■ INDEX

842

SecurityManager, 221–222
SimpleBeforeAdvice, 219
sing(), 220

BookwormOracle class, 43

�       � C
Castor XML

@Controller, 586
field handler, 583–584
mapping file, 582–583
properties, 584
@RequestMapping, 586
@ResponseBody, 586
SingerController, 584–585
Spring web application, 587–590

CGLIB, 249–251
ClassPathXmlApplicationContext, 34
Closure, 639, 643–644
Container-managed transactions

(CMTs), 467
Contextualized dependency lookup

(CDL), 38–40
curl command, 590–592

�       � D
Data Access Object (DAO), 2

components, 317
JdbcSingerDao, 317–318
service layer, 735
Spring Boot, 733–734
Spring Security, 737–738
web layer, 735–737

Database connections. See DataSource
Database operation. See Query data
DataSource

configuration, 311–312
DAO (see Data Access Object (DAO))
DriverManagerDataSource, 310
embedded database, 315–316
JNDI data source, 314
test class, 312–313

DbUnit, 634–637
DefaultPointcutAdvisor, 236
Dependency injection (DI)

annotations, bean naming, 100–105
AOP, 10
ApplicationContext, 48, 49
autowiring, 112–122
BeanFactory Implementations, 46–48
bean inheritance, 122–123
bean instantiation mode, 105–108

bean-naming structure, 95–99
bean scope, 108
collection injection, 77–84
components, 50–52, 54
configuration options, 49
constructor, 40
constructor injection, 58–63
EL, 11
field injection, 64–65
injecting beans, 73–74
injecting simple values, 66–68
injection and ApplicationContext nesting, 75–77
injection parameters, 66
interface-based design, 8
Java 9, 10
JavaBeans (POJOs), 8
Java configuration, 54–56
Lookup Method Injection, 85–91
Method Injection, 84
Method Replacement, 92–95
resolve dependencies, 109–111
setter injection, 41, 56–58
SpEL, 69–72
XML configuration, 49

Destroy-method
destructiveBean, 139–140
DisposableBean, 141–142
GenericXmlApplicationContext, 139–140
@PostConstruct, 145
shutdown hook, 146

Development environment
gradle configuration file, 831–833
Intellij IDEA

application, 838
deployable artifact, 840
pop-up window, 834, 838–839
project import, 834–836
project type, 835
Tomcat launcher, 838

project pro-spring-15, 829–830
displayInfo() method, 78, 88
doSomething() method, 86
DyanmicMethodMatcherPointcut, 239–242
Dynamic language code, 652, 654

�       � E
Enterprise integration patterns (EIP), 17
Enterprise JavaBeans (EJB), 2
EntityManagerFactory, 479
Entity Versioning. See Hibernate Envers
Environment abstraction. See PropertySource

abstraction
Expression Language (EL), 11

Before advice (cont.)

■ INDEX

843

�       � F
FactoryBeans

accessing, 156
factory-method attributes, 157–158
MessageDigester

configuration, 153–154
implementation, 152
isSingleton() property, 153
Java configuration, 155

factory-method attributes, 157–158
Field formatting

ConversionServiceFactoryBean, 523–524
custom formatter, 521–523

Field injection, 41, 64–65
formatMessage() method, 92
Front-end unit test, 637

�       � G
GenericXmlApplicationContext, 54, 88
getFriendlyName() method, 81
getMySinger() method, 86
Google Web Toolkit (GWT), 13
Groovy, 201–204

closure, 643–644
dynamic typing, 642
Spring

age category rule, 650–652
DSLs, 644–645
dynamic language code, 652, 654
rule engine, 646–648
rule factory, 648–650

syntax, 643

�       � H
Hibernate Envers

adding tables, 452–453
auditing strategies, 452
EntityManagerFactory, 453–455
history retrieval, 456–457
properties, 455–456
testing, 458–459

Hibernate module
AbstractEntity, 390–391
annotating entity and fields, 390
configuration

DatabasePopulator, 388
data source, 386–387
DbIntializer, 389
entities, 386, 389
in-memory database, 388

data model, 356–357
deleting data, 384, 386

inserting data, 378–382
internal mechanism, 391
JCP, 355
mapping (see Object-relational mapping

(ORM))
properties, 361–362
SessionFactory, 358–361
session interface (see Session interface)
updating data, 382–384

Hibernate Query Language (HQL), 372

�       � I
InitializingBean

afterPropertiesSet(), 138
init-method, 137–138
@PostConstruct, 138

Integration test
configuration class, 629–630
dependencies, 623
infrastructure classes, 627
Java configuration, 625–626
service-layer testing, 623–624
TestExecutionListener, 627–629

IntelliJ IDEA, 831
Interface-based design evolution, 8–9
IntroductionInterceptor

Advisor, 268–269
Contact, 264
interface structure, 264
IsModified, 266
mixin, 266–267
object modification

detection, 265–266
per-instance, 264–265
PointcutAdvisor, 264

Inversion of control (IoC), 1
capabilities

bean life cycle, 125
configuration enhancements, 126
FactoryBeans, 125
Groovy, 126
JavaBeans PropertyEditors, 125
Java classes, 126
portability, 126–127
Spring ApplicationContext, 126
Spring aware, 125
Spring Boot, 126

CDL, 39–40
dependency injection, 45
dependency pull, 38
injection vs. lookup, 41–42
setter injection vs. constructor

injection, 42–44
IsModified interface, 266

■ INDEX

844

�       � J
Java 9, 10

interoperability, 774, 811
reactive programming with, 814–817
support for, 10

Java classes
ApplicationContext

AppConfigOne, 181
@ComponentScan, 182–184
MessageRenderer, 176–177
@PropertySource, 180–181
@Service, 182
StandardOutMessageRenderer, 176–177
static internal class, 179–180
XML configuration, 177–179

Spring mixed configuration, 185–186
Java Community Process (JCP), 8
Java Database Connectivity (JDBC), 2

extensions, 350
generated key, 340–342
implementation, 297
lambda expression, 329
MySQL, 305
ORM, 350
PlainSingerDao, 307
relational database, 297
simple data model

database, 300
DEBUG level, 303, 304
entities, 300–303
entity-relationship, 298
MySQL, 299
resources, 299

SingerDao, 305–307
Spring Boot, 351–353
used packages, 309–310

Java Data Objects (JDO), 2, 355
Java Development Kit (JDK), 21

proxies, 250
Java Enterprise Edition (JEE), 1
Java Management Extensions (JMX)

monitoring
hibernate statistics, 659–661
JEE applications, 655
managed beans, 655
Spring bean, 656–657
Spring Boot, 661–662, 664
VisualVM, 657–659

Java Message Service (JMS)
configuration classes, 572–573
Gradle configurations, 570
HornetQ, 571
@JmsListener, 573–574
queue, 570

sending messages, 574–576
topic, 570

Java Persistence API (JPA), 355
criteria API

CriteriaBuilder, 426
CriteriaQuery.from(), 426
CriteriaQuery.select(), 426
execution, 428
findByCriteriaQuery(), 424–425
meta-model class, 423–424
predicate, 426
Root.fetch(), 426
testing, 427

Spring Boot
adding dependencies, 460–461
configuration, 460–461
DBInitializer, 462–463
InstrumentRepository, 463–464
run(), 465
SingerRepository, 464–465

Java Runtime Environment (JRE), 21
Java Standard Tag Library (JSTL), 13
Java Transaction API (JTA) transactions

configuration, 491, 493–494
EntityManagerFactory, 494
findAll(), 498
infrastructure, 491
principle, 507
rollback, 500–501
save(), 496–497
ServicesConfig, 494, 496
Spring Boot, 501, 503–506
testing, 499
UserTransactionService, 496

Java Transaction Service (JTS), 469
Java virtual machine (JVM), 21
JdbcTemplate class

DAO class, 321–323
DAO implementation, 331
dataSource, 332
JSR-250 annotation, 331
named parameters, 324
RowMapper<T>, 325–327

JEE 7 container7, 18
JPA 2.1

component scan, 398
dataSource bean, 398
EntityManagerFactory, 394–398
native queries, 421–422
ORM mapping, 398, 400
query data

createQuery(), 414–415
deleting data, 419–420
findAll(), 404
findAllWithAlbum(), 406, 408

■ INDEX

845

findById(), 409
getSingleResult(), 409
inserting data, 415–417
@NamedQuery, 404
SingerService, 400–404
SingerSummary, 412–413
testFindAll(), 406
testFindAllWithAlbum(), 408
TypedQuery.getResultList(), 405
untyped results, 410–412
updating data, 417–419

transactionManager bean, 398
JpaRepository, 436
jQuery and jQuery UI

CKEditor, 714–715
jqGrid, 715–717
pagination

SingerController, 719–720
SingerGrid, 720–721
SingerService, 718

view, 712–713
JSR-352, 783–785
JSR-250 annotations, 143–144
JSR-330 annotations, 201

MessageProvider and
ConfigurableMessageProvider, 198

MessageRenderer and
StandardOutMessageRenderer, 199

JSR-349 bean validation, 527

�       � K
KeyHelper instance, 85

�       � L
Logic unit tests

create(), 621–623
dependencies, 619
listData(), 620–621
MVC controllers, 620

�       � M
Many-to-many mappings, 369–371
MappingSqlQuery<T>

SelectAllSingers, 333–334
setDataSource(), 334–335
SqlUpdate, 338–340
test method, 336–337

Message-oriented middleware
(MOM), 606

MessageSourceResolvable interface, 171
Mixin, 266–267
Model-View-Controller (MVC), 2, 674–675

�       � N
Native queries

create and execute, 421
SQL ResultSet mapping

findAllByNativeQuery(), 422
@SqlResultSetMapping, 421

NewsletterSender interface, 44

�       � O
Object modification detection, 265–266
Object-relational mapping (ORM)

@Column, 364
data model, 363
@Entity, 364
JPA annotations, 398, 400
libraries, 355
many-to-many mappings, 369–371
one-to-many mappings, 367–369
simple mapping, 364

Album class, 365–367
Singer class, 363–365

@Table, 364
Object/XML Mapping (OXM), 12, 23
One-to-many mappings, 367–369

�       � P
performLookup(), 40
PicoContainer, 17
PlatformTransactionManager, 469–470
Pointcuts

Advisors and, 233–249
AnnotationMatching

Pointcut, 247–249
AspectJ’s pointcut expression, 246
ClassFilter, 234
composable, 259–262
control flow, 256–258
DefaultPointcutAdvisor, 236
DyanmicMethodMatcher

Pointcut, 239–241
implementations, 235–236
name matching, 242–244
ProxyFactory, 233
regular expressions, 244–245
StaticMethodMatcherPointcut, 236–239

Project object model (POM), 20, 362
PropertyEditor

configuration, 162–163
custom, 164, 166–167
implementations, 159–162
spring-beans, 158–159
String, 163–164

■ INDEX

846

PropertySource abstraction
ApplicationContext, 193
AppProperty, 196
MutablePropertySources, 195

ProxyFactoryBean class
ApplicationContext, 274
configuration, 273–274
implementation, 272–273
introductions, 275–277

ProxyFactory class
CGLIB, 249–251
JDK, 250
performance, 251–254
testing, 255

�       � Q
Query data

createQuery(), 414–415
deleting data, 419–420
findAll(), 404
findAllWithAlbum(), 406, 408
inserting data, 415–417
@NamedQuery, 404
SingerService, 400–404
SingerSummary, 412–413
testFindAll(), 406
testFindAllWithAlbum(), 408–412
TypedQuery.getResultList(), 405, 406
updating data, 417–419

�       � R
RabbitMQ connection, 608
Refreshable beans, 648
Remoting support

AMQP (see Advanced Message Queuing
Protocol (AMQP))

ContactService
configuration, 564–566
HttpInvokerConfig, 567
SingerService, 562–563
Spring HTTP invoker, 568–569

data model, 558–560
dependencies, 560–561

RESTful-WS
curl, 590–592
dependencies, 580
manipulating resources, 580
RestTemplate, 592–597
Spring Boot, 602–606
Spring MVC, 581–582
Spring security, 597–602
XMLHttpRequest and

properties, 581

RestTemplate class, 592–597
ResultSetExtractor interface

findAllWithAlbums(), 327–328
lambda expressions, 329
test class, 329–330

Rich Internet applications (RIAs), 13

�       � S
Scripting support

Groovy (see Groovy)
in Java, 640–641

Selenium, 638
Service layer

DAO, 670
data model, 666–669
SingerService, 670–671

Session interface
querying

associations fetching, 375–378
HQL, 372
lazy fetching, 372–375

@Resource, 371
SingerDaoImpl class, 371

setDependency() method, 41
setOracle() method, 74
Simple (or Streaming) Text-Oriented Message

Protocol (STOMP)
MVC controller, 766–767, 769
stock-ticker application, 765–766
WebConfig, 771–772

Spring
community, 15
Context, 2
data access, 12
description, 1
dynamic scripting support, 14
GitHub, 20
Google Guice, 17
guides, 19
inversion of control, 1
JAR files, 19
Java developers, 1
JBoss Seam Framework, 17
JDK, 21
JEE, 13
JEE 7, 18
job scheduling support, 14
mail support, 14
MVC, web tier, 13
object/XML mapping, 12
origins of spring, 15
packaging options, 19
PicoContainer, 17
remoting support, 14

■ INDEX

847

simplified exception handling, 15
Spring 0.9, 2
Spring Batch and integration, 17
Spring Boot, 16
Spring Core, 2
Spring GitHub repository, 20
Spring Security project, 16
Spring 1.x, 2
Spring 2.x, 2
Spring 2.5.x, 3–4
Spring 3.0.x, 4
Spring 3.1.x, 5
Spring 3.2.x, 5
Spring 4.0.x, 6
Spring 4.2.x, 6–7
Spring 4.3.x, 7
Spring 5.0.x, 7
STS, 16
test suite and documentation, 19
transaction management, 13
validation, 11
WebSocket support, 14

Spring aware
ApplicationContext, 147
BeanNameAware, 147–148

Spring Batch
chunk-oriented processing, 774
configuration, 781–782
DataSourceConfig, 778–781
Gradle configuration, 775–776
ItemProcessor, 777–778
JSR-352 (see JSR-352)
scaling and parallel

processing, 775
Spring Boot, 16, 786–790

ApplicationContext, 206
Artemis, 576–579
configurations, 205
Gradle Projects, 205, 208–209
“opinionated” approach, 204
RESTful-WS, 602–606

Spring Data JPA
custom queries

AuditorAwareBean, 449
@Column, 444
@EntityListeners, 444, 448
@MappedSuperclass, 444
@Param, 438
@Query, 437
SINGER_AUDIT, 441–444
SingerAuditRepository, 447
SingerAuditService, 445–446
testing, 439, 449–451

library dependencies, 429
repository abstraction, 430–436

Spring Expression Language
(SpEL), 4, 69–72

Spring Framework
features, 798
functional web framework

content-Type text/
event-stream, 809

handler function, 804–807
repository implementation, 802–803
REST controller, 807–808
RouterFunctions, 807
types of data streams, 799
WebFlux, 799–801

Java 9, 811
WebFlux, 814–816

Spring Integration
configuration, 792–795
JUnit 5

FluxGenerator, 823–827
TestEngine, 817–820
WebTestClient, 821–823

Message, 790–792
Spring modules

application, 24
ApplicationContext configuration, 32
configuration classes, 34–35
getBean() method, 33
Gradle, 26
Hello World application, 27–31
JAR files, 21–23
ListableBeanFactory, 31
Maven repository, 24–25
MessageProvider interface, 32
MessageRenderer interface, 28, 31
spring-context.jar, 33
spring documentation, 26
StandardOutMessageRenderer, 28–30

Spring MVC
configuration, 678–680
DispatcherServlet, 683–684
file upload support

configuration, 721–723
modifying controllers, 724–726
modifying views, 723–724

folder structure, 686
life cycle, 676–678
list view, 685–686
SingerController, 684–685
Tiles, 698–699
view, 681–682
WebApplicationContext, 675–676

Spring profiles
FoodProviderService, 187–190
Java configuration, 190–193

Spring Security, 597–602

■ INDEX

848

configuration, 726–728
login functions, 729–731
project, 16
secure controller methods, 731

Spring testing
annotations, 618
categories, 616–617
DbUnit, 634–637
front-end unit test, 637
integration test

configuration class, 629–630
dependencies, 623
infrastructure classes, 627
Java configuration, 625–626
service-layer testing, 623–624
TestExecutionListener, 627–629

logic unit tests
create(), 621–623
dependencies, 619
listData(), 620–621
MVC Controllers, 620

unit test, service layer, 630–633
Spring Tool Suite (STS), 16
Spring transaction abstraction layer, 468–469
Spring type conversion

arbitrary types, 517–520
ConversionService, configure, 515–517
custom converter, 514–515
PropertyEditors, 511–514

Spring XD, 796–797
SQLException class, 319–321
SqlFunction class, 347–349
StandardLookupDemoBean class, 89
StaticMethodMatcherPointcut class, 236–239

�       � T
Task Scheduling

annotation, 548–550
AppConfig, 546
asynchronous task

execution, 551–554
CarService, 544
CrusRepository, 543
DBInitializer, 542–543
dependencies, 537–538
execution, 546–547
JPA entity, 540–542
TaskExecutor, 554–556
task-namespace, 545
TaskScheduler abstraction, 539
trigger, task, and scheduler, 539

Theming and templating, 691–693
Throws advice, 230–232
Thymeleaf

extensions, 743–747
fragments, 741–743
Spring Boot, 738–740
Webjars, 747–749

Transaction management
AOP configuration, 486–487
data model

classes, 475–478, 480
countAll(), 485
findAll(), 482
findById(), 483
@Query, 484
save(), 483
Spring JPA project, 473–475
@Transactional annotation, 480–481

declarative approach, 490
global transactions
JTA transactions (see Java Transaction API (JTA)

transactions)
PlatformTransactionManager, 469–470
programmatic transactions, 488–489
Spring transaction abstraction layer, 467–469
TransactionDefinition

interface, 471–472
TransactionStatus interface, 472–473

�       � U
Unit test, service layer, 630–633
UnsatisfiedDependencyException, 116

�       � V
Validation, Spring

AssertTrue, 534
bean validation, 528–529
custom validator, 531–534
dependencies, 510
JSR-349, 527, 535
object properties, 527–528
Spring validator interface, 525–527
testing, 530–531

�       � W, X, Y, Z
Web applications

DAO (see Data Access Object (DAO))
i18n

configuration, 688–689
List View, 690–691

JSR-349, 709–711
requirements, 665
service layer, 735
SingerService, 672–673
singer view

■ INDEX

849

adding, 708
edit, 703–707
show(), 700–703

Spring Boot, 732–733
Thymeleaf views (see Thymeleaf)
URLs views, 699
view templating, 693–698

WebSocket

API
front-end application, 758–759
Java configuration, 753
SockJS, 760–764
Spring MVC, 754–756
TextWebSocketHandler, 757
WebSocketConfigurer, 756–757

STOMP, 752

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing Spring
	What Is Spring?
	Evolution of the Spring Framework
	Inverting Control or Injecting Dependencies?
	Evolution of Dependency Injection
	Beyond Dependency Injection
	Support for Java 9
	Aspect-Oriented Programming with Spring
	Spring Expression Language
	Validation in Spring
	Accessing Data in Spring
	Object/XML Mapping in Spring
	Managing Transactions
	Simplifying and Integrating with JEE
	MVC in the Web Tier
	WebSocket Support
	Remoting Support
	Mail Support
	Job Scheduling Support
	Dynamic Scripting Support
	Simplified Exception Handling

	The Spring Project
	Origins of Spring
	The Spring Community
	The Spring Tool Suite
	The Spring Security Project
	Spring Boot
	Spring Batch and Integration
	Many Other Projects

	Alternatives to Spring
	JBoss Seam Framework
	Google Guice
	PicoContainer
	JEE 7 Container7

	Summary

	Chapter 2: Getting Started
	Obtaining the Spring Framework
	Getting Started Quickly
	Checking Spring Out of GitHub
	Using the Right JDK

	Understanding Spring Packaging
	Choosing Modules for Your Application
	Accessing Spring Modules on the Maven Repository
	Accessing Spring Modules Using Gradle
	Using Spring Documentation
	Putting a Spring into Hello World
	Building the Sample Hello World Application
	Refactoring with Spring
	Spring Configuration Using Annotations

	Summary

	Chapter 3: Introducing IoC and DI in Spring
	Inversion of Control and Dependency Injection
	Types of Inversion of Control
	Dependency Pull
	Contextualized Dependency Lookup
	Constructor Dependency Injection
	Setter Dependency Injection
	Injection vs. Lookup
	Setter Injection vs. Constructor Injection

	Inversion of Control in Spring
	Dependency Injection in Spring
	Beans and BeanFactory
	BeanFactory Implementations
	ApplicationContext

	Configuring ApplicationContext
	Setting Spring Configuration Options
	Basic Configuration Overview
	Declaring Spring Components
	Using Java Configuration
	Using Setter Injection
	Using Constructor Injection
	Using Field Injection
	Using Injection Parameters
	Injecting Simple Values
	Injecting Values by Using SpEL
	Injecting Beans in the Same XML Unit
	Injection and ApplicationContext Nesting
	Injecting Collections

	Using Method Injection
	Lookup Method Injection
	Considerations for Lookup Method Injection
	Method Replacement
	When to Use Method Replacement

	Understanding Bean Naming
	Bean Name Aliasing
	Bean Naming with Annotation Configurations

	Understanding Bean Instantiation Mode
	Choosing an Instantiation Mode
	Implementing Bean Scopes

	Resolving Dependencies
	Autowiring Your Bean
	When to Use Autowiring

	Setting Bean Inheritance
	Summary

	Chapter 4: Spring Configuration in Detail and Spring Boot
	Spring’s Impact on Application Portability
	Bean Life-Cycle Management
	Hooking into Bean Creation
	Executing a Method When a Bean Is Created
	Implementing the InitializingBean Interface
	Using the JSR-250 @PostConstruct Annotation

	Declaring an Initialization Method Using @Bean
	Understanding Order of Resolution

	Hooking into Bean Destruction
	Executing a Method When a Bean Is Destroyed
	Implementing the DisposableBean Interface
	Using the JSR-250 @PreDestroy Annotation

	Declaring a Destroy Method Using @Bean
	Understanding Order of Resolution
	Using a Shutdown Hook

	Making Your Beans “Spring Aware”
	Using the BeanNameAware Interface
	Using the ApplicationContextAware Interface

	Use of FactoryBeans
	FactoryBean Example: The MessageDigestFactoryBean

	Accessing a FactoryBean Directly
	Using the factory-bean and factory-method Attributes
	JavaBeans PropertyEditors
	Using the Built-in PropertyEditors
	Creating a Custom PropertyEditor

	More Spring ApplicationContext Configuration
	Internationalization with the MessageSource
	Internationalization with the MessageSource
	Using the getMessage() Method
	Why Use ApplicationContext As a MessageSource?

	Using MessageSource in Stand-Alone Applications
	The MessageSourceResolvable Interface

	Application Events
	Using Application Events
	Considerations for Event Usage

	Accessing Resources
	Configuration Using Java Classes
	ApplicationContext Configuration in Java
	Spring Mixed Configuration
	Java or XML Configuration?

	Profiles
	An Example of Using the Spring Profiles Feature

	Spring Profiles Using Java Configuration
	Considerations for Using Profiles

	Environment and PropertySource Abstraction
	Configuration Using JSR-330 Annotations
	Configuration Using Groovy
	Spring Boot
	Summary

	Chapter 5: Introducing Spring AOP
	AOP Concepts
	Types of AOP
	Using Static AOP
	Using Dynamic AOP
	Choosing an AOP Type

	AOP in Spring
	The AOP Alliance
	Hello World in AOP

	Spring AOP Architecture
	Joinpoints in Spring
	Aspects in Spring
	About the ProxyFactory Class
	Creating Advice in Spring
	Interfaces for Advice
	Creating Before Advice
	Securing Method Access by Using Before Advice
	Creating After-Returning Advice
	Creating Around Advice
	Creating Throws Advice
	Choosing an Advice Type

	Advisors and Pointcuts in Spring
	The Pointcut Interface
	Available Pointcut Implementations
	Using DefaultPointcutAdvisor
	Creating a Static Pointcut by Using StaticMethodMatcherPointcut
	Creating a Dynamic Pointcut by Using DyanmicMethod MatcherPointcut
	Using Simple Name Matching
	Creating Pointcuts with Regular Expressions
	Creating Pointcuts with AspectJ Pointcut Expression
	Creating Annotation Matching Pointcuts
	Convenience Advisor Implementations

	Understanding Proxies
	Using JDK Dynamic Proxies
	Using CGLIB Proxies
	Comparing Proxy Performance
	Choosing a Proxy to Use

	Advanced Use of Pointcuts
	Using Control Flow Pointcuts
	Using a Composable Pointcut
	Composition and the Pointcut Interface
	Pointcut Summary

	Getting Started with Introductions
	Introduction Basics
	Object Modification Detection with Introductions
	Using the IsModified Interface
	Creating a Mixin
	Creating an Advisor
	Putting It All Together

	Introduction Summary
	Framework Services for AOP
	Configuring AOP Declaratively
	Using ProxyFactoryBean
	ProxyFactoryBean in Action
	Using ProxyFactoryBean for Introductions
	ProxyFactoryBean Summary

	Using the aop Namespace

	Using @AspectJ-Style Annotations
	Considerations for Declarative Spring AOP Configuration

	AspectJ Integration
	About AspectJ
	Using Singleton Aspects

	Summary

	Chapter 6: Spring JDBC Support
	Introducing Lambda Expressions
	Sample Data Model for Example Code
	Exploring the JDBC Infrastructure
	Spring JDBC Infrastructure
	Overview and Used Packages

	Database Connections and DataSources
	Embedded Database Support
	Using DataSources in DAO Classes
	Exception Handling
	The JdbcTemplate Class
	Initializing JdbcTemplate in a DAO Class
	Using Named Parameters with NamedParameterJdbcTemplate
	Retrieving Domain Objects with RowMapper<T>

	Retrieving Nested Domain Objects with ResultSetExtractor
	Spring Classes That Model JDBC Operations
	Querying Data by Using MappingSqlQuery<T>
	Updating Data by Using SqlUpdate

	Inserting Data and Retrieving the Generated Key
	Batching Operations with BatchSqlUpdate
	Calling Stored Functions by Using SqlFunction
	Spring Data Project: JDBC Extensions
	Considerations for Using JDBC
	Spring Boot JDBC
	Summary

	Chapter 7: Using Hibernate in Spring
	Sample Data Model for Example Code
	Configuring Hibernate’s SessionFactory
	ORM Mapping Using Hibernate Annotations
	Simple Mappings
	One-to-Many Mappings
	Many-to-Many Mappings

	The Hibernate Session Interface
	Querying Data by Using the Hibernate Query Language
	Simple Querying with Lazy Fetching
	Querying with Associations Fetching

	Inserting Data
	Updating Data
	Deleting Data
	Configuring Hibernate to Generate Tables from Entities
	Annotating Methods or Fields?
	Considerations When Using Hibernate
	Summary

	Chapter 8: Data Access in Spring with JPA2
	Introducing JPA 2.1
	Sample Data Model for Example Code
	Configuring JPA’s EntityManagerFactory
	Using JPA Annotations for ORM Mapping

	Performing Database Operations with JPA
	Using the Java Persistence Query Language to Query Data
	Querying with Untyped Results

	Querying for a Custom Result Type with a Constructor Expression
	Inserting Data
	Updating Data
	Deleting data

	Using a Native Query
	Using a Simple Native Query
	Native Querying with SQL ResultSet Mapping
	Using the JPA 2 Criteria API for a Criteria Query

	Introducing Spring Data JPA
	Adding Spring Data JPA Library Dependencies
	Using Spring Data JPA Repository Abstraction for Database Operations

	Using JpaRepository
	Spring Data JPA with Custom Queries
	Keeping Track of Changes on the Entity Class

	Keeping Entity Versions by Using Hibernate Envers
	Adding Tables for Entity Versioning
	Configuring EntityManagerFactory for Entity Versioning
	Enabling Entity Versioning and History Retrieval
	Testing Entity Versioning

	Spring Boot JPA
	Considerations When Using JPA
	Summary

	Chapter 9: Transaction Management
	Exploring the Spring Transaction Abstraction Layer
	Transaction Types

	Implementations of the PlatformTransactionManager
	Analyzing Transaction Properties
	The TransactionDefinition Interface
	The TransactionStatus Interface

	Sample Data Model and Infrastructure for Example Code
	Creating a Simple Spring JPA Project with Dependencies
	Sample Data Model and Common Classes
	Using AOP Configuration for Transaction Management

	Using Programmatic Transactions
	Considerations on Transaction Management

	Global Transactions with Spring
	Infrastructure for Implementing the JTA Sample
	Implementing Global Transactions with JTA
	Spring Boot JTA
	Considerations on Using JTA Transaction Manager

	Summary

	Chapter 10: Validation with Type Conversion and Formatting
	Dependencies
	Spring Type Conversion System
	Conversion from a String Using PropertyEditors
	Introducing Spring Type Conversion
	Implementing a Custom Converter
	Configuring ConversionService
	Converting Between Arbitrary Types

	Field Formatting in Spring
	Implementing a Custom Formatter
	Configuring ConversionServiceFactoryBean

	Validation in Spring
	Using the Spring Validator Interface
	Using JSR-349 Bean Validation
	Defining Validation Constraints on Object Properties

	Configuring Bean Validation Support in Spring
	Creating a Custom Validator

	Using AssertTrue for Custom Validation
	Considerations for Custom Validation
	Deciding Which Validation API to Use
	Summary

	Chapter 11: Task Scheduling
	Dependencies for the Task Scheduling Samples
	Task Scheduling in Spring
	Introducing the Spring TaskScheduler Abstraction
	Exploring a Sample Task
	Using Annotations for Task Scheduling
	Asynchronous Task Execution in Spring

	Task Execution in Spring
	Summary

	Chapter 12: Using Spring Remoting
	Using a Data Model for Samples
	Adding Required Dependencies for the JPA Back End
	Implementing and Configuring SingerService
	Implementing SingerService
	Configuring SingerService
	Exposing the Service
	Invoking the Service

	Using JMS in Spring
	Implementing a JMS Listener in Spring
	Sending JMS Messages in Spring

	Spring Boot Artemis Starter
	Using RESTful-WS in Spring
	Introducing RESTful Web Services
	Adding Required Dependencies for Samples
	Designing the Singer RESTful Web Service
	Using Spring MVC to Expose RESTful Web Services

	Configuring Castor XML
	Implementing SingerController
	Configuring a Spring Web Application
	Using curl to Test RESTful-WS
	Using RestTemplate to Access RESTful-WS
	Securing RESTful-WS with Spring Security

	RESTful-WS with Spring with Spring Boot
	Using AMQP in Spring
	Using AMQP with Spring Boot

	Summary

	Chapter 13: Spring Testing
	Introducing Testing Categories
	Using Spring Test Annotations
	Implementing Logic Unit Tests
	Adding Required Dependencies
	Unit Testing Spring MVC Controllers
	Testing the listData() Method
	Testing the create() Method

	Implementing an Integration Test
	Adding Required Dependencies
	Configuring the Profile for Service-Layer Testing
	Java Configuration Version
	Implementing the Infrastructure Classes
	Implementing Custom TestExecutionListener
	Implementing the Configuration Class

	Unit Testing the Service Layer
	Dropping DbUnit

	Implementing a Front-End Unit Test
	Introducing Selenium

	Summary

	Chapter 14: Scripting Support in Spring
	Working with Scripting Support in Java
	Introducing Groovy
	Dynamic Typing
	Simplified Syntax
	Closure

	Using Groovy with Spring
	Developing the Singer Domain
	Implementing the Rule Engine
	Implementing the Rule Factory as a Spring Refreshable Bean
	Testing the Age Category Rule
	Inlining Dynamic Language Code

	Summary

	Chapter 15: Application Monitoring
	JMX Support in Spring
	Exporting a Spring Bean to JMX
	Using Java VisualVM for JMX Monitoring
	Monitoring Hibernate Statistics
	JMX with Spring Boot
	Summary

	Chapter 16: Web Applications
	Implementing the Service Layer for Samples
	Using a Data Model for the Samples
	Implementing the DAO Layer
	Implementing the Service Layer

	Configuring SingerService
	Introducing MVC and Spring MVC
	Introducing MVC
	Introducing Spring MVC
	Spring MVC WebApplicationContext Hierarchy
	Spring MVC Request Life Cycle
	Spring MVC Configuration
	Creating the First View in Spring MVC
	Configuring DispatcherServlet
	Implementing SingerController
	Implementing the Singer List View
	Testing the Singer List View

	Understanding the Spring MVC Project Structure
	Enabling Internationalization (i18n)
	Configuring i18n in the DispatcherServlet Configuration
	Modifying the Singer List View for i18n Support

	Using Theming and Templating
	Theming Support

	View Templating with Apache Tiles
	Designing the Template Layout
	Implementing Page Layout Components

	Configuring Tiles in Spring MVC
	Implementing the Views for Singer Information
	Mapping URLs to the Views
	Implementing the Show Singer View
	Implementing the Edit Singer View
	Implementing the Add Singer View
	Enabling JSR-349 (Bean Validation)

	Using jQuery and jQuery UI
	Introducing jQuery and jQuery UI
	Enabling jQuery and jQuery UI in a View
	Rich-Text Editing with CKEditor
	Using jqGrid for a Data Grid with Pagination
	Enabling jqGrid in the Singer List View
	Enabling Pagination on the Server Side

	Handling File Upload
	Configuring File Upload Support
	Modifying Views for File Upload Support
	Modifying Controllers for File Upload Support

	Securing a Web Application with Spring Security
	Configuring Spring Security
	Adding Login Functions to the Application
	Using Annotations to Secure Controller Methods

	Creating Spring Web Applications with Spring Boot
	Setting Up the DAO Layer
	Setting Up the Service Layer
	Setting Up the Web Layer
	Setting Up Spring Security

	Creating Thymeleaf Views
	Using Thymeleaf Extensions
	Using Webjars

	Summary

	Chapter 17: WebSocket
	Introducing WebSocket
	Using WebSocket with Spring
	Using the WebSocket API
	Using SockJS

	Sending Messages with STOMP
	Summary

	Chapter 18: Spring Projects: Batch, Integration, XD, and More
	Spring Batch
	JSR-352
	Spring Boot Batch
	Spring Integration
	Spring XD
	Spring Framework’s Five Most Notable Features
	The Functional Web Framework
	Java 9 Interoperabiliy
	JDK Modularity
	Reactive Programming with Java 9 and Spring WebFlux
	Spring Support for JUnit 5 Jupiter

	Summary

	Appendix A: Setting Up Your Development Environment
	Introducing Project pro-spring-15
	Understanding the Gradle Configuration
	Building and Troubleshooting
	Deploy on Apache Tomcat

	Index

